
Lecture9 : Approximation Algorithms

Motivation :

If prob is NP-hard
Can't expect polytone algorithms

that exactly solve the problem

But.. it may
be possible to relax our goal

and find ageproximate solutions efficiently
.

"Optimization" Problems over aspace of-
-Minimize a cost measure candidate

op solutions

maximize a quality measure
C.g. Max

Flow

Input : directed
G
,
Capacities <Chil , Set

-

all Valid flows fiE-
> IR+

Candidates :

Quality : total flow leavingS



e
.
g. Minimum cut

Input : G
= G (ViE)

Candidates : all
non-trivial cuts Sev

SF0.Y

Est : cut(s)
= Equev3/14 ,

r31SFB

Both these problems admitan efficient algo

that he studied in previous lectures.

Let's take a key example we
will study

today.

Minimum Vertex Cover
-

Refinition : A set of vertices
SEV is

a vertex cover in agraph
GCVIE) if

-

for every edge [Ugv3EE ,
at least

one of n or v is in S.



Informally , S"covers"
or "touches" every

edge -

Problem (Min VC)

Aput : G(ViE)
Goals compute a vertex

cover s of
-

G with minimum possible size

Candidates : all possible vertex covers
of

- G

Lost size C= numbers fvertices)

Eact: MinUC is NP-hard
.



TheoremOrThere isanOminteda b
to car

DS is a vertex cover
.

25
* 1 where So is

-Any minVC in G.2. OPI

Let's develop some basic vocabulary
&

understand this statement

Definition : OPTCG :=
minimum cost

· imization(for men
problem)

OPT(G) =I maximum quality
C for maximization

problem)



APPROXIMATION RATIS
-

Let A be an algorithm to compute

Vertex cover
.

hG
,
let's write (6)

For any grap

for the
cost of the VC computed

byA

Then : approx
ratio of A

max A(G)
= OPTCG)

all possible
graphs G

"Worst-case" multiplicativeslack
in

the cost over andabove the optimum

Costo



ItheoremO(same thm , new language)

There is an algorithm A for
X( that

D rune in time
O(mtn), and,

2) has approx
ratio .32.

&
Remarks we've chosen to measure

the lossfquality or extra
cost

paid over
and above the optimum

in a multiplicative way.
We could have asked for

"additive

error" : sol"of cost OPT+
EXTRA-cost

& then taken the worst-case

extra-cost paid as our measure
to

focus on. But this would become



less meaningfulif OPT is tiny

Still
,
additive approx can

be sensible

in some settings.
Wewill not see

them in this course.

Remark 2 : Here's a
basic conundrum

-

of approx algo design
: we

want to

reason
about the quality of solution

foundby the algorithm
& compare

it

to OPT. But
,
wedon't know opt

!

Indeed, we're looking for approx algos

because!! We don't know
how to

-
-
-

compute OPT efficiently
!



KeyIdea "Certificates" of
lower

or upper
bounds onOPT

We will develop this important
conceptual ideaby focusing

on

VC - our current example/goal.
-

Bounding OPT

Let's ask the following question
that

Seems to
not be directly

related

to the goal of computing a
minu

at first.

&Try to find structures in G that



Litbylower bounds onany VC)-
Let's play with some examples

.

·1 .
area VC ⑨

= Red vertices N.

Blue Vertex is also
a VC

⑨

Blue vertex is also a minXC
.

How do you prove
this ?

&

Easy: take any edge
. Any VC must

contain

one ofits end points
& thre has size71

2. What about this
? ·=

here ?
Canyou find

a min UC T
how do you

convinceyourselfthat no

better vc can exist ?



Definition(Matching
A matching 19 E

con agraph G(VIE)

is a collection of edges st
no vertex

participates in more
than one(can be

Zero) edge in M.

FiB-G-esBine edges form amatching I
Caution : Matching may not
-

touch all vertices
of G.

-

Matchings yield
a lowerboundon Vertex

covers .

Lemma1 : Let
MEE be any matching
.

-

Then every
vertex cover

of G has size

at least 1491.



Proof : Let s be a vertex cover
of

-

G . ThenS must contain at least

one vertex from every edge
in M.

Since the edges inM
donot share

vertices , ISIY IMI. D

What's the best lower bound
wecan

-

hope to
obtari on the VC in

G this

way
?

Corollary :
-

VL(G) Y Max-Matching
(G)

how good iseucha
certificate ?

Can we use matchings to compute
VCs ?



eg. - G= Ko

Clearly , all vertex - Call possible
covers of Kymust - edges on

6

use 5 vertices. vertices)

But maximum matching is of size
3.

So if we just tookamay matching
&

kept one vertex from each ede , we
will

definitelynotget a verley
cover.

theyObservation : If retake both

vertices of every edge
in M ,

then we

mustgeta verty
cover.

In fact this is true even if
the is just

maximal as opposedto maximum



#Definition (Maximal Matching

A matching MEE
in G (VIE) is

maximal if for every edge eCEM .-

Muse3 is not a matching
.

equivalently, every edge
e in Eli

touches some verley already used
in M.

Informally , you cannot grow
M by adding

any edge from
the unused pila

&

-
--J

e.g . blue edges form
a --
-G

&

-

maximal matching of sig
23--
mal-

red edges
also form a max

matching but
of size

4 .

Caution:maximalmatchingcanbesmalreabove)-



2) A maximum matching is maximal
(but not vice-versa,

un general).

One cool observation
is that it is very

easy
to compute on Maximal Matching

Lemma2 : There is a 0 (m
+n) time

gorithm to compute a maximal matching
in G (VIE) Cassuming E is given

as adj list)

Let Er= Equirb/GuseEY
Input : EVIE

Algo : Initialize M:= I .

#EcurEcurrpick any e
= [uiv] EEcurr

M= MUGes

Ecurv = El EnUEr



Size=size-lEul-lErlt↑ else, return M.-

Informally : repeatedly
add an edge quirs

from EcarFE to M&remove
all edges uncident

on U or V inEiStop
wherEis empty

o

teaml: vantime of the also is 0 (m+h)
--

Proof :
-

Computing size & initializing
Ecurr

takes O(m) time

Picking an edge
takes OCK ture

Removing En
& Ertakes OLD

time. Updating
size takes

O(lFultlEvK) time
.



In total , since for each vertexlo

En can be removed
atmostonce,

total cost = 0 (m+ &En1
= O(m) D

Cortness: Let M be the output
of

0the alg

&am 2 : M is a matching .

Prof :
-

We argueby
inductionon Hiterations

3of while loo

clearly of is amatching
, this

completes the
base case.

Inductively assume
M is a

matching after firstliterations.



In the next iteration,"Fany edgee is
added

it
must be incidenton
In

Vertices not already touched ly
an

edge in M since we remove
all edges from Ecur that

are

encidentan such vertices -

So Musel mustbe amatching
.

If no such edge exists, nothing
to

D

prove

Claim3 : M is maximal
Proof :

Suppose not for a
contradiction.

Then
,
there must be an edge



e= quir3 that is in E but

no edge
incidenton norr is

part of M . But then

IEcurr = EU
SUM

contradicting the termination
condido

of the algorithm D

This completes the analysis
of

the Algor ,then D



Vertey Covers from Maximal
atchings

Key : Ifyou
takebothvertices

of every edje
in amaxual

matching ,ther
its a verty cover

Lemmazi Let M
& E be a

-

maximal matching.
Then,

S= qu/5v : Gu ,3
[ M3

is a vertex cover
of G(VIE).

Prof : Suppose S
is not a V .C.

of G. Then there
must exist



an edge Eu, IEE such
that

Snugry = 0 .

But then MMEnUEr = P

Since S contains all vertices

touched by any edge in
M.

In that case MUSUis] is

amatching& thus M
is NOT

maximal . This is aContradiction
:

D



We have thus arrivedat a

natural algorithm to compute
a VCiiG by relating

VCs to

matchings.

Finto fund a maximal-
un G

2 Outputs = EUviqurEM3

Lma4iSoutputbythel o



Proofs Immediate from Lemmas.
-

Lemma 5: ISI [20PTCE)
.

-

Proof : Let M be the matching

computed in Step 1 .

Then by numl,-
OPTCG) /MI .

OTOH
, clearly, ISIE

2: /M/

So : IslE2 . IMIE 20PKE).

B



We have thas established

the Theorem O.
-

Take-aways :

one can
think of this as a greedy

algorithm Since
M is computed

greedily) for approx
V . C.

KeyInsights) matchings
can

be used to givea
lower

bound on all V
.C . S.

2) maximalmatchings
can be



used to constructa verty
cover .

③ maximal matchings
are

easily computable

Tidwe analyze the algorithm
optimally ?
Could our algorithm do better

than 2-approx .
?

-> Sometimes
a

e .

g. if the graph itself -
is a matching, our -

-



algo has approxvatio of 1.

Here's another example where
the algo does quite

well-

Exercise : Let Ken be the
-

how In verticescomplete grap
Then ,

D) any
VC of Ken

has size

2n-1 ,
and,

2) every
maximalmatching

of Ken has size
n.



So our algo gets an approx.
ratioof E+asnt.

But in the worst-case our algo
is tight !

Exercise : Let Kn ,
nbe the

- oh with

complete bixartile gray
sets eachof

left& right verty
size n

. Then

D) Min-Vc(Knin)
= n .

2) Every maximalmatching o K is



Thus ouralgo for Knin
will

outputa VC
of size Inever

though there's a VC
of size nica

the graph
.

---


