
COS330: Great Ideas in Theoretical Computer Science Fall 2025

Lecture 1: Introduction

welcome!

 what is theoretical computer science?

 course themes

 course logistics

COS330: Great Ideas in Theoretical Computer Science Fall 2025

COS330: Great Theoretical Ideas in Computer Science Fall 2025

COS330: Great Ideas in Theoretical Computer Science Fall 2025

Lecture 1: Introduction

welcome!

 what is theoretical computer science?

 course themes

 course logistics

Theoretical Computer Science

Computer Science

Science

Computer Science

Writing Python programs to

solve problems?

The science of computation

Computer science is no more about

computers than astronomy is about telescopes

-Edsger Dijkstra

Computer science is no more about

computers than astronomy is about telescopes

-Edsger Dijkstra

Computer science is no more about

computers than astronomy is about telescopes

--Mike Fellows

Computer Science

Writing Python programs to

solve problems?

The science of computation

manipulation of information/data

rigorous study

Computer science is the study of computation—the processes that

transform information. It asks which problems are solvable, how to

solve them, and at what cost. It builds abstractions (algorithms, data,

languages, systems) to automate tasks reliably at scale. It also

examines the limits, ethics, and impacts of computing on people and

society.

Computer science is the study of computation—the processes that

transform information. It asks which problems are solvable, how to

solve them, and at what cost. It builds abstractions (algorithms, data,

languages, systems) to automate tasks reliably at scale. It also

examines the limits, ethics, and impacts of computing on people and

society.

Algorithm: rigorous description of how the data is manipulated

Computation: manipulation of information/data

computerinput output

algorithm

Algorithm: rigorous description of how the data is manipulated

Computation: manipulation of information/data

computerinput output

algorithm

Computational problem: the input/output pairs

Algorithm: rigorous description of how the data is manipulated

Computation: manipulation of information/data

calculatorinput output

algorithm

Computational problem: the input/output pairs

Algorithm: rigorous description of how the data is manipulated

Computation: manipulation of information/data

laptopinput output

algorithm

Computational problem: the input/output pairs

Algorithm: rigorous description of how the data is manipulated

Computation: manipulation of information/data

humaninput output

algorithm

Computational problem: the input/output pairs

com·put·er:

1. a programmable machine which performs

computations and calculations

2. a human employed to perform computations and

calculations

(usage 1: roughly 1897–present)

(usage 2: roughly 1613–1945)

Algorithm: rigorous description of how the data is manipulated

Computation: manipulation of information/data

neuroninput output

algorithm

Computational problem: the input/output pairs

Algorithm: rigorous description of how the data is manipulated

Computation: manipulation of information/data

marketsinput output

algorithm

Computational problem: the input/output pairs

Algorithm: rigorous description of how the data is manipulated

Computation: manipulation of information/data

physical processinput output

algorithm

Computational problem: the input/output pairs

Algorithm: rigorous description of how the data is manipulated

Computation: manipulation of information/data

evolutioninput output

algorithm

Computational problem: the input/output pairs

Computational biology

Computational economics

Computational neuroscience

Computational astrophysics

Computational chemistry

Computational finance

Computational linguistics

Computational quantum mechanics

Computational statistics

∙ ∙ ∙

computational lens

Theoretical Computer Science

Mathematics
Computer

Science

Mathematics
Computer

Science

Mathematics
Computer

Science

Theoretical

Computer Science

An analogy with physics may help

MathematicsPhysics
Theoretical

Physics

Mathematics
Theoretical

Physics

Mathematics
Theoretical

Computer Science

Princeton prof
Princeton grad

+ IAS prof

Okay, we don’t

have everybody

youtube.com/watch?v=6FDIn4fN2v8

youtube.com/watch?v=6e2k0339lkI

youtube.com/watch?v=TK_vD-VnsFw

“Theory A”: algorithms & complexity

“Theory B”: formal methods, logic, PL

for the purposes

of this course

Real World Abstract World

Observed phenomena Mathematical

model

Explore

consequences

Test consequences

Applications

the role of theoretical physics

Real World Abstract World

computation mathematical

model

explore

consequences
applications

the role of theoretical computer science

recent!
Alan Turing

Princeton grad

class of 1938

Real World Abstract World

computation mathematical

model

applications

the role of theoretical computer science

What is this course about?

powerful, broadly impactful theoretical ideas

Let me give an example

Let’ say you run a large-scale AI bot service like ChatGPT.

Many servers…to address incoming prompts/requests.

A new request arrives. Which server should this be “routed to” for service?

Dynamic Resource Allocation

Easy. The least loaded one.

Minimizes “latency”.

But…load at servers is dynamic. Must query each server for its current load

for every request…. horrible latency.

A new request arrives. Which server should this be “routed to” for service?

Easy. The least loaded one.

Minimizes “latency”.

A new request arrives. Which server should this be “routed to” for service?

Idea Route it to a random server.

+ Super lightweight. No queries to servers!

How good is it?

Dynamic Resource Allocation

A (simple) theoretical model

Idea Route it to a random server.

+ Super lightweight. No queries to servers!

What’s the maximum “load”

on any server? Proxy for max

latency.

n servers. n requests.

Dynamic Resource Allocation: Random Choice!

A (simple) theoretical model

What’s the maximum “load”

on any server? Proxy for max

latency.

n servers. n requests.

Label the servers 1,2,…,n.

Dynamic Resource Allocation: Random Choice!

the chance that server j receives at least k requests?

For 𝑘 ∼ (log 𝑛)/ log log 𝑛, this quantity is ≪ 1/𝑛2.

By a union bound with prob 1 − 1/𝑛, no server has load ≳
log 𝑛

log log 𝑛
.

≤ 𝑛
𝑘
.
1

𝑛𝑘
∼

1

𝑘!
.

A (simple) theoretical model

What’s the maximum “load”

on any server? Proxy for max

latency.

n servers. n requests.

With prob 1 − 1/𝑛, no server has load ≳
log 𝑛

log log 𝑛
.

Dynamic Resource Allocation: Random Choice!

Cloudflare handles ~45 million http requests a second and designed for 100s of millions of

requests per second. So, a max load of ~6-8. Not bad!

A (simple) theoretical model

n servers. n requests.

Dynamic Resource Allocation: Can we improve the simple idea?

Idea 2 Query two random servers and route to the one with smaller load.

+ Still quite lightweight. Just two queries!

How much can it help?

Symposium on Theory of

Computing, STOC, 1994.

The Power of Two Choices

Idea 2 Query two random servers and route to the one with smaller load.

Load reduces to just log log 𝑛! – Exponentially smaller. For n=100 mill, <3.

+ Still quite lightweight. Just two queries!

Symposium on Theory of

Computing, STOC, 1994.

The Power of Two Choices

Load reduces to just log log 𝑛! – Exponentially smaller. For n=100 mill, <3.

30 year test of time award in 2024.

Incredibly impactful: L4/L7 routing in HTTP, RPC clients, shared caches,…

Incidentally, not much gain if you increase the choices to 3,4,…

The Power of Two Choices

Simple model. Simple, powerful (even if counterintuitive) theoretical idea.

This course is about such theoretical ideas.

PS: we don’t expect you to follow the calculation in the previous slide

(we will build up to it in a lecture).

COS 330 Topics Overview

Module 1: Classic Algorithms

(fundamental algorithmic techniques, or, COS 226++, rigorous analyses of resources, limits of algorithms)

Two camps:

1. Trying to come up with efficient algorithms (algorithm designers)

2. Trying to show no efficient algorithm exists (complexity theorists).

Multiplying two integers

factoring integers

detecting communities in social networks

DNA sequence alignment

Computing Nash equilibria of a game

COS 330 Topics Overview

Module 1: Classic Algorithms

(fundamental algorithmic techniques, or, COS 226++, rigorous analyses of resources, limits of algorithms)

Module 2: Power of randomization.

(using randomness to improve algorithms, data structures, and more, randomness is a superpower!)

Module 3: Optimization

(continuous optimization to solve problems, e.g., linear programming)

Module 4: New Computational Models

(beyond traditional models: e.g., dynamic inputs, data streams, distributed computation…)

Module 5: Information and Coding Theory

(reliable communication through unreliable channels, applications)

Module 6: Wildcard topics!

COS 330 Topics Overview

New ambitious course, somewhat experimental in

topics/teaching strategy.

We hope it will be fun learning for all of you.

Let’s talk about math

Part of the goal of the course is to train you to use math to aid

rigorous, logical, abstract thinking.

These topics require some math.

Mathematics
Computer

Science

Theoretical

Computer Science

Mathematics
Theoretical

Computer

Science

Computer

Science

Computational Thinkers

Princeton CS

Belief:

All scientists

should be here

Mathematics
Theoretical

Computer

Science

Computer

Science

Princeton CS

Belief:

All computer

scientists

should be

 here

Mathematical Thinkers

Mathematics
Theoretical

Computer

Science

Computer

Science

Goal #1 of

COS 330!

Mathematical Thinkers

Mathematics
Theoretical

Computer

Science

Computer

Science
Goal #2 of

COS 330

(maybe)!

Mathematical Thinkers

Let’s talk about math

You don’t have to love math/TCS. But if you do, we hope you

will like this course.

Not everyone has to be passionate about math of CS, but

ideally, all computer scientists are happy to think

mathematically.

The course material, precepts, exams are designed to help you

with this. Use these resources!

Ryan O’Donnell’s metaphor for the

mathematical / theoretical

part of computer science.

Math is like… cilantro

There are 5 kinds of people

when it comes to cilantro.

1. Those who don’t know

what cilantro is

1. Those who don’t know

what cilantro is

고수

1. Those who don’t know

what cilantro is

Coriander (leaves)

香菜

धनिया

ngò

φύλλα κόλιανδρου

க ொத்தமல்லி

ধনে

kişniş

кинза

כוסברה

Coriandrum sativum

گشنی ز

الكزبرة

2. People who LOVE cilantro

2. People who LOVE cilantro

You don’t have to LOVE math/TCS.

But if you do, we hope you will like this course.

3. People who think cilantro is fine

Our dream is that everyone is in this category

at the end of COS 330.

Not everyone has to be passionate about

the math of CS, but ideally all

computer scientists are happy to think

mathematically.

3. People who don’t like cilantro

We want you to try it.

We’ll try to show you some of the tastiest math dishes.

Hope you can eat it if necessary.

4. People with a genetic condition

that makes cilantro taste like soap

I’m not 100% sure this really exists.

I sympathize, but you still have to eat a little.

Course Logistics

Lectures

Precepts

Problem Sets and Exams

Coaching

Problem Sets Are Not graded – purpose is exam preparation

• You won’t submit your PSet solutions, and we won’t do any traditional grading

• Fully open: AI, collaboration, etc. allowed

Coaching Model: Weekly 30-minute 1-on-1 with TA/UCA

• Coaching Credits: Earn up to 8 credits for engaged participation (worth 40% of final

grade)

• Coaching dates: Typically Tuesdays and Wednesdays (to be scheduled), starting next week

New course element: one-on-one coaching

Suggested Weekly Format

Before the Coaching Session:

• Attempt the PSet exactly how you would in any other class

• When stuck, use {grind it out, work with friends, office hours, ask AI}

• When “done,” write up your solution as if submitting for a grade

During the Coaching Session:

• Take your written PSet to your Coach

• Ask them to live-grade the problem you’re least certain about

• Ask for honest but kind feedback on your thought process

End of Session (last 5 minutes):

• Brief self-assessment: what’s going well, what to improve?

• Make a plan: what will you do differently next week?

You’ll spend a few minutes in the first meeting overviewing your background with

the TA/UCA

Grading Breakdown

Let x = number of coaching credits (0 to 8)

• Midterm: (40-2x) %

• Final: (60-3x)%

• Pset Engagement: 5x% (does not depend on correctness of your solutions)

• Baseline credit: 40% midterm, 60% final

• Credit with max allotment to Psets+Coaching: 24% mid terms + 36% final + 40% Psets

Grades in this class are not curved, they do not depend on those of your classmates!

Resources

Course Website: http://www.cs.princeton.edu/courses/archive/fall25/cos330 (up soon)

• Syllabus: Course policies, grading, schedule

• Lecture Slides: Posted after each lecture

• PSet Archive: PSets

• Precept Archive: Precept notes with solutions

Getting help:

• Ed Discussion: Primary forum for questions (no private questions)

• Office Hours: For additional help with PSets and concepts

• 1-on-1 Coaching: Weekly personalized feedback sessions

Disclaimer

This is a new course! So, expect some bumps along the way.

We will be trying some new (hopefully exciting) things this semester, and we want your

feedback!

Please read the policy materials we will post on the course website. We know it’s boring, but

we are trying a lot of new things so you should know what to expect

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

