
Mutation
COS 326

David Walker

Princeton University

slides copyright 2018 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Reasoning about Immutable data is Easy

2

let s1 = insert i s0 in (* s1 contains i *)

f x;

member i s1 (* s1 still contains i *)

imagine an immutable data structure s1

Reasoning about Immutable data is Easy

3

let s1 = insert i s0 in (* s1 contains i *)

f x;

member i s1 (* s1 still contains i? *)

imagine a mutable data structure s1

Reasoning about Mutable State is Hard

4

When s1 is mutable, one must look at f to see if s1 changes

Worse, one must often solve the aliasing problem.

Worse, in a concurrent setting, one must look at every other
function that any other thread may be executing

There is no modularity

insert i s1;

f x;

member i s1

let s1 = insert i s0 in

f x;

member i s1

mutable set immutable set

OCAML MUTABLE REFERENCES

References

8

New type: t ref

– Think of it as a pointer to a box that holds a t value.

– The contents of the box can be read or written.

References

9

New type: t ref

– Think of it as a pointer to a box that holds a t value.

– The contents of the box can be read or written.

let c = ref 0 in (* create an int ref *)

let x = !c in (* read *)

c := 42; (* assign *)

let y = !c in (* read again *)

Another Example

12

let c = ref 0

let next() =

 let v = !c in

 (c := v+1 ; v)

let x0 = next (). (* 0 *)

let x1 = next () (* 1 *)

…

Another Idiom

15

let c = ref 0

let next () : int =

 let v = !c in

 (c := v+1 ; v)

let counter () =

 let c = ref 0 in

 fun () ->

 let v = !c in

 (c := v+1 ; v)

let countA = counter() in

let countB = counter() in

countA() ; (* 0 *)

countA() ; (* 1 *)

countB() ; (* 0 *)

countB() ; (* 1 *)

countA() ; (* 2 *)
c

3

code

countA

Global Mutable Reference Mutable Reference Captured in Closure

Imperative loops

(* sum of 0 .. n *)

let sum (n:int) =

 let s = ref 0 in

 let current = ref n in

 while !current > 0 do

 s := !s + !current;

 current := !current - 1

 done;

 !s

(* print n .. 0 *)

let count_down (n:int) =

 for i = n downto 0 do

 print_int i;

 print_newline()

 done

(* print 0 .. n *)

let count_up (n:int) =

 for i = 0 to n do

 print_int i;

 print_newline()

 done

Imperative loops?

(* print n .. 0 *)

let count_down (n:int) =

 for i = n downto 0 do

 print_int i;

 print_newline()

 done

(* for i=n downto 0 do f i *)

let rec for_down

 (n : int)

 (f : int -> unit)

 : unit =

 if n >= 0 then

 (f n; for_down (n-1) f)

 else

 ()

let count_down (n:int) =

 for_down n (fun i ->

 print_int i;

 print_newline()

)

Summary

67

Refs are OCaml’s basic mutable data structure. But also:

– arrays, mutable records, objects

– discover these other features yourself!

Mutable data structures can lead to efficiency improvements.
– e.g., Hash tables, memoization, depth-first search

But they are much harder to get right, so don't jump the gun
– updating in one place may have an effect on other places.

– writing and enforcing invariants becomes more important.

– cycles in data (other than functions) can't happen until without refs

– concurrency makes things worse

So use refs when you must, but try hard to avoid it.

	Slide 1: Mutation
	Slide 2: Reasoning about Immutable data is Easy
	Slide 3: Reasoning about Immutable data is Easy
	Slide 4: Reasoning about Mutable State is Hard
	Slide 7: ocaml mutable references
	Slide 8: References
	Slide 9: References
	Slide 12: Another Example
	Slide 15: Another Idiom
	Slide 16: Imperative loops
	Slide 17: Imperative loops?
	Slide 67: Summary

