Mutation

Breaking News
LVE Mutant Alert! New cow-goat m COS 326

e

T A
COM e 5 e

David Walker
Princeton University

slides copyright 2018 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes



Reasoning about Immutable data is Easy

imagine an immutable data structure sl

let s1 = insert 1 s0 in (* s1 contains 1 ¥*)

f x;

member i1 sl (* s1 still contains i *)




Reasoning about Immutable data is Easy

imagine a mutable data structure s1

let s1 = insert 1 s0 in (* s1 contains 1 ¥*)

f x;

member 1 sl (* s1 still contains 1? ¥*)




Reasoning about Mutable State is Hard

immutable set

mutable set

insert 1 sl; let s1 = insert 1 sO in
f x; f x;

member 1 sl member i sl

When s1 is mutable, one must look at f to see if s1 changes
Worse, one must often solve the aliasing problem.

Worse, in a concurrent setting, one must look at every other
function that any other thread may be executing

There is no modularity



OCAML MUTABLE REFERENCES



References

New type: t ref
— Think of it as a pointer to a box that holds a t value.
— The contents of the box can be read or written.



References

New type: t ref
— Think of it as a pointer to a box that holds a t value.
— The contents of the box can be read or written.

let ¢ = ref 0 in (* create an int ref *)
let x = !c in (* read *)
c := 42; (* assign *)

let v = !c in (* read again *)




Another Example

let ¢ = ref O
let x0 =
let next () = let x1 =

let v = !c in

e = AR




Another Idiom

Global Mutable Reference

Mutable Reference Captured in Closure

let ¢ = ref O let counter ()
let ¢ = ref 0 in
let next () : int = fun () —->
let v = !c in let v = !c in
(c := v+1 ; V) (c := v+1 ; V)
let countA = counter ()
let countB = counter ()
countA countA() ; (* 0 *)
countA () ; (* 1 *)
\ countB() ; (* 0 *)
\\ countB() ; (* 1 *)
countA() ; (* 2 *)

/
e

in

in

15




Imperative loops

(* sum of 0 .. n *)
let sum (n:int) =
let s = ref 0 in
let current = ref n in
while !current > 0 do
s := !s + !current;
current := !current -
done;
!'s

1

(* print n .. 0 *)
let count down (n:int)
for 1 = n downto 0 do

print int 1;
print newline ()

done

(* print O n *)

let count up (n:int) =
for 1 = 0 to n do

print int 1;
print newline ()
done




Imperative loops?

(* print n .. 0 *)

let count down (n:int) =

for i = n downto
print int 1;
print newline ()
done

(* for 1=n downto O do f£ 1 *)

let rec for down

(n : int)
o (f : 1nt -> unit)
unit =

if n >= 0 then
(f n; for down (n-1) f)
else

()

let count down (n:int) =
for down n (fun 1 ->
print int 1;
print newline ()

)




|

Summary

Refs are OCaml’s basic mutable data structure. But also:

— arrays, mutable records, objects
— discover these other features yourself!

Mutable data structures can lead to efficiency improvements.
— e.g., Hash tables, memoization, depth-first search

But they are much harder to get right, so don't jump the gun
— updating in one place may have an effect on other places.
— writing and enforcing invariants becomes more important.
— cycles in data (other than functions) can't happen until without refs
— concurrency makes things worse

So use refs when you must, but try hard to avoid it.

67



	Slide 1: Mutation
	Slide 2: Reasoning about Immutable data is Easy
	Slide 3: Reasoning about Immutable data is Easy
	Slide 4: Reasoning about Mutable State is Hard
	Slide 7: ocaml mutable references
	Slide 8: References
	Slide 9: References
	Slide 12: Another Example
	Slide 15: Another Idiom
	Slide 16: Imperative loops
	Slide 17: Imperative loops?
	Slide 67: Summary

