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AN INFINITE DATA STRUCTURE:
STREAMS
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Streams

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it /ater ...

primes ——> 2 3 5 — .
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Consider this definition:

type 'a stream =
Cons of "a * ("a stream)

We can write functions to extract the head and tail of a stream:

let head(s:’a stream):’a =
match s with
| Cons (h, ) -> h

let tail(s:’a stream):’a stream =
match s with
| Cons ( ,t) -> t




But there’s a problem...

type 'a stream
Cons of "a *

("a stream)

But how do we build a value of type ‘a stream?

Cons (3, )

Cons (3, Cons (4, __))




But there’s a problem...

type 'a stream =
Cons of "a * ("a stream)

But jow do we build a value of type ‘a stream?

Cons (3, ) Cons (3, Cons (4, __))

There doesn’t seem to be a base case (e.g., Nilor [] )

Since we need a stream to build a stream,
what can we do to get started?



One Possibility: Use Refs

type 'a stream =
Cons of "a * ('a stream) option ref

let circular cons h = None
let r = ref None in C
let ¢ = Cons(h,r) in
r := (Some c); cC
( ( ) ) Cons(h, r)
N
None
C
Cons(h, r)
N

Some;




An alternative would be to use refs

type 'a stream =
Cons of "a * ('a stream) option ref

let circular cons h =
let r = ref None in
let ¢ = Cons(h,r) in
(r := (Some c),; c)

Problem: The type system can’t guarantee that the tail of the list

exists. And every time we get the tail of the stream, we have
to check it is there.
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Using functions to build streams

type 'a stream =
Cons of "a * ("a stream)

This function can create the stream of all natural numbers:

let rec nats i = Cons(i,nats (i+1))

#let n =nats 0;;
Stack overflow during evaluation (looping recursion?).

OCaml evaluates our code just a little bit too eagerly.
We want to evaluate the right-hand side only when necessary ...
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Another idea

One way to implement “waiting” is to wrap a computation
up in a function and then call that function later when we want to.

Another attempt:

type 'a stream =
Cons of "a * ("a stream)

let rec ones =

fun () -> Cons (1, ones)
let head x =
match x () with
Cons (hd, tail) -> hd

Are there any problems
with this code?

™~

ohes : unit -> int stream

not int stream

Darn. Doesn’t type check!
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Functional Implementation

What if we changed the definition of streams one more time?

type 'a str =
and 'a stream

Cons of "a * ("a stream)
unit -> ’'a str

let rec ones

int stream =
fun () -> Cons(1l,ones)

Or, the way we’d normally write it:

let rec ones

()

Cons (1, ones)

mutually recursive
type definition
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str

let head(s:’"a stream) :’a =
match s () with
| Cons(h, ) ->h

17



Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str

let head(s:’"a stream) :’a =
match s () with
| Cons(h, ) ->h

let tail(s:’a stream):’"a stream =
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str

let head(s:’"a stream) :’a =
match s () with
| Cons(h, ) ->h

let tail(s:’a stream):’"a stream =
match s () with
| Cons( ,t) -> t
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str

let rec map (f:"a->'b) (s:"a stream) : "b stream =
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream =

unit -> ’"a str

Cons (£

let rec map

(f:"a->'"b) (s:"a stream) : "b stream =

(head s), map £ (tail s))
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str

let rec map (f:"a->'b) (s:’a stream) : 'b stream
Cons (f (head s), map £ (tail s))

Rats!

Infinite looping!
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of "a * ('a stream)
and 'a stream = unit -> ’"a str

let rec map (f:"a->'b) (s:’a stream)
Cons (f (head s), map £ (tail s))

"b stream =

Doesn’t type check!
Cons (x,y) is a str not a stream
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of "a * ('a stream)
and 'a stream = unit -> ’"a str

let rec map (f:"a->'b) (s:’a stream) : 'b stream =
fun () -> Cons(f (head s), map f (tail s))

Importantly, map
must return a
function, which
delays evaluating
the recursive call to
map.
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of "a * ('a stream)
and 'a stream = unit -> ’"a str

let rec map (f:"a->'b) (s:’a stream) : 'b stream =
fun () -> Cons(f (head s), map £ (tail s))
let rec ones = fun () —-> Cons (1, ones)

let inc x = x + 1

let twos = map inc ones
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Functional Implementation

type 'a str = Cons of "a * ('a stream)
and 'a stream = unit -> ’'a str

let rec map (f:’a->'b) (s:’a stream) : 'b stream
fun () -> Cons(f (head s), map £ (tail s))

let rec ones = fun () —-> Cons (1, ones)
let twos = map (fun x -> x+1) ones

head twos

--> head (map inc ones)

--> head (fun () -> Cons (inc (head ones), map inc (tail ones)))

--> match (fun () ->...) () with Cons (hd, ) ->h

--> match Cons (inc (head ones), map inc (tail ones)) with Cons (hd, ) ->h
--> match Cons (inc (head ones), fun () -> ...) with Cons (hd, ) ->h

> ->2
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Functional Implementation

type 'a str = Cons of "a * ('a stream)
and 'a stream = unit -> ’'a str

let rec zip £ sl s2 =
fun () —>
Cons (f (head sl) (head s2),
zilp £ (tail sl) (tail s2))
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Functional Implementation

type 'a str =
and 'a stream

Cons of "a * ("a stream)
= uynit -> ’"a str

let rec zip £ sl s2

fun () —>

Cons (f (head sl)

zip £

(tai1l sl) (tail s2))

(head s2),

let threes =

Z1p

(+)

ones twos

28



Functional Implementation

type 'a str = Cons of ’a
unit -> ’'a str

and 'a stream =

* ("a stream)

let rec zip £ sl s2

fun () —>
Cons (£ (head

sl)

(head s2),
(tail s2))

zip £ (tail sl1)

let threes = zip (+)

ones twos

let rec fibs =

fun () —>
Cons (0, fun
Cons

() —>
(1,
Z1p

(+)

fibs

(tail fibs)))
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Unfortunately

This is not very efficient:

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> 'a str

Every time we want to look at a stream (e.g., to get the head or
tail), we have to re-run the function.
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Unfortunately ]

This is not very efficient:

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> 'a str

Every time we want to look at a stream>(e.g., to get the head or
tail), we have to re-run the function.

let x = head s
let v = head s« reruntheentire
underlying function
as opposed to fetching
the first element of

a list

let head(si;g/sf§éam):’a —

match s() with
| Cons(h, ) -> h
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Unfortunately

This is really, really inefficient:

let rec fibs =
fun () —>
Cons (0, fun () ->
Cons (1,
zip (+) fibs (tail fibs)))

So when you ask for the 10%™ fib and then the 11t fib, we are re-
calculating the fibs starting from O...

If we could cache or memoize the result of previous fibs...



LAZY EVALUATION



Lazy Data

We can take advantage of mutation to memoize:

type 'a thunk =
Unevaluated of (unit -> ’'a) | Evaluated of ’a

type 'a lazy = "a thunk ref

initially: after evaluating once:

— Unevaluated —> Evaluated

N
e



Lazy Data

We can take advantage of mutation to memoize:

type 'a thunk =
Unevaluated of (unit -> ’'a) | Evaluated of ’a

type 'a lazy = "a thunk ref

type 'a str = Cons of "a * ('a stream)
and 'a stream = ('a str) lazy t




Lazy Data

type 'a thunk =
Unevaluated of (unit -> ’"a) | Evaluated of ’a

type 'a lazy = "a thunk ref

type 'a str = Cons of "a * ('a stream)
and 'a stream = ("a str) lazy

let rec head(s:’"a stream) :'a =




Lazy Data

type 'a thunk =
Unevaluated of (unit -> ’"a) | Evaluated of ’a

type 'a lazy = "a thunk ref

type 'a str = Cons of "a * ('a stream)
and 'a stream = ("a str) lazy

let rec head(s:"a stream) :’a =
match !s with
| Evaluated (Cons(h, )) ->
| Unevaluated £ ->




Lazy Data

type 'a thunk =
Unevaluated of (unit -> ’"a) | Evaluated of ’a

type 'a lazy = "a thunk ref

type 'a str = Cons of "a * ('a stream)
and 'a stream = ("a str) lazy

let rec head(s:"a stream) :’a =
match !s with
| Evaluated (Cons(h, )) -> h
| Unevaluated £ ->




Lazy Data

type 'a thunk =
Unevaluated of (unit -> ’"a) | Evaluated of ’a

type 'a lazy = "a thunk ref

type 'a str = Cons of "a * ('a stream)
and 'a stream = ("a str) lazy

let rec head(s:’"a stream) :'a =
match !s with

| Evaluated (Cons(h, )) -> h
| Unevaluated £ ->
let x = £() in (s := Evaluated x; head s)




Lazy Data

type 'a thunk =
Unevaluated of (unit -> ’"a) | Evaluated of ’a

type 'a lazy = "a thunk ref

type 'a str = Cons of "a * ('a stream)
and 'a stream = ("a str) lazy
let rec tail(s:’"a stream) : "a stream =
match !s with
| Evaluated (Cons( ,t)) -> t
| Unevaluated £ ->
(let x = £ () in s := Evaluated x; tail s)




Lazy Data

type 'a thunk =
Unevaluated of (unit -> ’"a) | Evaluated of ’'a

type 'a lazy = "a thunk ref

type 'a str = Cons of '"a * ('a stream)

and 'a stream = ('a str) lazy
let rec tail(s:’"a stream) : "a stream =
match !s with
| Evaluated (Cons( ,t)) -> t
| Unevaluated £ ->
let x = £() 1in (s := Evaluated x; tail s)

let rec head(s:’a stream) :’a =
match !s with
| Evaluated (Cons(h, )) -> h
| Unevaluated £ ->
let x = £() in (s := Evaluated x; head s)




Lazy Data

type 'a thunk =
Unevaluated of unlt -> "3) valuated of "a
type ﬁa\iazy —— // \\\y//
type \\\<1J/
and '’

Common pattern!

Dereference & check if evaluated:
* If so, take the value.
* If not, evaluate it & take the

value — 1l s)

|_|
X
I
Hh
|_|
o)
0
I

FEvaluated x; head s)




Memoizing Streams

type 'a thunk
Unevaluated

type "a lazy t =

type "a str
and 'a stream

let rec force(t:’'a lazy t):"a
't with

match
| Evaluated

of (unit -> '

("a thunk)

Cons of "a *
("a str)

v —> Vv

| Unevaluated £ ->

let v
(t:

let head(s:’a
match force
| Cons (h, )

let tail(s:’"a
match force
| Cons( ,t)

FEvaluated v ;

f() 1n

V)
stream) "a
s with
-> h
stream) "a
s with

-> €

a) | Evaluated of "a

ref

("a stream)

lazy

stream




Memoizing Streams

type 'a thunk =

Unevaluated of unit -> ’'a | Evaluated of ’"a

type 'a str = Cons of "a * ('a stream)

and 'a stream = ('a str) thunk ref

let rec ones =

ref (Unevaluated (fun () -> Cons(1l,ones)))




Memoizing Streams

type 'a thunk =

Unevaluated of unit -> ’'a | Evaluated of ’"a

type 'a str = Cons of "a * ('a stream)

and 'a stream = ('a str) thunk ref

let lazy £ = ref (Unevaluated f)

let rec ones =

lazy (fun () -> Cons(l,ones))




Our Interface

type 'a lazy
val lazy

val force

(unit -> ’"a) -> ’"a lazy

"a lazy -> 'a
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Laziness Built-in to OCaml

Our interface

let v = lazy (fun () -> print “hello”; 3)

let = force y (* prints now ¥*)

don’t need to

wrap in function
OCaml built-in support for type ‘a lazy_t
x

let y = lazy (print “hello”; 3)

let = Lazy.force y (* prints now *)
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Summary

By default, OCaml (and Java, C, etc) is an eager language
* butyou can use thunks or “lazy” to suspend computations
e use “force” to run the computation when needed

By default, Haskell is a lazy language

 the implementers (eg: Simon Peyton Jones) would probably make it
eager by default if they had a do-over

* working with infinite data is generally more pleasant
* but difficult to reason about space and time

Lazy evaluation makes it possible to build infinite data structures.

* can be modelled using functions
* but adding refs allows memoization

63



END
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