Lazy Evaluation &
Infinite Data

COS 326
David Walker
Princeton University

Some ideas in this lecture borrowed from Brigitte Pientka, McGill University

slides copyright 2018 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

AN INFINITE DATA STRUCTURE:
STREAMS

Streams

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it /ater ...

Streams

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it /ater ...

primes ——> 2 3 5 — .

Streams

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it /ater ...

primes ——> 2 3 5 — .

pi —> 3 1 4 —> ..

Streams

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it /ater ...

primes ——> 2 3 5 — .

pi —> 3 1 4 —> ..

market——| Bid, Bid, Bidy, ——— ..

Consider this definition:

type 'a stream =
Cons of "a * ("a stream)

We can write functions to extract the head and tail of a stream:

let head(s:’a stream):’a =
match s with
| Cons (h,) -> h

let tail(s:’a stream):’a stream =
match s with
| Cons (,t) -> t

But there’s a problem...

type 'a stream
Cons of "a *

("a stream)

But how do we build a value of type ‘a stream?

Cons (3,)

Cons (3, Cons (4, __))

But there’s a problem...

type 'a stream =
Cons of "a * ("a stream)

But jow do we build a value of type ‘a stream?

Cons (3,) Cons (3, Cons (4, __))

There doesn’t seem to be a base case (e.g., Nilor [])

Since we need a stream to build a stream,
what can we do to get started?

One Possibility: Use Refs

type 'a stream =
Cons of "a * ('a stream) option ref

let circular cons h = None
let r = ref None in C
let ¢ = Cons(h,r) in
r := (Some c); cC
(()) Cons(h, r)
N
None
C
Cons(h, r)
N

Some;

An alternative would be to use refs

type 'a stream =
Cons of "a * ('a stream) option ref

let circular cons h =
let r = ref None in
let ¢ = Cons(h,r) in
(r := (Some c),; c)

Problem: The type system can’t guarantee that the tail of the list

exists. And every time we get the tail of the stream, we have
to check it is there.

11

Using functions to build streams

type 'a stream =
Cons of "a * ("a stream)

This function can create the stream of all natural numbers:

let rec nats i = Cons(i,nats (i+1))

#let n =nats 0;;
Stack overflow during evaluation (looping recursion?).

OCaml evaluates our code just a little bit too eagerly.
We want to evaluate the right-hand side only when necessary ...

12

Another idea

One way to implement “waiting” is to wrap a computation
up in a function and then call that function later when we want to.

Another attempt:

type 'a stream =
Cons of "a * ("a stream)

let rec ones =

fun () -> Cons (1, ones)
let head x =
match x () with
Cons (hd, tail) -> hd

Are there any problems
with this code?

™~

ohes : unit -> int stream

not int stream

Darn. Doesn’t type check!

13

Functional Implementation

What if we changed the definition of streams one more time?

type 'a str =
and 'a stream

Cons of "a * ("a stream)
unit -> ’'a str

let rec ones

int stream =
fun () -> Cons(1l,ones)

Or, the way we’d normally write it:

let rec ones

()

Cons (1, ones)

mutually recursive
type definition

14

Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str

15

Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str

let head(s:’a stream):’a =

Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str

let head(s:’"a stream) :’a =
match s () with
| Cons(h,) ->h

17

Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str

let head(s:’"a stream) :’a =
match s () with
| Cons(h,) ->h

let tail(s:’a stream):’"a stream =

18

Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str

let head(s:’"a stream) :’a =
match s () with
| Cons(h,) ->h

let tail(s:’a stream):’"a stream =
match s () with
| Cons(,t) -> t

19

Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str

let rec map (f:"a->'b) (s:"a stream) : "b stream =

20

Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream =

unit -> ’"a str

Cons (£

let rec map

(f:"a->'"b) (s:"a stream) : "b stream =

(head s), map £ (tail s))

21

Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> ’"a str

let rec map (f:"a->'b) (s:’a stream) : 'b stream
Cons (f (head s), map £ (tail s))

Rats!

Infinite looping!

22

Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of "a * ('a stream)
and 'a stream = unit -> ’"a str

let rec map (f:"a->'b) (s:’a stream)
Cons (f (head s), map £ (tail s))

"b stream =

Doesn’t type check!
Cons (x,y) is a str not a stream

23

Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of "a * ('a stream)
and 'a stream = unit -> ’"a str

let rec map (f:"a->'b) (s:’a stream) : 'b stream =
fun () -> Cons(f (head s), map f (tail s))

Importantly, map
must return a
function, which
delays evaluating
the recursive call to
map.

24

Functional Implementation

How would we define head, tail, and map of an 'a stream?

type 'a str = Cons of "a * ('a stream)
and 'a stream = unit -> ’"a str

let rec map (f:"a->'b) (s:’a stream) : 'b stream =
fun () -> Cons(f (head s), map £ (tail s))
let rec ones = fun () —-> Cons (1, ones)

let inc x = x + 1

let twos = map inc ones

25

Functional Implementation

type 'a str = Cons of "a * ('a stream)
and 'a stream = unit -> ’'a str

let rec map (f:’a->'b) (s:’a stream) : 'b stream
fun () -> Cons(f (head s), map £ (tail s))

let rec ones = fun () —-> Cons (1, ones)
let twos = map (fun x -> x+1) ones

head twos

--> head (map inc ones)

--> head (fun () -> Cons (inc (head ones), map inc (tail ones)))

--> match (fun () ->...) () with Cons (hd,) ->h

--> match Cons (inc (head ones), map inc (tail ones)) with Cons (hd,) ->h
--> match Cons (inc (head ones), fun () -> ...) with Cons (hd,) ->h

> ->2

26

Functional Implementation

type 'a str = Cons of "a * ('a stream)
and 'a stream = unit -> ’'a str

let rec zip £ sl s2 =
fun () —>
Cons (f (head sl) (head s2),
zilp £ (tail sl) (tail s2))

27

Functional Implementation

type 'a str =
and 'a stream

Cons of "a * ("a stream)
= uynit -> ’"a str

let rec zip £ sl s2

fun () —>

Cons (f (head sl)

zip £

(tai1l sl) (tail s2))

(head s2),

let threes =

Z1p

(+)

ones twos

28

Functional Implementation

type 'a str = Cons of ’a
unit -> ’'a str

and 'a stream =

* ("a stream)

let rec zip £ sl s2

fun () —>
Cons (£ (head

sl)

(head s2),
(tail s2))

zip £ (tail sl1)

let threes = zip (+)

ones twos

let rec fibs =

fun () —>
Cons (0, fun
Cons

() —>
(1,
Z1p

(+)

fibs

(tail fibs)))

29

Unfortunately

This is not very efficient:

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> 'a str

Every time we want to look at a stream (e.g., to get the head or
tail), we have to re-run the function.

30

Unfortunately]

This is not very efficient:

type 'a str = Cons of '"a * ('a stream)
and 'a stream = unit -> 'a str

Every time we want to look at a stream>(e.g., to get the head or
tail), we have to re-run the function.

let x = head s
let v = head s« reruntheentire
underlying function
as opposed to fetching
the first element of

a list

let head(si;g/sf§éam):’a —

match s() with
| Cons(h,) -> h

31

Unfortunately

This is really, really inefficient:

let rec fibs =
fun () —>
Cons (0, fun () ->
Cons (1,
zip (+) fibs (tail fibs)))

So when you ask for the 10%™ fib and then the 11t fib, we are re-
calculating the fibs starting from O...

If we could cache or memoize the result of previous fibs...

LAZY EVALUATION

Lazy Data

We can take advantage of mutation to memoize:

type 'a thunk =
Unevaluated of (unit -> ’'a) | Evaluated of ’a

type 'a lazy = "a thunk ref

initially: after evaluating once:

— Unevaluated —> Evaluated

N
e

Lazy Data

We can take advantage of mutation to memoize:

type 'a thunk =
Unevaluated of (unit -> ’'a) | Evaluated of ’a

type 'a lazy = "a thunk ref

type 'a str = Cons of "a * ('a stream)
and 'a stream = ('a str) lazy t

Lazy Data

type 'a thunk =
Unevaluated of (unit -> ’"a) | Evaluated of ’a

type 'a lazy = "a thunk ref

type 'a str = Cons of "a * ('a stream)
and 'a stream = ("a str) lazy

let rec head(s:’"a stream) :'a =

Lazy Data

type 'a thunk =
Unevaluated of (unit -> ’"a) | Evaluated of ’a

type 'a lazy = "a thunk ref

type 'a str = Cons of "a * ('a stream)
and 'a stream = ("a str) lazy

let rec head(s:"a stream) :’a =
match !s with
| Evaluated (Cons(h,)) ->
| Unevaluated £ ->

Lazy Data

type 'a thunk =
Unevaluated of (unit -> ’"a) | Evaluated of ’a

type 'a lazy = "a thunk ref

type 'a str = Cons of "a * ('a stream)
and 'a stream = ("a str) lazy

let rec head(s:"a stream) :’a =
match !s with
| Evaluated (Cons(h,)) -> h
| Unevaluated £ ->

Lazy Data

type 'a thunk =
Unevaluated of (unit -> ’"a) | Evaluated of ’a

type 'a lazy = "a thunk ref

type 'a str = Cons of "a * ('a stream)
and 'a stream = ("a str) lazy

let rec head(s:’"a stream) :'a =
match !s with

| Evaluated (Cons(h,)) -> h
| Unevaluated £ ->
let x = £() in (s := Evaluated x; head s)

Lazy Data

type 'a thunk =
Unevaluated of (unit -> ’"a) | Evaluated of ’a

type 'a lazy = "a thunk ref

type 'a str = Cons of "a * ('a stream)
and 'a stream = ("a str) lazy
let rec tail(s:’"a stream) : "a stream =
match !s with
| Evaluated (Cons(,t)) -> t
| Unevaluated £ ->
(let x = £ () in s := Evaluated x; tail s)

Lazy Data

type 'a thunk =
Unevaluated of (unit -> ’"a) | Evaluated of ’'a

type 'a lazy = "a thunk ref

type 'a str = Cons of '"a * ('a stream)

and 'a stream = ('a str) lazy
let rec tail(s:’"a stream) : "a stream =
match !s with
| Evaluated (Cons(,t)) -> t
| Unevaluated £ ->
let x = £() 1in (s := Evaluated x; tail s)

let rec head(s:’a stream) :’a =
match !s with
| Evaluated (Cons(h,)) -> h
| Unevaluated £ ->
let x = £() in (s := Evaluated x; head s)

Lazy Data

type 'a thunk =
Unevaluated of unlt -> "3) valuated of "a
type ﬁa\iazy —— // \\\y//
type \\\<1J/
and '’

Common pattern!

Dereference & check if evaluated:
* If so, take the value.
* If not, evaluate it & take the

value — 1l s)

|_|
X
I
Hh
|_|
o)
0
I

FEvaluated x; head s)

Memoizing Streams

type 'a thunk
Unevaluated

type "a lazy t =

type "a str
and 'a stream

let rec force(t:’'a lazy t):"a
't with

match
| Evaluated

of (unit -> '

("a thunk)

Cons of "a *
("a str)

v —> Vv

| Unevaluated £ ->

let v
(t:

let head(s:’a
match force
| Cons (h,)

let tail(s:’"a
match force
| Cons(,t)

FEvaluated v ;

f() 1n

V)
stream) "a
s with
-> h
stream) "a
s with

-> €

a) | Evaluated of "a

ref

("a stream)

lazy

stream

Memoizing Streams

type 'a thunk =

Unevaluated of unit -> ’'a | Evaluated of ’"a

type 'a str = Cons of "a * ('a stream)

and 'a stream = ('a str) thunk ref

let rec ones =

ref (Unevaluated (fun () -> Cons(1l,ones)))

Memoizing Streams

type 'a thunk =

Unevaluated of unit -> ’'a | Evaluated of ’"a

type 'a str = Cons of "a * ('a stream)

and 'a stream = ('a str) thunk ref

let lazy £ = ref (Unevaluated f)

let rec ones =

lazy (fun () -> Cons(l,ones))

Our Interface

type 'a lazy
val lazy

val force

(unit -> ’"a) -> ’"a lazy

"a lazy -> 'a

46

Laziness Built-in to OCaml

Our interface

let v = lazy (fun () -> print “hello”; 3)

let = force y (* prints now ¥*)

don’t need to

wrap in function
OCaml built-in support for type ‘a lazy_t
x

let y = lazy (print “hello”; 3)

let = Lazy.force y (* prints now *)

47

Summary

By default, OCaml (and Java, C, etc) is an eager language
* butyou can use thunks or “lazy” to suspend computations
e use “force” to run the computation when needed

By default, Haskell is a lazy language

 the implementers (eg: Simon Peyton Jones) would probably make it
eager by default if they had a do-over

* working with infinite data is generally more pleasant
* but difficult to reason about space and time

Lazy evaluation makes it possible to build infinite data structures.

* can be modelled using functions
* but adding refs allows memoization

63

END

	Slide 1: Lazy Evaluation & Infinite Data
	Slide 2: An Infinite data Structure: Streams
	Slide 3: Streams
	Slide 4: Streams
	Slide 5: Streams
	Slide 6: Streams
	Slide 7: Consider this definition:
	Slide 8: But there’s a problem…
	Slide 9: But there’s a problem…
	Slide 10: One Possibility: Use Refs
	Slide 11: An alternative would be to use refs
	Slide 12: Using functions to build streams
	Slide 13: Another idea
	Slide 14: Functional Implementation
	Slide 15: Functional Implementation
	Slide 16: Functional Implementation
	Slide 17: Functional Implementation
	Slide 18: Functional Implementation
	Slide 19: Functional Implementation
	Slide 20: Functional Implementation
	Slide 21: Functional Implementation
	Slide 22: Functional Implementation
	Slide 23: Functional Implementation
	Slide 24: Functional Implementation
	Slide 25: Functional Implementation
	Slide 26: Functional Implementation
	Slide 27: Functional Implementation
	Slide 28: Functional Implementation
	Slide 29: Functional Implementation
	Slide 30: Unfortunately
	Slide 31: Unfortunately
	Slide 32: Unfortunately
	Slide 33: Lazy evaluation
	Slide 34: Lazy Data
	Slide 35: Lazy Data
	Slide 36: Lazy Data
	Slide 37: Lazy Data
	Slide 38: Lazy Data
	Slide 39: Lazy Data
	Slide 40: Lazy Data
	Slide 41: Lazy Data
	Slide 42: Lazy Data
	Slide 43: Memoizing Streams
	Slide 44: Memoizing Streams
	Slide 45: Memoizing Streams
	Slide 46: Our Interface
	Slide 47: Laziness Built-in to OCaml
	Slide 63: Summary
	Slide 64: End

