From Properties to Tests

COS 326
David Walker

QCheck Overview

Your Property €

Pass to checker

QCheck

v

Checker API

Generates Creates minimal
random inputs failing input

Function that returns bool

Using QCheck

Write some properties: t -> bool

type iprop = int * int -> bool

let commutes f (x,y) =
f xy=1%fy x

let add commutes p =
commutes (+) p

let sub commutes p =
commutes (-) p

Create a test

Create a generator

module Q = Qcheck
type ‘a gen = ‘a Q.arbitrary

let ints = Q.int
let pairs = Q.tupZ2 ints ints

let tl =
Q.Test.make
~name: "add commutes"
~count:100
pairs
add commutes

let =

QCEeck_base_runner.run_tests
~verbose: true
[tl;t2]

Example-based tests vs. Property-based tests

PBTs are more general

— One property-based test can replace many example-
based tests.

PBTs can reveal overlooked edge cases

— Nulls, negative numbers, weird strings, etc.

PBTs ensure deep understanding of requirements
— Property-based tests force you to think! ®

PBTs can do shrinking to find the boundary
cases!

Example-based tests are still helpful though!

— Less abstract, easier to understand

Techniques for Creating Specifications

"Different paths, same destination”

[r#»uf}
()

[ABC

Examples:

- Commutivity

- Associativity

- Map f then Map g

"Different paths, same destination”

Applied to a sort function

List.sort
{ ? |

do ?T do ?T

{ [1;2;3] J
List.sort

|

"Different paths, same destination”

Applied to a map function

Map f
[Currency(x)]_P[Currency(f x)]

TCreate CreateT
[X }-—-—-ﬁb* f x]
f
fx=x*3

Currency(2) Currency(2 * 3)
Map(x => x * 3)

"Different paths, same destination”

Applied to a sort function

[[-2;-3;-1] }ﬂP[[-3;-2;-1] J

1Negate

[[2;3;1] }

"Different paths, same destination”

Applied to a sort function

List.sort

[[-2;-3;-1] [-3;-2;-1] J
Negate Negate
then reverse
[[2;3;1] [1;2;3] J
List.sort

"There and back again”

Inverse

Examples:

- Serialization/Deserialization
- Addition/Subtraction
- Write/Read

- SetProperty/GetProperty

"There and back again”

Applied to a list reverse function

reverse

reverse

Pro tip:
We often need a combination of
properties, not just one

We needed three properties
to define "add"

"Some things never change”

[0000 JM}{ 0000]

Examples:

- Size of a collection

- Contents of a collection

- Balanced trees
(balanced before implies
balanced after any
operation)

The EDFH and List.Sort

List.sort

The EDFH can beat this!

The EDFH and List.Sort

List.evilSort
23 no
Negate Negate
then reverse
| R — no
List.evilSort

EvilSort just returns an empty list!

This passes the "commutivity” test!

"Some things never change”

Used to ensure the sort function is good

| sy p—— 23 |
List.sort
Must be one of these
permutations
[1; 2;3];[2; 1, 3]; [2; 3; 1];
[1;3;2];[3; 1; 2]; [3; 2; 1]

The EDFH is beaten now!

"The more things change,
the more they stay the same'

distinct distinct

|dempotence:

- Sort

- Filter

- Event processing

- Required for distributed designs

"Hard to prove, easy to verify"

d
J ST P B

. L)
7]I

- Prime number factorization
- Too many others to mention!

"Hard to prove, easy to verify"
Applied to a sort

[[2;3;1] JWP[[1;2;3]]

[(1<=2) (2<=3)]

To verify the sort,
check that each pair is ordered

"The test oracle”

System
[ABC I under test I l 123]

Compare:[

Test Oracle

- Compare optimized with slow brute-force version
- Compare parallel with single thread version
- Legacy system is the oracle for a replacement system

Testing a simple database

Four operations: Open, Close, Increment, Decrement
Two clients: Client A and Client B

Let QuickCheck generate a random list of these actions for each client

Client Open Incr Close Incr Open Close

S S S S SR S

o | N N

B Open Decr Open Open Incr

How do use this to check that our db works?

Testing a simple database

Open Incr Close Incr Open Close
Test on real
‘l, ‘l, ‘l, ‘l, ‘1, ‘l, «—lestonrea
1‘ T 1‘ T 1\) system
Open Decr Open Open Incr
Open Incr Close Incr Open Close
l, ‘1, l, l, l, \l, (/Test on very
T T T T T simple model
(just an in-memory
Open Decr Open Open Incr | tOI')
Connection csed, accumuia

so no change

Compare model result with real system!

Creating Generators

QCheck Overview

Your Property €

Pass to checker

QCheck

v

Checker API

Generates Creates minimal
random inputs failing input

Function that returns bool

Using QCheck

Write some properties: t -> bool

let commutes f (x,y) =
f xy=1=~fy X

let add commutes p =
commutes (+) p

let sub commutes p =
commutes (-) p

Create tests

Create a generator

module Q = Qcheck

type ‘a arb = ‘a Q.arbitrary

let ints = Q.int
let pairs = Q.tupZ2 ints ints

Run tests

let tl =
Q.Test.make
~name: "add commutes"
~count:100
pairs
add commutes

let =
QCheck base runner.run tests

~verbose: true
[tl;t2]

Browsing Interfaces with utop

in your terminal:

% opam install gcheck

° |

s utop

https://github.com/c-cube/gcheck/blob/main/src/core/QCheck.mli

in utop:

utop # #require "qgcheck";;
utop # #show QCheck;;

A

A

name of “package”
name of module

module QCheck

sig
val (==>) bool -> bool —->
val assume bool -> unit

val assume fail unit ->
module Gen sSig end
module Print S1g end

bool

results of
#show Qcheck

(and many
more lines)

Creating Generators

Create a generator

type ‘a arb = ‘a Q.arbitrary

let ints : int arb = Q.int
let pairs (int * int) arb = Q.tupZ2 ints ints

But what if we are dealing with our own data types?

type color = Red | Green | Blue

type ‘a tree = Leaf of ‘a | Tree of ‘a tree * ‘a tree

Or if we want to control the distribution?
Eg: generate ints, but be sure we generate a lot of powers of 2?

The ‘a arbitrary type

Create a generator

type ‘a arb = ‘a Q.arbitrary

let ints : int arb = Q.int
let pairs (int * int) arb = Q.tupZ2 ints ints

What is in an “arbitrary”™? A data structure containing:

« an optional print function

« an optional shrinker object

« some other things

* a generator object with type ‘a Gen.t

Let's focus on the generator object

Q.make : .. optional arguments -> ‘a Gen.t -> ‘a arb

The ‘a Gen.t type

utop # #show Qcheck.Gen;;
module Gen
sig
type 'a t = Random.State.t -> ‘a

The main part of an arbitrary is a generator.
A generator is a function from “random state” to value.

If we want to make new generators, we ultimately have to build new functions

The ‘a Gen.t type

utop # #show Qcheck.Gen;;
module Gen :
sig
type 'a t = Random.State.t -> ‘a

A generator is a function from “random state” to value.
If we want to make new generators, we ultimately have to build new functions

the Gen module gives lots of help doing that

The ‘a Gen.t module

val unit unit t (** The unit generator. *)

val bool bool t. (** The boolean generator. *)

float range float -> float -> float t

(** eg: float range 0.0 1.0 *)

val nat int t (** Generates small natural numbers. *)

val big nat int t (** Generates natural numbers, possibly large. ¥*)
val neg int int t (** Generates 0 or negative ints. *)

val pint int t (** Generates 0 or positive integers uniformly. *)
val int int t (** Generates integers uniformly. *)

val oneof 'a t list -> ‘a t

val frequency (int * 'a t) list -> 'a t

val tup? 'a t > 'bt -> ('a* 'b) t

val pair 'a t > 'bt -> ('a* 'b) t

The ‘a Gen.t module

val nat int t (** Generates small natural numbers. ¥*)

val big nat int t (** Generates natural numbers, possibly large. ¥*)
val neg int int t (** Generates 0 or negative ints. *)

val pint int t (** Generates 0 or positive integers uniformly. ¥*)
val int int t (** Generates integers uniformly. *)

val oneof 'a t list -> ‘a t

val frequency (int * 'a t) list -> 'a t

val tup2 'a t > '"bt -> ('a* 'b) t

val pair 'a t => 'bt -> ('a * 'b) t

open Q.Gen

let pairs of pairs gen = tup2 (tupZ nat nat) (tupZ2 int bool)

let big and small gen =

oneof [big nat; nat]

The ‘a Gen.t module

open Q.Gen
let pairs of pairs

let big and small =

tup?

oneof

(tup2 nat nat)

[big nat; nat]

(tup2 int bool)

Interface so far gives:

« Some fixed ways to “get started” (base generators)

-nat, bool, int

* Ways to put together base generators

- tup2, oneof

What if we want our own way to get started?

What if we want to write our own generation algorithm?

A way to “get started”

A generator that does nothing but return a fixed value

val pure : 'a -> ‘a t
let three : int t = pure 3 (* always returns 3 *)
let tru : bool t = pure true (* always returns true *)

type color = Green | Red | White
let green : color t = pure Green
let red : color t = pure Red

let white : color t = pure White

let colors : color generator = oneof [green; red; white]

”Algorithms” are nothing but
compositions of basic things

Generate then do a function

val (>>=) : 'at -> ('a -> 'b t) -> b t
b ‘ Y ! e

Generator for ‘a Returns a generator for ‘b

| that uses the generated 'a

‘ and the function to convert ‘a
Takes any ‘a that are generated to ‘b

and uses them to make a ‘b generator

“Algorithms” are nothing but
compositions of basic things

let zero one : float t =
float range 0.0 1.0

(* given a float, generated a bool ¥*)
let coin : float -> bool t =
fun £ ->
1f x < .7 then
pure true
else
pure false

(* a weighted coin generator *)
let coin = zero one >>= coin

“Algorithms” are nothing but
compositions of basic things

type tree = Leaf | Node of 1nt * tree * tree
val insert : 1nt -> tree -> tree
let gentree : tree arb =
let open G 1in
let rec aux (size:int) (t:tree) : tree t =
if size <= 0 then pure t
else
int bound 10 >>= fun v ->
aux (size - 1) (insert v t)
in

Q.make ~print:tree to string
(int bound 10 >>= fun size -> aux size Leaf)

“Algorithms” are nothing but
compositions of basic things

type tree = Leaf | Node of 1nt * tree * tree

val insert : 1nt -> tree -> tree
let gentree : tree arb =
let open G 1in
let rec aux (size:int) : tree
if size <= 0 then pure Leaf
else
frequency
[(1, pure Leaf);
(41

int >>= fun v ->

aux (size / 2) >>=
aux (size / 2) >>=
pure (Node (v, 1, r

fun 1 ->
fun r ->

)))

“Algorithms” are nothing but
compositions of basic things

val int_bound : 1int -> int t

let genl. xs = int bound (List.length xs)
let get xs n = pure (List.nth n elems)

let oneof (xs : ’"a list) : ‘a t =
genlL xs >= (fun n -> get xs n)

val map : (‘Ya -> ‘b) -> Ya t -> ‘b t

let oneof (xs : ’"a list) : ‘Ya t =
map (fun n -> List.nth n elems) (genlL xs)

Map vs Bind

val pure : 'a -> ‘'a t
val (>>=) : 'a t -> ('a -> 'b t) -> ‘b t
val map : (‘a -> ‘b)) > ‘at -> b t

val pint : int t
val negint : int t

let pos or neg =
bool >= (fun b -> if b then pint else negint)

Can't easily use map with pre-existing generators ...

But you can code map if you already have >>= (try yourself)

Implementing Map and >>=

val pure : 'a -> ‘a t

val (>>=) : 'a t -> ('a -> 'b t) -—> ‘b t
val map : (‘a -> ‘b)) > ‘a t -> b t
Recall:

type ‘a t = Random.State -> 'a

Implementing Map and >>=

val pure : 'a -> ‘a t

val (>>=) : 'a t -> ('a -> 'b t) -—> ‘b t
val map : (‘a -> ‘b)) > ‘a t -> b t
Recall:

type ‘a t = Random.State -> 'a

let pure (x:'a) : ‘Ya t = fun st -> x

Implementing Map and >>=

val pure : 'a -> ‘a t

val (>>=) : 'a t -> ('a -> 'b t) -—> ‘b t
val map : (‘a -> ‘b)) > ‘a t -> b t
Recall:

type ‘a t = Random.State -> 'a

let (>>=) (g:'a t) (£ : Ya -> b t) : ‘b t =
fun st ->
let a = g st in (f a) st

Implementing Map and >>=

val pure : 'a -> ‘a t

val (>>=) : 'a t -> ('a -> 'b t) -—> ‘b t
val map : (‘a -> ‘b)) > ‘a t -> b t
Recall:

type ‘a t = Random.State -> 'a

let (>>=) (g:'a t) (£ : Ya -> b t) : ‘b t =
fun st ->
let a = g st in (f a) st

let map (£ : ‘Ya -> '‘b) (g:’a t) : ‘b t =
fun st ->
let a = g st in (£ a)

Monads

A data structure with an interface that includes

val pure : 'a -> ‘a t (* AKA: return ¥*)

val (>>=) : 'at -> ('a->'bt) -> ‘bt (* AKA: bind *)

where pure and >>= satisfy certain equational laws is called a Monad

in our case, ‘at = Random.State -> ‘a but there are other definitions of ‘a t
used for other purposes

 ‘at="‘aoption - the error monad
e ‘at="alist - the non-determinism monad
 ‘at=state -> ‘a state - the “state” monad

In general, monads can be used to include state in a “safe” way inside otherwise
totally functional languages.

This is how Haskell is designed. https://www.haskell.org/

Monads

A data structure with an interface that includes

val pure : 'a -> ‘a t

val (>>=) : 'at -> ('a->'bt) -> bt

where pure and >>= satisfy certain equational laws is called a Monad

Monad Laws (for values of the right type)

pure v >>= f = f v
m >>= return = m
(m >>= g) >>= h = m >>= (fun x -> g x >>= h)

these laws can be used to help you reason about monadic programs,
just like knowing commutativity/associativity of + helps you reason about arithmetic

Summary

Be lazy! Don't write tests, generate them!

Use property-based thinking to gain
deeper insight into the requirements

PBT Resources

Search for "property-based testing" and your language!
* Java:jgwik.net
* Python: https://hypothesis.readthedocs.io/en/latest/

Look for talks by John Hughes

* How to specify it! https://www.youtube.com/watch?v=zvRAyg5w;j38
* Don't write tests! https://www.youtube.com/watch?v=hXnS_Xjwk2Y

And others may be good
* "Property-BasedTesting in a Screencast Editor" by OskarWickstrom
* "MetamorphicTesting" by HillelWayne

https://hypothesis.readthedocs.io/en/latest/

	Slide 1: From Properties to Tests
	Slide 2: Function that returns bool
	Slide 3: Using QCheck
	Slide 4: Example-based tests vs. Property-based tests
	Slide 5: Techniques for Creating Specifications
	Slide 6: "Different paths, same destination"
	Slide 7: "Different paths, same destination" Applied to a sort function
	Slide 8: "Different paths, same destination" Applied to a map function
	Slide 9: "Different paths, same destination" Applied to a sort function
	Slide 10: "Different paths, same destination" Applied to a sort function
	Slide 11: "There and back again"
	Slide 12: "There and back again"
	Slide 13: Pro tip: We often need a combination of properties, not just one
	Slide 14: "Some things never change"
	Slide 15: The EDFH and List.Sort
	Slide 16: The EDFH and List.Sort
	Slide 17: "Some things never change" Used to ensure the sort function is good
	Slide 18: "The more things change, the more they stay the same"
	Slide 20: "Hard to prove, easy to verify"
	Slide 22: "Hard to prove, easy to verify" Applied to a sort
	Slide 23: "The test oracle"
	Slide 25: Testing a simple database
	Slide 26: Testing a simple database
	Slide 27: Creating Generators
	Slide 28: Function that returns bool
	Slide 29: Using QCheck
	Slide 30: Browsing Interfaces with utop
	Slide 31: Creating Generators
	Slide 32: The ‘a arbitrary type
	Slide 33: The ‘a Gen.t type
	Slide 34: The ‘a Gen.t type
	Slide 35: The ‘a Gen.t module
	Slide 36: The ‘a Gen.t module
	Slide 37: The ‘a Gen.t module
	Slide 38: A way to “get started”
	Slide 39: ”Algorithms” are nothing but compositions of basic things
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 58: Summary
	Slide 59: PBT Resources

