
From Properties to Tests

COS 326

David Walker

The lazy programmer's guide to

writing 1000's of tests
An introduction to property based testing

@ScottWlaschin

fsharpforfunandprofit.com

https://fsharp.org/

F# is a OCaml grafted onto C#, which is Microsoft’s version of Java

Part 1:

In which I have a conversation with a

remote developer

This was a project from a long time ago,
in a galaxy far far away

For some
reason we
needed a

custom "add"
function

...some time
later

Seriously, how *do* you know that
you have enough tests?

So I decide to start writing the

unit tests myself

[<Test>]
let ``When I add 1 + 3, I expect 4``()=

let result = add(1,3)
Assert.AreEqual(4,result)

[<Test>]
let ``When I add 2 + 2, I expect 4``()=
let result = add(2,2)
Assert.AreEqual(4,result)

✓

✓

First, I had a look at the existing tests...

prints out stuff when test fails

[<Test>]
let ``When I add -1 + 3, I expect 2``() =

let result = add(-1,3)
Assert.AreEqual(2,result) 

Ok, now for my first new test...

let add(x,y) =
4

wtf!

Hmm.. let's look at the implementation...

TDD =
“Test-Driven

Development”

[<Test>]
let ``When I add 2 + 3, I expect 5``()=

let result = add(2,3)
Assert.AreEqual(5,result)

[<Test>]
let ``When I add 1 + 41, I expect 42``()=

let result = add(1,41)
Assert.AreEqual(42,result)

✓

✓

Time for some more tests...

let add(x,y) =
match (x,y) with
| (2,3) -> 5
| (1,41) -> 42
| (_,_) -> 4 // all other cases

But let's just check the implementation again...

Write only enough code to

make the failing unit test pass.

http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd

TDD best practices

http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd

[<Test>]
let ``When I add two numbers,

I expect to get their sum``()=

let testData = [
(1,2,3)
(2,2,4)
(3,5,8)
(27,15,42)
]

for (x,y,expected) in testData do
let actual = add(x,y)
Assert.AreEqual(expected,actual)

Another attempt at a test

✓

let add(x,y) =
match (x,y) with
| (1,2) -> 3
| (2,3) -> 5
| (3,5) -> 8
| (1,41) -> 42
| (27,15) -> 42
| (_,_) -> 4 // all other cases

Let's check the implementation one more time....

It dawned on me who I was

dealing with...

...the legendary burned-out, always
lazy and often malicious
programmer called...

The Enterprise

Developer From Hell

(EDFH)

Rethinking the approach

The EDFH will always
make specific examples
pass, no matter what I

do...

So let's not use

specific examples!

Let's use random numbers instead...

[<Test>]
let ``When I add two random numbers,

I expect their sum to be correct``()=

let x = randInt()
let y = randInt()
let actual = add(x,y)
let expected = … // hmmm. need add(x,y)
Assert.AreEqual(expected, actual)

Let's use random numbers instead...

[<Test>]
let ``When I add two random numbers,

I expect their sum to be correct``()=

let x = randInt()
let y = randInt()
let actual = add(x,y)
let expected = … // hmmm. need add(x,y)
Assert.AreEqual(expected, actual)

If I reimplement add(x,y):

• I might make the same mistakes as I made in the
“real” implementation.

• It is a lot of work if “add” is complicated

Questions for everyone:

How would you write a test for an "add" function?

But without re-implementing "add"

And without using specific examples

Proofs about Programs

let reverse (xs: int list) : int list =

let rec aux input output =

match input with

[] -> output

| hd::tl -> aux tl (hd::output)

in

aux xs []

for all xs : list. reverse (reverse xs) = xs

Can we use a spec as a test? Yes!

Randomly generate universally quantified objects (xs)

and check the property (ie: reverse (reverse xs) = xs)

a program

a theorem (or specification)

From Equations to Properties

Our specs have been “equational:”

(1) for all x : t. e1 = e2 (x probably appears in e1 and e2)

A special case:

(2) for all x : t. prop(e) = true

Here “prop” is a function s -> bool
- a “property” or a “predicate” about values with type s.

We often write (2) like this:

(3) for all x : t. prop(e)

From Properties to Tests
Given a property about a program like this:

for all x : t. prop(e)

We can prove it
• pro: high reliability: know it is true for all x
• con: costly: takes time and expertise

We can test it
• con: weaker reliability: know it is true for some x
• pro: cheap: takes less time and less expertise

Conjecture: Understanding and being good at specs and proofs makes
you a better programmer. It also makes you a better tester.

skills at testing

increase the

reliability

component

Part II:

Property based testing

What are the "requirements" for

the "add" function?

Requirements for the "add" function?

• It's often hard to know where to get started

• Tests distinguish good implementations from

bad ones: So think of a bad one

• More generally: compare your

implementation with an implementation of

something different...

– E.g. How does "add" differ from "subtract"?

Requirements for the "add" function?

• Addition vs. subtraction:

– For subtraction, the order of the parameters

makes a difference

– For addition it doesn't.

[<Test>]
let ``When I add two numbers, the result

should not depend on parameter order``()=

for _ in [1..100] do
let x = randInt()
let y = randInt()
let result1 = add(x,y)
let result2 = add(y,x)
Assert.AreEqual(result1,result2)

reversed params

For subtraction, the order of the parameters makes a
difference, while for addition it doesn't.

let add(x,y) =
x * y

The EDFH responds with this implementation:

How about using the difference

between addition and multiplication?

For example:
• adding one twice is the same as adding two
• multiplying by one twice is NOT the same as

multiplying by two

[<Test>]
let ``Adding 1 twice is the same as adding 2``()=

for _ in [1..100] do
let x = randInt()
let result1 = add(add(x,1),1)
let result2 = add(x,2)
Assert.AreEqual(result1,result2)

Test: two "add 1"s is the same as one "add 2".

let add(x,y) =
x - y

The EDFH responds with:

✓

should not depend on parameter order``

TEST: ``Adding 1 twice is the same as adding 2``

But luckily we have the previous test as well!

TEST: ``When I add two numbers, the result

Ha! Gotcha, EDFH!

let add(x,y) =
0

The EDFH responds with another implementation:

✓

✓
TEST: ``When I add two numbers, the result

should not depend on parameter order``

Aarrghh! Where did our approach go wrong?

TEST: ``Adding 1 twice is the same as adding 2``

Requirements for the "add" function

• We need to check that the result is somehow

connected to the input!

• Is there a trivial property of "add" that we

know the answer to?

– (without reimplementing our own version)

• Yes! Adding zero is the same as doing nothing

[<Test>]
let ``Adding zero is the same as doing nothing``()=

for _ in [1..100] do
let x = randInt()
let result1 = add(x,0)
let result2 = x
Assert.AreEqual(result1,result2)

Adding zero is the same as doing nothing

We have to check that the result is

somehow connected to the input.

Finally, the EDFH is defeated...

TEST: ``When I add two numbers, the result

should not depend on parameter order``

TEST: ``Adding 1 twice is the same as adding 2``

TEST: ``Adding zero is the same as doing nothing``

✓

✓

✓

If these are all true we

MUST have a correct

implementation*
* not quite true

Refactoring

Let's extract the shared code... Pass in a "property"

let propertyCheck propertyFn =
// property has type: (int,int) -> bool

for _ in [1..100] do
let x = randInt()
let y = randInt()
let result = propertyFn(x,y)
Assert.IsTrue(result)

Check the property is

true for random inputs

let commutativeProperty(x,y) =
let result1 = add(x,y)
let result2 = add(y,x)
result1 = result2

And the tests now look like:

[<Test>]
let ``When I add two numbers, the result

should not depend on parameter order``()=

propertyCheck commutativeProperty

let adding1TwiceIsAdding2OnceProperty(x,_) =
let result1 = add(add(x,1),1)
let result2 = add(x,2)
result1 = result2

And the second property

[<Test>]
let ``Adding 1 twice is the same as adding 2``()=

propertyCheck adding1TwiceIsAdding2OnceProperty

let identityProperty(x,_) =
let result1 = add(x,0)
result1 = x

And the third property

[<Test>]
let ``Adding zero is the same as doing nothing``()=

propertyCheck identityProperty

Review

Testing with properties

• The parameter order doesn't matter

• Doing "add 1" twice is the same as

doing "add 2" once

• Adding zero does nothing

These properties

apply to ALL inputs

We can generate

arbitrarily many

random examples,

test the properties and

see if they hold.

Te
Sp
s
ec
t
if
i
ic
n
ati
g
on

with properties

• "Commutativity" property

• "Associativity" property

• "Identity" property

These properties

define addition!

The EDFH can't create an

incorrect implementation!

Bonus: By using specifications, we have

understood the requirements in a deeper way.

Why bother with the EDFH?

Surely such a malicious programmer is

unrealistic and over-the-top?

Evil

Stupid

Lazy

In practice,

no difference!

In my career, I've always had to deal with one

stupid person in particular 

Me!

The real EDFH!

When I look at my old code, I almost always see something wrong!

I've often created flawed implementations, not out of evil

intent, but out of unawareness and blindness

Part III:

QuickCheck and its ilk

Wouldn't it be nice to have a toolkit for doing this?

The "QuickCheck" library was originally developed for Haskell by Koen Claessen and John

Hughes, and has been ported to many other languages.

In OCaml: QCheck

opam install qcheck

See: https://o1-labs.github.io/ocamlbyexample/build-qcheck.html

Generator Shrinker

Your Property Function that returns bool

Checker API

Pass to checker

QuCheck

Generates

random inputs

Creates minimal

failing input

Using QCheck

(executable
(public_name qc)
(name main)
(libraries qcheck))

dune

let ….

main.ml

Using QCheck

type iprop = int * int -> bool

let commutes f (x,y) = f x y = f y x

let add_commutes p = commutes (+) p

let sub_commutes p = commutes (-) p

Write some properties: t -> bool

module Q = Qcheck

type ‘a gen = ‘a Q.arbitrary

let ints : int gen = Q.int

let pairs : (int * int) gen = Q.tup2 ints ints

Create a generator

Using QCheck

type iprop = int * int -> bool

let commutes f (x,y) =

f x y = f y x

let add_commutes p =

commutes (+) p

let sub_commutes p =

commutes (-) p

Write some properties: t -> bool

module Q = Qcheck

type ‘a gen = ‘a Q.arbitrary

let ints = Q.int

let pairs = Q.tup2 ints ints

Create a generator

let t1 = Q.Test.make

~name:"add commutes"

~count:100

pairs

add_commutes

Create a test ~n – OCaml optional argument

number of random tests

generator

property

name of test

Using QCheck

type iprop = int * int -> bool

let commutes f (x,y) =

f x y = f y x

let add_commutes p =

commutes (+) p

let sub_commutes p =

commutes (-) p

Write some properties: t -> bool

module Q = Qcheck

type ‘a gen = ‘a Q.arbitrary

let ints = Q.int

let pairs = Q.tup2 ints ints

Create a generator

let t1 =

Q.Test.make

~name:"add commutes"

~count:100

pairs

add_commutes

Create a test

let _ =

QCheck_base_runner.run_tests

~verbose:true

[t1;t2]

Generators:

making random inputs

Generator

QuickCheck

Shrinker

Checker API

Shrinking:

dealing with failure

QuickCheck

Generator Shrinker

Checker API

let smallerThan81Property x =
x < 81

Property to test – we know it's gonna fail!

"int" generator 0, 1, 3, -2, 34, -65, 100

Fails at 100!

So 100 fails, but knowing that is not very helpful

Time to start shrinking!

How shrinking works

let smallerThan81Property x =
x < 81

Shrink again starting at 88

How shrinking works

Shrink list for 100 0, 50, 75, 88, 94, 97, 99

Fails at 88!

Generate a new

sequence up to 100

Given a value, a shrinker produces a sequence of values
that are (in some way) smaller than the given value

let smallerThan81Property x =
x < 81

Shrink again starting at 83

How shrinking works

Shrink list for 88 0, 44, 66, 77, 83, 86, 87

Fails at 83!

Generate a new

sequence up to 88

Given a value, a shrinker produces a sequence of values
that are (in some way) smaller than the given value

let smallerThan81Property x =
x < 81

Shrink again starting at 81

How shrinking works

Shrink list for 83 0, 42, 63, 73, 78, 81, 82

Fails at 81!

Generate a new

sequence up to 83

Given a value, a shrinker produces a sequence of values
that are (in some way) smaller than the given value

let smallerThan81Property x =
x < 81

Shrink has determined that 81 is

the smallest failing input!

How shrinking works

Shrink list for 81 0, 41, 61, 71, 76, 79, 80

All pass!

Generate a new

sequence up to 81

Given a value, a shrinker produces a sequence of values
that are (in some way) smaller than the given value

Shrinking – final result

let ints : int gen = Q.int

// result: Falsifiable, after 23 tests (3 shrinks)
// 81

Shrinking is really helpful to show

the boundaries where errors happen

Shrinking is built into the arbitrary:

Part IV:

How to choose properties

do X do X

do Y
123

ABC
do Y

Examples:

- Commutivity

- Associativity

- Map f then Map g

"Different paths, same destination"

"Different paths, same destination"
Applied to a sort function

do ? do ?

List.sort
?

[1;2;3]
List.sort

"Different paths, same destination"
Applied to a map function

f x = x * 3

Currency(2 * 3)

Option (x) Option (f x)

f x

Map f

f

Create

Currency(x)

Create

x

Currency(2)
.Map(x => x * 3)

Currency(f x)

"Different paths, same destination"
Applied to a sort function

[-2;-3;-1] [-3;-2;-1]

Negate

[2;3;1]

List.sort

Negate

then reverse

[1;2;3]
List.sort

"Different paths, same destination"
Applied to a sort function

[2;3;1]

[-2;-3;-1] [-3;-2;-1]

[1;2;3]

Negate

List.sort

List.sort

Negate

then reverse

"There and back again"

ABC 100101001

Do X

Inverse

Examples:

- Serialization/Deserialization

- Addition/Subtraction

- Write/Read

- SetProperty/GetProperty

"There and back again"

[1;2;3] [3;2;1]

Applied to a list reverse function

reverse

reverse

Pro tip:

We often need a combination of

properties, not just one

We needed three properties

to define "add"

"Some things never change"

⚫⚫⚫⚫ ⚫⚫⚫⚫

transform

Examples:

- Size of a collection

- Contents of a collection

- Balanced trees

[2;3;1]

[-2;-3;-1] [-3;-2;-1]

[1;2;3]

Negate

List.sort

Negate

then reverse

The EDFH and List.Sort

List.sort

The EDFH can beat this!

The EDFH and List.Sort

[2;3;1]

[-2;-3;-1] []

[]

Negate

List.evilSort

Negate

then reverse

List.evilSort

EvilSort just returns an empty list!

This passes the "commutivity" test!

"Some things never change"
Used to ensure the sort function is good

[2;3;1] [1;2;3]
List.sort

Must be one of these

permutations

[1; 2; 3]; [2; 1; 3]; [2; 3; 1];

[1; 3; 2]; [3; 1; 2]; [3; 2; 1]

The EDFH is beaten now!

"The more things change,

the more they stay the same"

⚫⚫⚫⚫ ⚫⚫

distinct
⚫⚫

distinct

Idempotence:

- Sort

- Filter

- Event processing

- Required for distributed designs

"Hard to prove, easy to verify"

- Prime number factorization

- Too many others to mention!

"Hard to prove, easy to verify"
Applied to a sort

[2;3;1]

(1<=2) (2<=3)

To verify the sort,

check that each pair is ordered

[1;2;3]
List.sort

ABC

ABC 123

123

Compare

System

under test

Test Oracle

- Compare optimized with slow brute-force version

- Compare parallel with single thread version

- Legacy system is the oracle for a replacement system

"The test oracle"

Part V:

Model based testing

Using the test oracle approach

for complex implementations

Testing a simple database

Open Incr Close Incr Open Close

Open Decr Open

Four operations: Open, Close, Increment, Decrement
Two clients: Client A and Client B

Let QuickCheck generate a random list of these actions for each client

How do use this to check that our db works?

Open Incr

Client

A

Client

B

Testing a simple database

Compare model result with real system!

Open Incr Close Incr Open Close

Open Decr Open Open Incr

Test on real

system

Open Incr Close Incr Open Close

Open Decr Open Incr

Test on very

simple model

(just an in-memory

accumulator)

10 0 0 1

Open

Connection closed,

so no change

Example-based tests vs.

Property-based tests

Example-based tests vs. Property-based tests

• PBTs are more general

– One property-based test can replace many example-

based tests.

• PBTs can reveal overlooked edge cases

– Nulls, negative numbers, weird strings, etc.

• PBTs ensure deep understanding of requirements

– Property-based tests force you to think! 

• PBTs can do shrinking to find the boundary

cases!

• Example-based tests are still helpful though!

– Less abstract, easier to understand

Summary

Be lazy! Don't write tests, generate them!

Use property-based thinking to gain

deeper insight into the requirements

PBT Resources

Search for "property-based testing" and your language!
• Java: jqwik.net
• Python: https://hypothesis.readthedocs.io/en/latest/

Look for talks by John Hughes
• How to specify it! https://www.youtube.com/watch?v=zvRAyq5wj38
• Don't write tests! https://www.youtube.com/watch?v=hXnS_Xjwk2Y

And others may be good
• "Property-BasedTesting in a Screencast Editor" by OskarWickström
• "MetamorphicTesting" by HillelWayne

https://hypothesis.readthedocs.io/en/latest/

	Slide 1: From Properties to Tests
	Slide 2: The lazy programmer's guide to writing 1000's of tests An introduction to property based testing
	Slide 3: Part 1: In which I have a conversation with a remote developer
	Slide 4: For some reason we needed a custom "add" function
	Slide 5: ...some time later
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Seriously, how *do* you know that you have enough tests?
	Slide 18: So I decide to start writing the unit tests myself
	Slide 19
	Slide 20
	Slide 21: Hmm.. let's look at the implementation...
	Slide 22
	Slide 23
	Slide 24
	Slide 25: But let's just check the implementation again...
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Another attempt at a test
	Slide 30: Let's check the implementation one more time....
	Slide 31: It dawned on me who I was dealing with...
	Slide 32: The Enterprise Developer From Hell (EDFH)
	Slide 33: Rethinking the approach
	Slide 34: Let's use random numbers instead...
	Slide 35: Let's use random numbers instead...
	Slide 36: Questions for everyone:
	Slide 37: Proofs about Programs
	Slide 38: From Equations to Properties
	Slide 39: From Properties to Tests
	Slide 40: Part II: Property based testing
	Slide 41: What are the "requirements" for the "add" function?
	Slide 42: Requirements for the "add" function?
	Slide 43: Requirements for the "add" function?
	Slide 44: For subtraction, the order of the parameters makes a difference, while for addition it doesn't.
	Slide 45: The EDFH responds with this implementation:
	Slide 46: How about using the difference between addition and multiplication?
	Slide 47: Test: two "add 1"s is the same as one "add 2".
	Slide 48: The EDFH responds with:
	Slide 49: The EDFH responds with another implementation:
	Slide 50: Requirements for the "add" function
	Slide 51: We have to check that the result is somehow connected to the input.
	Slide 52: Finally, the EDFH is defeated...
	Slide 53: Refactoring
	Slide 54: Let's extract the shared code...
	Slide 55: And the tests now look like:
	Slide 56: And the second property
	Slide 57: And the third property
	Slide 58: Review
	Slide 59: Testing with properties
	Slide 60: TeSpsectifiicnatigon with properties
	Slide 61
	Slide 62: Evil
	Slide 63: In my career, I've always had to deal with one stupid person in particular 
	Slide 64: Part III: QuickCheck and its ilk
	Slide 65: Function that returns bool
	Slide 66: Using QCheck
	Slide 67: Using QCheck
	Slide 68: Using QCheck
	Slide 69: Using QCheck
	Slide 70: Generators: making random inputs
	Slide 75: Shrinking: dealing with failure
	Slide 76: How shrinking works
	Slide 77: How shrinking works
	Slide 78: How shrinking works
	Slide 79: How shrinking works
	Slide 80: How shrinking works
	Slide 81: Shrinking – final result
	Slide 82: Part IV: How to choose properties
	Slide 83: "Different paths, same destination"
	Slide 84: "Different paths, same destination" Applied to a sort function
	Slide 85: "Different paths, same destination" Applied to a map function
	Slide 86: "Different paths, same destination" Applied to a sort function
	Slide 87: "Different paths, same destination" Applied to a sort function
	Slide 88: "There and back again"
	Slide 89: "There and back again"
	Slide 90: Pro tip: We often need a combination of properties, not just one
	Slide 91: "Some things never change"
	Slide 92: The EDFH and List.Sort
	Slide 93: The EDFH and List.Sort
	Slide 94: "Some things never change" Used to ensure the sort function is good
	Slide 95: "The more things change, the more they stay the same"
	Slide 97: "Hard to prove, easy to verify"
	Slide 99: "Hard to prove, easy to verify" Applied to a sort
	Slide 100: "The test oracle"
	Slide 101
	Slide 102: Testing a simple database
	Slide 103: Testing a simple database
	Slide 107: Example-based tests vs. Property-based tests
	Slide 108: Example-based tests vs. Property-based tests
	Slide 109: Summary
	Slide 110: PBT Resources

