From Properties to Tests

COS 326
David Walker

The lazy programmer's guide to

writing 1000's of tests
An introduction to property based testing

@ScottWilaschin
fsharpforfunandprofit.com

https://fsharp.org/

F# is a OCaml grafted onto C#, which is Microsoft’s version of Java

Part |:
In which | have a conversation with a
remote developer

This was a project from a long time ago,
in a galaxy far far away

For some
reason we
needed a
custom "add"
function

eeeCo ATAT &

{ Messages

2:41 AM 50 % (mE_p

Garfield Contact

We need a function that
will add two numbers
together. Could you
implement it please? Thx

..some time
later

*ee00 ATET & a:41 AM 50 % mE_p

{ Messages Garfield Contact

We need a function that
will add two numbers
together. Could you
implement it please? Thx

| just finished
implementing the "add"
function

8800 ATET = 9:41 AM 50 % mm b

{ Messages Garfield Contact

We need a function that
will add two numbers
together. Could you
implement it please? Thx

| just finished
implementing the "add"
function

Great, have you written
unit tests for it?

8800 ATET = 9:41 AM 50 % mm b

{ Messages Garfield Contact

We need a function that
will add two numbers
together. Could you
implement it please? Thx

| just finished
implementing the "add"
function

Great, have you written
unit tests for it?

You want tests as well?
o O

8800 ATET = 9:41 AM 50 % mm b

{ Messages Garfield Contact

We need a function that
will add two numbers
together. Could you
implement it please? Thx

| just finished
implementing the "add"
function

Great, have you written
unit tests for it?

You want tests as well?
o O

Ok

*eeCD ATET =& 50 % (mm__p

{ Messages Contact

Ok

| just wrote a test! "Given

1 and 3, expect output is
4"

*eeC0 ATET & 50 %)
{ Messages Contact
Ok
| just wrote a test! "Given

1 and 3, expect output is
4"

So can we call it done

now?

*ee00 ATET & a:41 AM 50 % mE_p
{ Messages Garfield Contact
Ok
| just wrote a test! "Given

1 and 3, expect output is
4Il

So can we call it done
now?

That's only *one* test.
How do you know it
doesn't fail for other
inputs?

*ee00 ATET & a:41 AM 50 % mE_p
{ Messages Garfield Contact
Ok
| just wrote a test! "Given

1 and 3, expect output is
4"

So can we call it done
now?

That's only *one* test.
How do you know it
doesn't fail for other
inputs?

Ok, let me do another
one.

eeeCo ATAT & 2:41 AM

£ Messages Garfield

VK, Iet me ao anoiner
one.

| just wrote another
awesome test!

50 % (mm_p

Contact

*eeC0 ATET = 9:41 AM 50 % (wm_p
£ Messages Garfield Contact
UK, et me ao anomer

one.

| just wrote another
awesome test!

"Given 2 and 2, expect
output is 4"

8800 ATET = 9:41 AM 50 % mm b

{ Messages Garfield Contact

UK, Iet me do anotner
one.

| just wrote another
awesome test!

"Given 2 and 2, expect
output is 4"

Yes, but you're still only
testing for special cases.

How do you know it
doesn't fail for other tests
you haven't thought of?

*ee00 ATET & a:41 AM 50 % mE_p
{ Messages Garfield Contact

UK, Iet me ao anoiner
one.

| just wrote another
awesome test!

"Given 2 and 2, expect
output is 4" /5

Yes, but you're still only
testing for special cases.

How do you know it
doesn't fail for other tests
you haven't thought of?

You want even *more*
tests?

Yerionsly, how "d0" yow
know that yow have
enowgh rests?

Seriously, how *do* you know that
you have enough tests?

So | decide to start writing the
unit tests myself

First, | had a look at the existing tests...

[<Test>]

let " "When I add 1 + 3, I expect 4 ()=
let result = add(1,3) /
Assert.AreEqual(4,result)

[<Test>]

let " "When I add 2 + 2, I expect 4" ()=
let result = add(2,2) /

Assert.AreEqual(4,result)

prints out stuff when test fails

Ok, now for my first new test...

[<Test>]

let " "When I add -1 + 3, I expect 2" () =
let result = add(-1,3)

Assert.AreEqual(2,result) x

That's fwnny.

Hym. let's look at the implementation...

let add(x,y) =
4

wif!

00000 ATAT 7 9:41 AM 50 %)

< Messages Garfield Contact

Hey, I'm going to write
the tests first now.

Then you will make them

pass, ok?

TDD =
“Test-Driven
Development

”

00000 ATAT 7 9:41 AM 50 % (m)

< Messages Garfield Contact

Hey, I'm going to write
the tests first now.

Then you will make them

pass, ok?

No worries!

Time for some more tests...

[<Test>]

let " "When I add 2 + 3, I expect 5 ()=
let result = add(2,3) /
Assert.AreEqual(5,result)

[<Test>]

let " "When I add 1 + 41, I expect 42 "()=
let result = add(1,41) /

Assert.AreEqual(42,result)

Okay, the tests pass.
That looks good.

But let's just check the implementation again...

let add(x,y) =
match (x,y) with
(2,3) -> 5
(1,41) -> 42
(L,_) > 4 // all other cases

wif wif wif

00000 ATET & 9:41 AM 50 % (mm_)»

< Messages Garfield Contact

What are you even
doing?

Why haven't you
implemented anything
yet?

00000 ATET & 9:41 AM 50 % (mm_)»

< Messages Garfield Contact

What are you even
doing?

Why haven't you
implemented anything
yet?

Chill out dude, I'm totally
following TDD best
practices

TDD best practices

Write only enough code to
make the failing unit test pass.

http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd

http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd
http://www.javiersaldana.com/articles/tech/refactoring-the-three-laws-of-tdd

Another attempt at a test

[<Test>]
let When I add two numbers,
I expect to get their sum " ()=

let testData = |
(1,2,3)
(2,2,4)
(3,5,8)
(27,15,42)
]
for (X,y,expected) in testData do
let actual = add(x,y)
Assert.AreEqual (expected,actual)

v

Let's check the implementation one more tme....

let add(x,y) =
match (x,y) with
(1,2) -> 3
(2,3) -> 5
(3,5) -> 8
(1,41) -> 42
(27,15) -> 42
(.,) >4 // all other cases

|t dawned on me who | was
dealing with...

...the legendary burned-out, always
lazy and often malicious
programmer called...

The Enterprise
Developer From Hell

(EDFH)

Rethinking the approach

The EDFH will always
make specific examples
pass, no matter what |

So let's not use
specific examples!

Let's use random numbers instead...

[<Test>]
let " "When I add two random numbers,
I expect their sum to be correct ()=

let x = randInt()

let y = randInt()

let actual = add(x,y)

let expected = .. // hmmm. need add(x,y)
Assert.AreEqual (expected, actual)

Let's use random numbers instead...

[<Test>]
let " "When I add two random numbers,
I expect their sum to be correct " ()=

let x = randInt()

let y = randInt()

let actual = add(x,y)

let expected = .. // hmmm. need add(x,y)
Assert.AreEqual (expected, actual)

If | reimplement add(x,y):

* | might make the same mistakes as | made in the
“real” implementation.

e Itis alotof workif “add” is complicated

Questions for everyone:

How would you write a test for an "add" function?

But without re-implementing "add"

And without using specific examples

Proofs about Programs

a program

let reverse (xs: int list) : int list =
let rec aux 1nput output =
match input with
[] —-> output
| hd::tl -> aux tl (hd::output)
in
aux xs []

a theorem (or specification)

for all xs : list. reverse (reverse xs) = xs

Can we use a spec as a test? Yes!

Randomly generate universally quantified objects (xs)
and check the property (ie: reverse (reverse xs) = xs)

From Equations to Properties

|_n

Our specs have been “equationa
(1) for all x : t. el = e2 (x probably appears in el and e2)
A special case:

(2) for all x : t. prop(e) = true

Here “prop” is a function s -> bool
- a “property” or a “predicate” about values with type s.

We often write (2) like this:

(3) for all x : t. prop(e)

From Properties to Tests
Given a property about a program like this:
for all x : t. prop(e)

We can prove it

e pro: high reliability: know it is true for all x
* con: costly: takes time and expertise

skills at testing
increase the
reliability
component

We can test it
* con: weaker reliability: know itis true for some x
* pro: cheap: takes less time and less expertise

Conjecture: Understanding and being good at specs and proofs makes
you a better programmer. It also makes you a better tester.

Part Il
Property based testing

What are the "requirements"” for
the "add" function?

Requirements for the "add" function?

* |It's often hard to know where to get started

* Tests distinguish good implementations from
bad ones: So think of a bad one

* More generally: compare your
implementation with an implementation of
something different...

— E.g. How does "add" differ from "subtract™?

Requirements for the "add" function?

 Addition vs. subtraction:

— For subtraction, the order of the parameters
makes a difference

— For addition it doesn't.

For subtraction, the order of the parameters makes a
difference, while for addition it doesn't.

[<Test>]
let " "When I add two numbers, the result
should not depend on parameter order " ()=

for in [1..100] do
let x = randInt()
let y = randInt()

let resultl = add(x,y)
let result2 = ad < reversed params
Assert.AreEqual (resultl,result2)

addition, and it eliminates a
orrect im?\ementa&ions‘.

Ik doeswt depend on
whole class of inc

The EDFH responds with this implementation:

let add(x,y) =
X ¥y

How about using the difference
between addition and multiplication?

For example:

e adding one twice is the same as adding two

* multiplying by one twice is NOT the sameas
multiplying by two

Test: two "add 1"s is the same as one "add 2".

[<Test>]
let " "Adding 1 twice is the same as adding 2" ()=

for _in [1..100] do
let x = randInt()
let resultl = add(add(x,1),1)
let result2 = add(x,2)
Assert.AreEqual (resultl,result2)

The EDFH responds with:

let add(x,y) =
X -y

TEST: "~"Adding | twice is the same as adding 2™

But luckily we have the previous test as well!

TEST: "When | add two numbers, the result x
should not depend on parameter order

Ha! Gotcha, EDFH!

The EDFH responds with another implementation:

let add(x,y) =
(%]

TEST: ""Adding | twice is the same as adding 2"

TEST: "~ "'When | add two numbers, the result
should not depend on parameter order

Aarrghh! Where did our approach go wrong?

Requirements for the "add" function

* We need to check that the result is somehow
connected to the input!

* |s there a trivial property of "add" that we
know the answer to!

— (without reimplementing our own version)

* Yes! Adding zero is the same as doing nothing

We have to check that the result Is
somehow connected to the input.

Adding zero is the same as doing nothing

[<Test>]
let "~ "Adding zero is the same as doing nothing " ()=

for in [1..100] do
let x = randInt()
let resultl = add(x,0)
let result2 = x
Assert.AreEqual (resultl,result2)

Finally, the EDFH is defeated...

TEST: "~"Adding | twice is the same as adding 2™ /

TEST: "When | add two numbers, the result /
should not depend on parameter order —

TEST: " "Adding zero is the same as doing nothing /

If these are all true we
MUST have a correct

implementation*
* not quite true

Refactoring

Let's extract the shared ooce.. / Pass in a "property’
let propertyCheck propertyFn =
// property has type: (int,int) -> bool

for in [1..100] do
let x = randInt()
let y = randInt()
let result = propertyFn(x,y)

Assert.IsTrue(result)‘k\\\\\\\\\\\

Check the property is
true for random inputs

And the tests now look like:

let commutativeProperty(x,y) =
let resultl = add(x,y)
let result2 = add(y,x)
resultl = result2

[<Test>]
let " "When I add two numbers, the result
should not depend on parameter order " ()=

propertyCheck commutativeProperty

And the second property

let addinglTwiceIsAdding20nceProperty(x,) =
let resultl = add(add(x,1),1)
let result2 = add(x,2)
resultl = result2

[<Test>]
let "~ "Adding 1 twice is the same as adding 2" ()=

propertyCheck addinglTwiceIsAdding20nceProperty

This is realy jwst a crude
version of associadivity!

And the third property

let identityProperty(x,) =
let resultl = add(x,0)
resultl = x

[<Test>]
let ““Adding zero is the same as doing nothing " ()=

propertyCheck identityProperty

Review

Testing with properties

* The parameter order doesn't matter

* Doing "add 1" twice is the same as
doing "add 2" once These properties

* Adding zero does nothing apply to ALL inputs

We can generate
arbitranly many
random examples,
test the properties and
see if they hold.

m with properties

* "Commutativity" property
" C e e These properties
* "Associativity” property B define addition!

. "Identity" property The EDFH can't create an
incorrect implementation!

Bonus: By using specifications, we have
understood the requirements in a deeper way.

Why bother with the EDFH?

Surely such a malicious programmer is
unrealistic and over-the-top?

Evil

Stup|d <« In practice,
no difference!

Lazy

In my career, |'ve always had to deal with one
stupid person in particular ®

Me!
The real EDFH!

When | look at my old code, | almost always see something wrong!

I've often created flawed implementations, not out of evil
intent, but out of unawareness and blindness

Part Il
QuickCheck and its ilk

Wouldn't it be nice to have a toolkit for doing this?

The "QuickCheck" library was originally developed for Haskell by Koen Claessen and John
Hughes, and has been ported to many other languages.

In OCaml: QCheck
opam install gcheck
See: https://o1-labs.github.io/ocamlbyexample/build-qcheck.html

Your Property <

Pass to checker

QuCheck

v

Checker API

Generates Creates minimal
random inputs failing input

Function that returns bool

Using QCheck

dune main.ml

(executable let
(public_name qc)
(name main)
(libraries gcheck))

Using QCheck

Write some properties: t -> bool

type iprop = int * int -> bool

let commutes f (x,y) = f xy =1f vy x
let add commutes p = commutes (+) p
let sub commutes p = commutes (-) p

Create a generator

module Q = Qcheck
type ‘a gen = ‘a Q.arbitrary

let ints : int gen = Q.int
let pairs : (int * int) gen = Q.tup2 ints ints

Using QCheck

Write some properties: t -> bool Create a generator

type 1prop = int * int -> bool module Q = Qcheck
let commutes f (x,y) = type ‘a gen = ‘a Q.arbitrary
f xy=1%fy x
let add commutes p = let ints = Q.int
commutes (+) p let pairs = Q.tupZ2 ints 1ints
let sub commutes p =
commutes (-) p
Create a test ~n — OCaml optional argument

—

let tl1l = Q.Test.make
~name: "add commutes" <« name of test
~count:100 <« number of random tests

pairs « generator
add commutes < property

Using QCheck

Write some properties: t -> bool

type iprop = int * int -> bool

let commutes f (x,y) =
f xy=1%fy x

let add commutes p =
commutes (+) p

let sub commutes p =
commutes (-) p

Create a test

Create a generator

module Q = Qcheck
type ‘a gen = ‘a Q.arbitrary

let ints = Q.int
let pairs = Q.tupZ2 ints ints

let tl =
Q.Test.make
~name: "add commutes"
~count:100
pairs
add commutes

let =

QCEeck_base_runner.run_tests
~verbose: true
[tl;t2]

Generators:
making random inputs

QuickCheck

Checker API

Generator ' Shrinker

Shrinking:
dealing with failure

QuickCheck

Checker API

Generator ' Shrinker

How shrinking works

Property to test — we know it's gonna fail!

let smallerThan81Property x =
X < 81

Fails at 100!

So 100 fails, but knowing that is not very helpful

Time to start shrinking!

How shrinking works

Given a value, a shrinker produces a sequence of values
that are (in some way) smaller than the given value

let smallerThan81Property x =
X < 81

Shrink list for 100 e, 50, 75, 88, 94, 97, 99
Fails at 88!

sequence up to 100

Shrink again starting at 88

How shrinking works

Given a value, a shrinker produces a sequence of values
that are (in some way) smaller than the given value

let smallerThan81Property x =
X < 81

Shrink list for 88 o, 44, 66, 77, 83, 86, 87
Fails at 83!

sequence up to 88

Shrink again starting at 83

How shrinking works

Given a value, a shrinker produces a sequence of values
that are (in some way) smaller than the given value

let smallerThan81Property x =
X < 81

Shrink list for 83 o, 42, 63, 73, 78, 81, 82
Fails at 81!

sequence up to 83

Shrink again starting at 81

How shrinking works

Given a value, a shrinker produces a sequence of values
that are (in some way) smaller than the given value

let smallerThan81Property x =
X < 81

Shrink list for 81 o, 41, 61, 71, 76, 79, 80
™\ Al pass!
Generate a new

sequence up to 81

Shrink has determined that 81 is
the smallest failing input!

Shrinking — final result

Shrinking is built into the arbitrary:

let ints : int gen = Q.int

// result: Falsifiable, after 23 tests (3 shrinks)
// 81

Shrinking is really helpful to show
the boundaries where errors happen 4hrinking works with

compownd wpes xo0!

Part |V:
How to choose properties

What properties showld |
ase? | cant think of any!

"Different paths, same destination”

[r#»uf}
()

[ABC

Examples:

- Commutivity

- Associativity

- Map f then Map g

"Different paths, same destination”

Applied to a sort function

List.sort
{ ? |

do ?T do ?T

{ [1;2;3] J
List.sort

|

"Different paths, same destination”

Applied to a map function

Map f
[Currency(x)]_P[Currency(f x)]

TCreate CreateT
[X }-—-—-ﬁb* f x]
f
fx=x*3

Currency(2) Currency(2 * 3)
Map(x => x * 3)

"Different paths, same destination”

Applied to a sort function

[[-2;-3;-1] }ﬂP[[-3;-2;-1] J

1Negate

[[2;3;1] }

"Different paths, same destination”

Applied to a sort function

List.sort

[[-2;-3;-1] [-3;-2;-1] J
Negate Negate
then reverse
[[2;3;1] [1;2;3] J
List.sort

"There and back again”

Inverse

Examples:

- Serialization/Deserialization
- Addition/Subtraction
- Write/Read

- SetProperty/GetProperty

"There and back again”

Applied to a list reverse function

reverse

reverse

Pro tip:
We often need a combination of
properties, not just one

We needed three properties
to define "add"

"Some things never change”

[0000 JM}{ 0000]

Examples:

- Size of a collection

- Contents of a collection
- Balanced trees

The EDFH and List.Sort

List.sort

The EDFH can beat this!

The EDFH and List.Sort

List.evilSort
23 no
Negate Negate
then reverse
| R — no
List.evilSort

EvilSort just returns an empty list!

This passes the "commutivity” test!

"Some things never change”

Used to ensure the sort function is good

| sy p—— 23 |
List.sort
Must be one of these
permutations
[1; 2;3];[2; 1, 3]; [2; 3; 1];
[1;3;2];[3; 1; 2]; [3; 2; 1]

The EDFH is beaten now!

"The more things change,
the more they stay the same'

distinct distinct

|dempotence:

- Sort

- Filter

- Event processing

- Required for distributed designs

"Hard to prove, easy to verify"

d
J ST P B

. L)
7]I

- Prime number factorization
- Too many others to mention!

"Hard to prove, easy to verify"
Applied to a sort

[[2;3;1] JWP[[1;2;3]]

[(1<=2) (2<=3)]

To verify the sort,
check that each pair is ordered

"The test oracle”

System
[ABC I under test I l 123]

Compare:[

Test Oracle

- Compare optimized with slow brute-force version
- Compare parallel with single thread version
- Legacy system is the oracle for a replacement system

Part V:
Model based testing

Using the test oracle approach
for complex implementations

Testing a simple database

Four operations: Open, Close, Increment, Decrement
Two clients: Client A and Client B

Let QuickCheck generate a random list of these actions for each client

Client Open Incr Close Incr Open Close

S S S S SR S

o | N N

B Open Decr Open Open Incr

How do use this to check that our db works?

Testing a simple database

Open Incr Close Incr Open Close
Test on real
‘l, ‘l, ‘l, ‘l, ‘1, ‘l, «—lestonrea
1‘ T 1‘ T 1\) system
Open Decr Open Open Incr
Open Incr Close Incr Open Close
l, ‘1, l, l, l, \l, (/Test on very
T T T T T simple model
(just an in-memory
Open Decr Open Open Incr | tOI')
Connection csed, accumuia

so no change

Compare model result with real system!

Example-based tests vs.
Property-based tests

Example-based tests vs. Property-based tests

PBTs are more general

— One property-based test can replace many example-
based tests.

PBTs can reveal overlooked edge cases

— Nulls, negative numbers, weird strings, etc.

PBTs ensure deep understanding of requirements
— Property-based tests force you to think! ®

PBTs can do shrinking to find the boundary
cases!

Example-based tests are still helpful though!

— Less abstract, easier to understand

Summary

Be lazy! Don't write tests, generate them!

Use property-based thinking to gain
deeper insight into the requirements

PBT Resources

Search for "property-based testing" and your language!
* Java:jgwik.net
* Python: https://hypothesis.readthedocs.io/en/latest/

Look for talks by John Hughes

* How to specify it! https://www.youtube.com/watch?v=zvRAyg5w;j38
* Don't write tests! https://www.youtube.com/watch?v=hXnS_Xjwk2Y

And others may be good
* "Property-BasedTesting in a Screencast Editor" by OskarWickstrom
* "MetamorphicTesting" by HillelWayne

https://hypothesis.readthedocs.io/en/latest/

	Slide 1: From Properties to Tests
	Slide 2: The lazy programmer's guide to writing 1000's of tests An introduction to property based testing
	Slide 3: Part 1: In which I have a conversation with a remote developer
	Slide 4: For some reason we needed a custom "add" function
	Slide 5: ...some time later
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Seriously, how *do* you know that you have enough tests?
	Slide 18: So I decide to start writing the unit tests myself
	Slide 19
	Slide 20
	Slide 21: Hmm.. let's look at the implementation...
	Slide 22
	Slide 23
	Slide 24
	Slide 25: But let's just check the implementation again...
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Another attempt at a test
	Slide 30: Let's check the implementation one more time....
	Slide 31: It dawned on me who I was dealing with...
	Slide 32: The Enterprise Developer From Hell (EDFH)
	Slide 33: Rethinking the approach
	Slide 34: Let's use random numbers instead...
	Slide 35: Let's use random numbers instead...
	Slide 36: Questions for everyone:
	Slide 37: Proofs about Programs
	Slide 38: From Equations to Properties
	Slide 39: From Properties to Tests
	Slide 40: Part II: Property based testing
	Slide 41: What are the "requirements" for the "add" function?
	Slide 42: Requirements for the "add" function?
	Slide 43: Requirements for the "add" function?
	Slide 44: For subtraction, the order of the parameters makes a difference, while for addition it doesn't.
	Slide 45: The EDFH responds with this implementation:
	Slide 46: How about using the difference between addition and multiplication?
	Slide 47: Test: two "add 1"s is the same as one "add 2".
	Slide 48: The EDFH responds with:
	Slide 49: The EDFH responds with another implementation:
	Slide 50: Requirements for the "add" function
	Slide 51: We have to check that the result is somehow connected to the input.
	Slide 52: Finally, the EDFH is defeated...
	Slide 53: Refactoring
	Slide 54: Let's extract the shared code...
	Slide 55: And the tests now look like:
	Slide 56: And the second property
	Slide 57: And the third property
	Slide 58: Review
	Slide 59: Testing with properties
	Slide 60: TeSpsectifiicnatigon with properties
	Slide 61
	Slide 62: Evil
	Slide 63: In my career, I've always had to deal with one stupid person in particular 
	Slide 64: Part III: QuickCheck and its ilk
	Slide 65: Function that returns bool
	Slide 66: Using QCheck
	Slide 67: Using QCheck
	Slide 68: Using QCheck
	Slide 69: Using QCheck
	Slide 70: Generators: making random inputs
	Slide 75: Shrinking: dealing with failure
	Slide 76: How shrinking works
	Slide 77: How shrinking works
	Slide 78: How shrinking works
	Slide 79: How shrinking works
	Slide 80: How shrinking works
	Slide 81: Shrinking – final result
	Slide 82: Part IV: How to choose properties
	Slide 83: "Different paths, same destination"
	Slide 84: "Different paths, same destination" Applied to a sort function
	Slide 85: "Different paths, same destination" Applied to a map function
	Slide 86: "Different paths, same destination" Applied to a sort function
	Slide 87: "Different paths, same destination" Applied to a sort function
	Slide 88: "There and back again"
	Slide 89: "There and back again"
	Slide 90: Pro tip: We often need a combination of properties, not just one
	Slide 91: "Some things never change"
	Slide 92: The EDFH and List.Sort
	Slide 93: The EDFH and List.Sort
	Slide 94: "Some things never change" Used to ensure the sort function is good
	Slide 95: "The more things change, the more they stay the same"
	Slide 97: "Hard to prove, easy to verify"
	Slide 99: "Hard to prove, easy to verify" Applied to a sort
	Slide 100: "The test oracle"
	Slide 101
	Slide 102: Testing a simple database
	Slide 103: Testing a simple database
	Slide 107: Example-based tests vs. Property-based tests
	Slide 108: Example-based tests vs. Property-based tests
	Slide 109: Summary
	Slide 110: PBT Resources

