
Parallelism I

slides copyright 2018-19 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

COS 326

David Walker

Princeton University

Parallelism

Big Computation

If you can split up a big computation into small chunks and
do each chunk the same time, you won’t save work (energy),

but you will save time

Parallelism

Big Computation

Hardware manufacturers have been trying to
help us do that for decades

Moore's Law

Moore's Law: The number of transistors you can put on a
computer chip doubles (approximately) every couple of years.

Consequence for most of the history of computing:

• All programs double in speed every couple of years.

• Extra transistors doubled the number of instructions executed
per time unit

Consequence for application writers:

• Watch TV for a while and your programs optimize themselves!

• New applications thought impossible became possible
because of increased computational power

7

8

Darn! Intel engineers no
longer optimize my
programs while I watch TV!

Power to chip
peaking

So…

10

Instead of making your CPU go faster, manufacturers have been to
packing more CPUs onto a chip.

* produced by ChatGPT 5.1 in 11/2025

120

So…

11

Instead of making your CPU go faster, manufacturers have been to
packing more CPUs onto a chip.

* produced by ChatGPT 5.1 in 11/2025

15,000

But there’s more: Data Centers

Data Centers: Lots of Connected Computers!

Data Centers: Lots of Connected Computers

Computer containers for plug-and-play parallelism:

80,000 servers ?
x 20 cores/server ?
= 1.6 million cores?

How many servers?
Trade secret!

How does Microsoft
estimate how many
servers Google has?

15

Now that we have all this parallel hardware:
• many cores, on
• many computers, in
• many data centers

How do we program it effectively?

Unfortunately

16

Many parallel programming models:

• Introduce nondeterminism

– program parts suddenly have many different outcomes

• they have different outcomes on different runs

• debugging requires considering all of the possible outcomes

• horrible heisenbugs hard to track down

• Are nonmodular

– module A implicitly influences the outcomes of module B

• Introduce new classes of errors

– race conditions, deadlocks

• Introduce new performance/scalability problems

Fortunately

17

You are taking a class on functional programming ...

There are some functional abstractions for parallel programming
that have all the performance but none of the downsides!

Fortunately

18

You are taking a class on functional programming ...

What we want: Parallel performance with sequential semantics

This gives us determinism

No worries about race conditions

But we still have to reason about the cost of parallel functional
programs and that remains hard

WHY CONCURRENT PROGRAMMING IS
FUNDAMENTALLY HARD

It’s all about invariants

let x =
 if f y > 0 then
 f y
 else
 1

Assume f is a pure function. Is x > 0 ?

yes. If f is a function, every call to f with the same argument
returns the same answer.

Reasoning about programs is (often) highly modular.

Invariants established persist forever.

It’s all about invariants

let x =
 if f y > 0 then
 f y
 else
 1

Assume f is a function in a sequential application
that may access mutable state. Is x > 0 ?

We don’t know!

It’s all about invariants

let x =
 if f y > 0 then
 f y
 else
 1

Assume f is a function in a sequential application
that may access mutable state. Is x > 0 ?

But we could look at f to find out definitively. eg:

let r = ref 0

let f y = !r + y

let g y = (r := !r - y)

other functions
don’t matter since
they weren’t called

It’s all about invariants

let x =
 if f y > 0 then
 f y
 else
 1

Assume f is a function in a concurrent application
that may access mutable state. Is x > 0 ?

Thread 1

let r = ref 0

let f y = !r + y

let g y = (r := !r - y)

g 1;
g 2;
g 3;
g 4;
…

Thread 2

suddenly, all other functions that
may reference the same state matter.
And it can hard to pin down which
functions might access which bits of
state at which times

It’s all about invariants

let x =
 if f y > 0 then
 f y
 else
 1

Assume f is a function in a concurrent application
that may access mutable state. Is x > 0 ?

Thread 1

let r = ref 0

let f y = !r + y

let g y = (r := !r - y)

g 1;
g 2;
g 3;
g 4;
…

Thread 2

And you may have to reason about
all interleavings of all other functions
with the function you wrote.

(It may actually be worse than that)

Our Goal

To study functional abstractions that provide the performance
but none of the semantic non-determinism that makes reasoning
about concurrent programs with mutable state so hard.

THREADS:
A CONVENTIONAL PARALLEL
PROGRAMMING MODEL

Threads: A Warning

Concurrent Threads with Locks: the classic shoot-yourself-in-the-
foot concurrent programming model

– almost all programming languages will have a threads library

• OCaml in particular!

– you need to know where (some of) the pitfalls are

– the assembly language of concurrent programming paradigms

• build higher-level programming models on top of threads

https://ocaml.org/manual/5.4/api/Thread.html

Threads

33

A thread is an abstraction of a processor.

– programmer (or compiler) decides that some work can be done
in parallel with some other work, e.g., our program is:

– we fork a thread to run the computation in parallel, e.g.:

let _ = compute_big_thing() in

let y = compute_other_big_thing() in

...

let t = Thread.create compute_big_thing () in

let y = compute_other_big_thing () in

 ...

Intuition in Pictures

34

let t = Thread.create f () in

let y = g () in

 ...

Thread.create

execute g ()

...

processor 1

(* doing nothing *)

execute f ()

...

processor 2

time 1

time 2

time 3

Of Course…

35

Suppose you have 2 available cores and you fork 4 threads.

In a typical multi-threaded system,

– OS provides the illusion that there are infinite processors.

• not really: each thread consumes space, so if you fork too many
threads the process will die.

– OS time-multiplexes the threads across the available processors.

• every few ms, the OS stops the current thread on a processor, and
switches to another thread.

Coordination

38

How do we get back the result that t is computing?

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in

let y = g () in

 ...

First Attempt

39

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

 match !r with

 | Some v -> (* compute with v and y *)

 | None -> failwith "impossible"

What’s wrong with this?

Second Attempt

40

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

let rec wait() =

 match !r with

 | Some v -> v

 | None -> wait()

in

let v = wait() in

 (* compute with v and y *)

Two Problems

41

First, we are busy-waiting.

• consuming CPU without doing something useful.

• CPU could either be running a useful thread/program or power down.

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

let rec wait() =

 match !r with

 | Some v -> v

 | None -> wait()

in

let v = wait() in

 (* compute with v and y *)

Two Problems

42

Second, an operation like r := Some v may not be atomic.
• r := Some v requires us to copy the bytes of Some v into the ref r

• we might see part of the bytes (corresponding to Some) before we’ve
written in the other parts (e.g., v).

• So the waiter might see the wrong value.

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

let rec wait() =

 match !r with

 | Some v -> v

 | None -> wait()

in

let v = wait() in

 (* compute with v and y *)

Real Machines

49

Today’s multicore processors don’t even have sequentially
consistent memory models.

That means that we can’t even assume that what we will see
corresponds to some interleaving of the threads’ instructions!

Beyond the scope of this course.

Core 1

L2 cache

Core 2

L1 cache L1 cache

ALU ALU

Core 3 Core 4

L1 cache L1 cache

ALU ALU

Solution: Synchronization Primitives

All systems for parallel programming have synchronization
primitives.

Examples:

• locks

• semaphores

• compare-and-swap

• synchronized methods

Today:

• fork-join parallelism

– join is the synchronization primitive

Recall our Problem

58

How do we get back the result that t is computing?

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in

let y = g () in

 ...

One Solution (using join)

59

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

Thread.join t ;

match !r with

| Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

One Solution (using join)

60

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

Thread.join t ;

match !r with

| Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

Thread.join t causes
the current thread to wait

until the thread t
terminates.

One Solution (using join)

61

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

Thread.join t ;

match !r with

| Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

So after the join, we know
all the operations of t have

completed.

The happens-before relation

Rule 1: Given two expressions (or instructions) in sequence,
e1; e2, in a single thread, we know that e1 happens before e2.

Rule 2: Given a program:

let t = Thread.create f x in

....

Thread.join t;

e

we know that (f x) happens before e.

Rule 3: Transitivity

In Pictures

63

Thread 1
t=create f x
inst1,1;
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1;
inst2,2;
inst2,3;
…
inst2,m;

We know that for each
thread the previous
instructions must happen
before the later instructions.

So for instance, inst1,1 must
happen before inst1,2.

In Pictures

64

Thread 1
t=create f x
inst1,1;
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1;
inst2,2;
inst2,3;
…
inst2,m;

We also know that the
fork must happen before
the first instruction of the
second thread.

In Pictures

65

Thread 1
t=create f x
inst1,1;
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1;
inst2,2;
inst2,3;
…
inst2,m;

We also know that the
fork must happen before
the first instruction of the
second thread.

And thanks to the join,
we know that all of the
instructions of the second
thread must be completed
before the join finishes.

Fork-Join

Fork-Join parallelism cuts down on the number of interleavings

Reduces non-determinism

A very useful pair of primitives

But we still do have to think about all those interleavings and
how they interact with mutable references. It’s very, very hard
to write and debug programs in this model.

Can we avoid doing such reasoning altogether?

FUTURES: A PARALLEL
PROGRAMMING ABSTRACTION

Futures

68

module type FUTURE =

sig

 type ‘a future

 (* future f x forks a thread to run f(x)

 and stores the result in a future when complete *)

 val future : (‘a->‘b) -> ‘a -> ‘b future

 (* force f causes us to wait until the

 thread computing the future value is done

 and then returns its value. *)

 val force : ‘a future -> ‘a

end

Does that interface looks familiar ?

Future Implementation

70

module Future : FUTURE =

struct

 type ‘a future = {tid : Thread.t ;

 value : ’a option ref }

end

Future Implementation

71

module Future : FUTURE =

struct

 type ‘a future = {tid : Thread.t ;

 value : ‘a option ref }

 let future(f:‘a->‘b)(x:‘a) : ‘b future =

 let r = ref None in

 let t = Thread.create (fun () -> r := Some(f x)) ()

 in

 {tid=t ; value=r}

end

Future Implementation

72

module Future : FUTURE =

struct

 type ‘a future = {tid : Thread.t ;

 value : ‘a option ref }

 let future(f:‘a->‘b)(x:‘a) : ‘b future =

 let r = ref None in

 let t = Thread.create (fun () -> r := Some(f x)) ()

 in

 {tid=t ; value=r}

 let force (f:‘a future) : ‘a =

 Thread.join f.tid ;

 match !(f.value) with

 | Some v -> v

 | None -> failwith “impossible!”

end

Now using Futures

73

let x = future f () in

let y = g () in

let v = force x in

(* compute with v and y *)

Back to the Futures

74

let x = future f () in

let y = g () in

let v = force x in

y + v

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

let y = g() in

Thread.join t ;

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

with futures library: without futures library:

val f : unit -> int

val g : unit -> int

module type FUTURE =

sig

 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future

 val force :’a future -> ‘a

end

Back to the Futures

75

what happens if
we delete this
lines? (Forgetting to
synchronize)

let x = future f () in

let y = g () in

let v = force x in

y + v

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

let y = g() in

Thread.join t ;

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE =

sig

 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future

 val force :’a future -> ‘a

end

Back to the Futures

76

let x = future f () in

let y = g () in

let v = force x in

y + x

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

let y = g() in

Thread.join t ;

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE =

sig

 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future

 val force :’a future -> ‘a

end

what happens if
we use x and
forget to force?

Back to the Futures

77

let x = future f () in

let y = g () in

let v = force x in

y + x

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

let y = g() in

Thread.join t ;

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE =

sig

 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future

 val force :’a future -> ‘a

end

Moral: Futures + typing ensure
entire categories of errors can’t
happen -- you protect yourself
from your own stupidity

Back to the Futures

78

let x = future f () in

let v = force x in

let y = g () in

y + v

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

Thread.join t ;

let y = g() in

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE =

sig

 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future

 val force :’a future -> ‘a

end

what happens if you
relocate force, join?

Back to the Futures

79

let x = future f () in

let v = force x in

let y = g () in

y + x

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

Thread.join t ;

let y = g() in

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE =

sig

 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future

 val force :’a future -> ‘a

end

Moral: Futures are
not a universal savior

An Example

87

type 'a tree = Leaf | Node of 'a node

and 'a node = {left : 'a tree ;

 value : 'a ;

 right : 'a tree }

let rec fold (f:'a -> 'b -> 'b -> 'b) (u:'b)

 (t:'a tree) : 'b =

 match t with

 | Leaf -> u

 | Node n ->

 f n.value (fold f u n.left) (fold f u n.right)

let sum (t:int tree) = fold (+) 0 t

An Example

88

type 'a tree = Leaf | Node of 'a node

and 'a node = {left : 'a tree ;

 value : 'a ;

 right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)

 (t:'a tree) : 'b =

 match t with

 | Leaf -> u

 | Node n ->

 let l_f = Future.future (pfold f u) n.left in

 let r = pfold f u n.right in

 f n.value (Future.force l_f) r

let sum (t:int tree) = pfold (+) 0 t

Performance Notes!

89

Creating a thread involves a lot of systems-level overhead.

You have to do a lot of work in parallel with other threads to
make up for that overhead.

So the code we wrote will be slower than sequential code unless
the functions we are mapping do a huge amount of work
(thousands of instructions at least).

Moreover, the tree had better be balanced.

But this is really not a course about program optimization!

Side Effects?

91

type 'a tree = Leaf | Node of 'a node

and 'a node = { left : 'a tree ;

 value : 'a ;

 right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)

 (t:'a tree) : 'b =

 match t with

 | Leaf -> u

 | Node n ->

 let l_f = Future.future (pfold f u) n.left in

 let r = pfold f u n.right in

 f n.value (Future.force l_f) r

let print (t:int tree) =

 pfold (fun n _ _ -> Printf.print “%d\n” n) ()

Huge Point

92

If code is purely functional, the results get from using futures is
exactly the same as the result you would get from writing a
sequential program

The following are equivalent when f and g are pure functions

As soon as we introduce side-effects, all bets are off!

let x = f() in

let y = g() in

e

let y = g () in

let x = f () in

e

let y_g = future g () in

let x = f () in

let y = force y_g in

e

let x_f = future f () in

let y = g () in

let x = force x_f in

e

SUMMARY

Summary: Threads & Futures

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

thread 1 thread 2

Reasoning about unstructured concurrent programs is very hard.

Futures + pure functions: an abstraction that makes reasoning
about the correctness of parallel programs easy.

Performance analysis is still hard.

Good programmers write simple code.

Good programmers use abstractions like
futures.

Good programmers engineer interfaces that
make it harder for clients to make mistakes.

	Slide 1: Parallelism I
	Slide 4: Parallelism
	Slide 5: Parallelism
	Slide 6: Moore's Law
	Slide 7
	Slide 8
	Slide 10: So…
	Slide 11: So…
	Slide 12: But there’s more: Data Centers
	Slide 13: Data Centers: Lots of Connected Computers!
	Slide 14: Data Centers: Lots of Connected Computers
	Slide 15
	Slide 16: Unfortunately
	Slide 17: Fortunately
	Slide 18: Fortunately
	Slide 20: Why Concurrent programming IS fundamentally HARD
	Slide 21: It’s all about invariants
	Slide 22: It’s all about invariants
	Slide 23: It’s all about invariants
	Slide 24: It’s all about invariants
	Slide 25: It’s all about invariants
	Slide 26: Our Goal
	Slide 31: Threads: A conventional Parallel programming model
	Slide 32: Threads: A Warning
	Slide 33: Threads
	Slide 34: Intuition in Pictures
	Slide 35: Of Course…
	Slide 38: Coordination
	Slide 39: First Attempt
	Slide 40: Second Attempt
	Slide 41: Two Problems
	Slide 42: Two Problems
	Slide 49: Real Machines
	Slide 53: Solution: Synchronization Primitives
	Slide 58: Recall our Problem
	Slide 59: One Solution (using join)
	Slide 60: One Solution (using join)
	Slide 61: One Solution (using join)
	Slide 62: The happens-before relation
	Slide 63: In Pictures
	Slide 64: In Pictures
	Slide 65: In Pictures
	Slide 66: Fork-Join
	Slide 67: futures: A parallel programming abstraction
	Slide 68: Futures
	Slide 69
	Slide 70: Future Implementation
	Slide 71: Future Implementation
	Slide 72: Future Implementation
	Slide 73: Now using Futures
	Slide 74: Back to the Futures
	Slide 75: Back to the Futures
	Slide 76: Back to the Futures
	Slide 77: Back to the Futures
	Slide 78: Back to the Futures
	Slide 79: Back to the Futures
	Slide 87: An Example
	Slide 88: An Example
	Slide 89: Performance Notes!
	Slide 91: Side Effects?
	Slide 92: Huge Point
	Slide 93: Summary
	Slide 94: Summary: Threads & Futures

