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Parallelism

Big Computation

If you can split up a big computation into small chunks and 
do each chunk the same time, you won’t save work (energy),

but you will save time



Parallelism

Big Computation

Hardware manufacturers have been trying to
help us do that for decades



Moore's Law

Moore's Law:  The number of transistors you can put on a 
computer chip doubles (approximately) every couple of years.

Consequence for most of the history of computing:  

• All programs double in speed every couple of years. 

• Extra transistors doubled the number of instructions executed 
per time unit

Consequence for application writers:

• Watch TV for a while and your programs optimize themselves!

• New applications thought impossible became possible 
because of increased computational power
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Darn!  Intel engineers no 
longer optimize my
programs while I watch TV!

Power to chip
peaking



So…
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Instead of making your CPU go faster, manufacturers have been to 
packing more CPUs onto a chip.

* produced by ChatGPT 5.1 in 11/2025

120



So…
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Instead of making your CPU go faster, manufacturers have been to 
packing more CPUs onto a chip.

* produced by ChatGPT 5.1 in 11/2025

15,000



But there’s more:  Data Centers



Data Centers:  Lots of Connected Computers!



Data Centers:  Lots of Connected Computers

Computer containers for plug-and-play parallelism:

80,000 servers ?
x  20 cores/server ?
= 1.6 million cores?

How many servers? 
Trade secret!

How does Microsoft 
estimate how many 
servers Google has?
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Now that we have all this parallel hardware:
• many cores, on
• many computers, in
• many data centers

How do we program it effectively?



Unfortunately
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Many parallel programming models: 

• Introduce nondeterminism

– program parts suddenly have many different outcomes

• they have different outcomes on different runs

• debugging requires considering all of the possible outcomes

• horrible heisenbugs hard to track down

• Are nonmodular

– module A implicitly influences the outcomes of module B

• Introduce new classes of errors

– race conditions, deadlocks

• Introduce new performance/scalability problems



Fortunately
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You are taking a class on functional programming ...

There are some functional abstractions for parallel programming 
that have all the performance but none of the downsides!



Fortunately
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You are taking a class on functional programming ...

What we want:  Parallel performance with sequential semantics

This gives us determinism

No worries about race conditions

But we still have to reason about the  cost of parallel functional 
programs and that remains hard



WHY CONCURRENT PROGRAMMING IS 
FUNDAMENTALLY HARD



It’s all about invariants

let x = 
  if f y > 0 then 
     f y 
  else 
    1

Assume f is a pure function.  Is x > 0 ?

yes.  If f is a function, every call to f with the same argument
returns the same answer.

Reasoning about programs is (often) highly modular.

Invariants established persist forever.



It’s all about invariants

let x = 
  if f y > 0 then 
     f y 
  else 
    1

Assume f is a function in a sequential application 
that may access mutable state.  Is x > 0 ?

We don’t know!



It’s all about invariants

let x = 
  if f y > 0 then 
     f y 
  else 
    1

Assume f is a function in a sequential application 
that may access mutable state.  Is x > 0 ?

But we could look at f to find out definitively. eg:

let r = ref 0

let f y = !r + y

let g y = (r := !r - y)

other functions 
don’t matter since
they weren’t called



It’s all about invariants

let x = 
  if f y > 0 then 
     f y 
  else 
    1

Assume f is a function in a concurrent application 
that may access mutable state.  Is x > 0 ?

Thread 1

let r = ref 0

let f y = !r + y

let g y = (r := !r - y)

g 1;
g 2;
g 3;
g 4;
…

Thread 2

suddenly, all other functions that 
may reference the same state matter.
And it can hard to pin down which
functions might access which bits of
state at which times



It’s all about invariants

let x = 
  if f y > 0 then 
     f y 
  else 
    1

Assume f is a function in a concurrent application 
that may access mutable state.  Is x > 0 ?

Thread 1

let r = ref 0

let f y = !r + y

let g y = (r := !r - y)

g 1;
g 2;
g 3;
g 4;
…

Thread 2

And you may have to reason about
all interleavings of all other functions
with the function you wrote.

(It may actually be worse than that)



Our Goal

To study functional abstractions that provide the performance 
but none of the semantic non-determinism that makes reasoning 
about concurrent programs with mutable state so hard.



THREADS:
A CONVENTIONAL PARALLEL 
PROGRAMMING MODEL



Threads: A Warning

Concurrent Threads with Locks:  the classic shoot-yourself-in-the-
foot concurrent programming model

– almost all programming languages will have a threads library

• OCaml in particular!

– you need to know where (some of) the pitfalls are

– the assembly language of concurrent programming paradigms

• build higher-level programming models on top of threads

https://ocaml.org/manual/5.4/api/Thread.html



Threads
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A thread is an abstraction of a processor.

– programmer (or compiler) decides that some work can be done 
in parallel with some other work, e.g., our program is:

– we fork a thread to run the computation in parallel, e.g.:

let _ = compute_big_thing() in 

let y = compute_other_big_thing() in

...

let t = Thread.create compute_big_thing () in 

let y = compute_other_big_thing () in

 ...



Intuition in Pictures
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let t = Thread.create f () in 

let y = g () in

 ...

Thread.create  

execute g ()

 

...

processor 1

(* doing nothing *)  

execute f ()

 

...

processor 2

time 1

time 2

time 3



Of Course…
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Suppose you have 2 available cores and you fork 4 threads.  

In a typical multi-threaded system, 

– OS provides the illusion that there are infinite processors.

• not really:  each thread consumes space, so if you fork too many 
threads the process will die.

– OS time-multiplexes the threads across the available processors.

• every few ms, the OS stops the current thread on a processor, and 
switches to another thread.



Coordination
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How do we get back the result that t is computing?

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in 

let y = g () in

 ...



First Attempt
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let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in 

let y = g() in

  match !r with 

    | Some v -> (* compute with v and y *)

    | None -> failwith "impossible"

What’s wrong with this?



Second Attempt
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let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in 

let y = g() in

let rec wait() = 

  match !r with 

    | Some v -> v

    | None -> wait()

in

let v = wait() in

  (* compute with v and y *)  



Two Problems
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First, we are busy-waiting.  

• consuming CPU without doing something useful.

• CPU could either be running a useful thread/program or power down.  

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in 

let y = g() in

let rec wait() = 

  match !r with 

    | Some v -> v

    | None -> wait()

in

let v = wait() in

  (* compute with v and y *)



Two Problems
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Second, an operation like r := Some v may not be atomic.
• r := Some v  requires us to copy the bytes of Some v into the ref r

• we might see part of the bytes (corresponding to Some) before we’ve 
written in the other parts (e.g., v).

• So the waiter might see the wrong value.

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in 

let y = g() in

let rec wait() = 

  match !r with 

    | Some v -> v

    | None -> wait()

in

let v = wait() in

  (* compute with v and y *)



Real Machines
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Today’s multicore processors don’t even have sequentially 
consistent memory models.

That means that we can’t even assume that what we will see 
corresponds to some interleaving of the threads’ instructions!

Beyond the scope of this course.

Core 1

L2 cache

Core 2

L1 cache L1 cache

ALU ALU

Core 3 Core 4

L1 cache L1 cache

ALU ALU



Solution: Synchronization Primitives

All systems for parallel programming have synchronization 
primitives.

Examples:

• locks

• semaphores

• compare-and-swap

• synchronized methods

Today:

• fork-join parallelism

– join is the synchronization primitive



Recall our Problem
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How do we get back the result that t is computing?

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in 

let y = g () in

 ...



One Solution (using join)
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let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

Thread.join t ; 

match !r with 

| Some v -> (* compute with v and y *)

  | None -> failwith “impossible”



One Solution (using join)

60

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

Thread.join t ; 

match !r with 

| Some v -> (* compute with v and y *)

  | None -> failwith “impossible”

Thread.join t causes 
the current thread to wait 

until the thread t 
terminates.



One Solution (using join)
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let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

Thread.join t ; 

match !r with 

| Some v -> (* compute with v and y *)

  | None -> failwith “impossible”

So after the join, we know 
all the operations of t have 

completed.



The happens-before relation

Rule 1:  Given two expressions (or instructions) in sequence, 
e1; e2, in a single thread, we know that e1 happens before e2.

Rule 2:  Given a program:

let t = Thread.create f x in

....

Thread.join t;

e

we know that (f x) happens before e.

Rule 3:  Transitivity



In Pictures
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Thread 1
t=create f x
inst1,1; 
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1; 
inst2,2;
inst2,3;
…
inst2,m;

We know that for each
thread the previous
instructions must happen
before the later instructions.

So for instance, inst1,1 must
happen before inst1,2.



In Pictures
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Thread 1
t=create f x
inst1,1; 
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1; 
inst2,2;
inst2,3;
…
inst2,m;

We also know that the 
fork must happen before
the first instruction of the 
second thread.



In Pictures
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Thread 1
t=create f x
inst1,1; 
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1; 
inst2,2;
inst2,3;
…
inst2,m;

We also know that the 
fork must happen before
the first instruction of the 
second thread.

And thanks to the join, 
we know that all of the
instructions of the second
thread must be completed
before the join finishes.



Fork-Join

Fork-Join parallelism cuts down on the number of interleavings

Reduces non-determinism

A very useful pair of primitives

But we still do have to think about all those interleavings and 
how they interact with mutable references.  It’s very, very hard 
to write and debug programs in this model.

Can we avoid doing such reasoning altogether? 



FUTURES:  A PARALLEL 
PROGRAMMING ABSTRACTION



Futures
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module type FUTURE = 

sig

  type ‘a future 

  (* future f x forks a thread to run f(x)

     and stores the result in a future when complete *)

  val future : (‘a->‘b) -> ‘a -> ‘b future 

   

  (* force f causes us to wait until the 

     thread computing the future value is done

     and then returns its value. *)

  val force : ‘a future -> ‘a  

end



Does that interface looks familiar .... ?



Future Implementation
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module Future : FUTURE = 

struct 

  type ‘a future = {tid   : Thread.t      ; 

                    value : ’a option ref }

end 



Future Implementation

71

module Future : FUTURE = 

struct 

  type ‘a future = {tid   : Thread.t      ; 

                    value : ‘a option ref }

  let future(f:‘a->‘b)(x:‘a) : ‘b future = 

    let r = ref None in 

    let t = Thread.create (fun () -> r := Some(f x)) () 

    in

    {tid=t ; value=r}

end 



Future Implementation
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module Future : FUTURE = 

struct 

  type ‘a future = {tid   : Thread.t      ; 

                    value : ‘a option ref }

  let future(f:‘a->‘b)(x:‘a) : ‘b future = 

    let r = ref None in 

    let t = Thread.create (fun () -> r := Some(f x)) () 

    in

    {tid=t ; value=r}

  let force (f:‘a future) : ‘a = 

    Thread.join f.tid ; 

    match !(f.value) with

    | Some v -> v

    | None -> failwith “impossible!”

end 



Now using Futures
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let x = future f () in

let y = g () in

let v = force x in

(* compute with v and y *)



Back to the Futures
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let x = future f () in

let y = g () in

let v = force x in

y + v

let r = ref None

let t = Thread.create 

           (fun _ -> r := Some(f ())) 

           ()

in 

let y = g() in

Thread.join t ; 

match !r with

    Some v -> y + v

  | None -> failwith “impossible”

with futures library: without futures library:

val f : unit -> int

val g : unit -> int

module type FUTURE = 

sig

  type ‘a future 

  val future : (’a->’b) -> ’a -> ‘b future 

  val force :’a future -> ‘a  

end



Back to the Futures
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what happens if
we delete this
lines? (Forgetting to
synchronize)

let x = future f () in

let y = g () in

let v = force x in

y + v

let r = ref None

let t = Thread.create 

           (fun _ -> r := Some(f ())) 

           ()

in 

let y = g() in

Thread.join t ; 

match !r with

    Some v -> y + v

  | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE = 

sig

  type ‘a future 

  val future : (’a->’b) -> ’a -> ‘b future 

  val force :’a future -> ‘a  

end



Back to the Futures
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let x = future f () in

let y = g () in

let v = force x in

y + x

let r = ref None

let t = Thread.create 

           (fun _ -> r := Some(f ())) 

           ()

in 

let y = g() in

Thread.join t ; 

match !r with

    Some v -> y + v

  | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE = 

sig

  type ‘a future 

  val future : (’a->’b) -> ’a -> ‘b future 

  val force :’a future -> ‘a  

end

what happens if
we use x and
forget to force?



Back to the Futures
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let x = future f () in

let y = g () in

let v = force x in

y + x

let r = ref None

let t = Thread.create 

           (fun _ -> r := Some(f ())) 

           ()

in 

let y = g() in

Thread.join t ; 

match !r with

    Some v -> y + v

  | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE = 

sig

  type ‘a future 

  val future : (’a->’b) -> ’a -> ‘b future 

  val force :’a future -> ‘a  

end

Moral:  Futures + typing ensure
entire categories of errors can’t 
happen -- you protect yourself
from your own stupidity



Back to the Futures
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let x = future f () in

let v = force x in

let y = g () in

y + v

let r = ref None

let t = Thread.create 

           (fun _ -> r := Some(f ())) 

           ()

in 

Thread.join t ; 

let y = g() in

match !r with

    Some v -> y + v

  | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE = 

sig

  type ‘a future 

  val future : (’a->’b) -> ’a -> ‘b future 

  val force :’a future -> ‘a  

end

what happens if you
relocate force, join?



Back to the Futures
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let x = future f () in

let v = force x in

let y = g () in

y + x

let r = ref None

let t = Thread.create 

           (fun _ -> r := Some(f ())) 

           ()

in 

Thread.join t ; 

let y = g() in

match !r with

    Some v -> y + v

  | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE = 

sig

  type ‘a future 

  val future : (’a->’b) -> ’a -> ‘b future 

  val force :’a future -> ‘a  

end

Moral:  Futures are
not a universal savior



An Example
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type 'a tree = Leaf | Node of 'a node

and 'a node = {left  : 'a tree ; 

               value : 'a      ;

               right : 'a tree }

let rec fold (f:'a -> 'b -> 'b -> 'b) (u:'b) 

             (t:'a tree) : 'b = 

  match t with 

  | Leaf -> u

  | Node n -> 

     f n.value (fold f u n.left) (fold f u n.right)

let sum (t:int tree) = fold (+) 0 t



An Example
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type 'a tree = Leaf | Node of 'a node

and 'a node = {left  : 'a tree ;

               value : 'a      ; 

               right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b) 

              (t:'a tree) : 'b = 

  match t with 

  | Leaf -> u

  | Node n -> 

     let l_f = Future.future (pfold f u) n.left in

     let r = pfold f u n.right in

     f n.value (Future.force l_f) r

let sum (t:int tree) = pfold (+) 0 t



Performance Notes!
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Creating a thread involves a lot of systems-level overhead.

You have to do a lot of work in parallel with other threads to 
make up for that overhead.

So the code we wrote will be slower than sequential code unless 
the functions we are mapping do a huge amount of work 
(thousands of instructions at least).

Moreover, the tree had better be balanced.

But this is really not a course about program optimization!



Side Effects?
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type 'a tree = Leaf | Node of 'a node

and 'a node = { left  : 'a tree ; 

                value : 'a      ; 

                right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b) 

              (t:'a tree) : 'b = 

  match t with 

  | Leaf -> u

  | Node n -> 

     let l_f = Future.future (pfold f u) n.left in

     let r = pfold f u n.right in

     f n.value (Future.force l_f) r

let print (t:int tree) = 

  pfold (fun n _ _ -> Printf.print “%d\n” n) ()



Huge Point

92

If code is purely functional, the results get from using futures is 
exactly the same as the result you would get from writing a 
sequential program

The following are equivalent when f and g are pure functions

As soon as we introduce side-effects, all bets are off!

let x = f() in

let y = g() in

e 

let y = g () in

let x = f () in

e 

let y_g = future g () in

let x   = f ()        in

let y   = force y_g   in

e 

let x_f = future f () in

let y   = g ()        in

let x   = force x_f   in

e 



SUMMARY



Summary:  Threads & Futures

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

thread 1 thread 2

Reasoning about unstructured concurrent programs is very hard. 

Futures + pure functions: an abstraction that makes reasoning 
about the correctness of parallel programs easy.  

Performance analysis is still hard.

Good programmers write simple code.

Good programmers use abstractions like 
futures.

Good programmers engineer interfaces that 
make it harder for clients to make mistakes.
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