Parallelism |

COS 326
David Walker
Princeton University

slides copyright 2018-19 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes



Parallelism

Big Computation

If you can split up a big computation into small chunks and
do each chunk the same time, you won’t save work (energy),
but you will save time



Parallelism

Big Computation

Hardware manufacturers have been trying to
help us do that for decades



Moore's Law

Moore's Law: The number of transistors you can put on a
computer chip doubles (approximately) every couple of years.

Consequence for most of the history of computing:
* All programs double in speed every couple of years.

e Extra transistors doubled the number of instructions executed
per time unit

Consequence for application writers:
 Watch TV for a while and your programs optimize themselves

 New applications thought impossible became possible
because of increased computational power



42 Years of Microprocessor Trend Data
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42 Years of Microprocessor Trend Data

Darn! Intel engineers no
longer optimize my
programs while | watch TV!
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So...

Instead of making your CPU go faster, manufacturers have been to
packing more CPUs onto a chip.

Approximate Maximum CPU Core Count on a Single x86 Chip (2000-2025)
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So...

Instead of making your CPU go faster, manufacturers have been to
packing more CPUs onto a chip.

CPU vs GPU Parallelism Over Time (2000-2024) — Linear Scale
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But there’s more: Data Centers
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[ Data Centers: Lots of Connected Computers

Computer containers for plug-and-play parallelism:

80,000 servers ?
x 20 cores/server ?
= 1.6 million cores?

How many servers?
Trade secret!
How does Microsoft
estimate how many
servers Google has?



Now that we have all this parallel hardware:
* many cores, on

* many computers, in

* many data centers

How do we program it effectively?



Unfortunately

Many parallel programming models:

e Introduce nondeterminism

— program parts suddenly have many different outcomes
* they have different outcomes on different runs
* debugging requires considering all of the possible outcomes
* horrible heisenbugs hard to track down

* Are nonmodular

— module A implicitly influences the outcomes of module B
* Introduce new classes of errors

— race conditions, deadlocks

* Introduce new performance/scalability problems
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Fortunately

You are taking a class on functional programming ...

There are some functional abstractions for parallel programming
that have all the performance but none of the downsides!
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Fortunately

You are taking a class on functional programming ...
What we want: Parallel performance with sequential semantics
This gives us determinism

No worries about race conditions

But we still have to reason about the cost of parallel functional
programs and that remains hard

18



WHY CONCURRENT PROGRAMMING IS
FUNDAMENTALLY HARD



It’s all about invariants

Assume fis a pure function. Isx>07?

let x =
if f y>0then
fy
else
1

yes. If fis a function, every call to f with the same argument
returns the same answer.

Reasoning about programs is (often) highly modular.

Invariants established persist forever.



It’s all about invariants

Assume f is a function in a sequential application
that may access mutable state. Isx>07?

let x =
if f y>0then
fy
else
1

We don’t know!



It’s all about invariants

Assume f is a function in a sequential application
that may access mutable state. Isx>07?

let x =
if f y>0then
fy
else
1

But we could look at f to find out definitively. eg:

letr=refO

other functions
- don’t matter since
=iy | they weren’t called

letfy=Ir+y

letgy=(r:=




It’s all about invariants

Assume f is a function in a concurrent application
that may access mutable state. Isx>07?

let x =
if fy>0then
fy
else
1

Thread 1

letr =refO
letfy=Ir+y

letgy=(r:=!r-vy)

g1l
g 2;
g3;
g4,

Thread 2

suddenly, all other functions that
may reference the same state matter.
And it can hard to pin down which
functions might access which bits of
state at which times



It’s all about invariants

Assume f is a function in a concurrent application
that may access mutable state. Isx>07?

let x =
if fy>0then
fy
else
1
Thread 1
letr =refO
letfy=Ir+y

letgy=(r:=!r-vy)

g1l
g 2;
g3;
g4,

Thread 2

And you may have to reason about
all interleavings of all other functions
with the function you wrote.

(It may actually be worse than that)



Our Goal

To study functional abstractions that provide the performance
but none of the semantic non-determinism that makes reasoning
about concurrent programs with mutable state so hard.



THREADS:
A CONVENTIONAL PARALLEL
PROGRAMMING MODEL



Threads: A Warning

Concurrent Threads with Locks: the classic shoot-yourself-in-the-
foot concurrent programming model

— almost all programming languages will have a threads library
 OCaml in particular!

— you need to know where (some of) the pitfalls are

— the assembly language of concurrent programming paradigms
* build higher-level programming models on top of threads

https://ocaml.org/manual/5.4/api/Thread.html



Threads

A thread is an abstraction of a processor.

— programmer (or compiler) decides that some work can be done
in parallel with some other work, e.g., our program is:

let = compute big thing() in
let y = compute other big thing() in

— we fork a thread to run the computation in parallel, e.g.:

let t = Thread.create compute big thing () in
let y = compute other big thing () in

33



Intuition in Pictures

time 1

time 2

time 3

let t = Thread.create £ () in
let vy = g () in
processor 1 processor 2
Thread.create (* doing nothing *)
\

execute g ()

execute £ ()
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Of Course...

Suppose you have 2 available cores and you fork 4 threads.
In a typical multi-threaded system,

— OS provides the illusion that there are infinite processors.

* not really: each thread consumes space, so if you fork too many
threads the process will die.

— OS time-multiplexes the threads across the available processors.

* every few ms, the OS stops the current thread on a processor, and
switches to another thread.

35



Coordination

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create £ () 1in
let v = g () in

How do we get back the result that t is computing?
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First Attempt

let r =
let t =
let y =

match

ref None
Thread.create (fun -> r := Some (f

g() in -
'r with

| Some v -> (* compute with v and y *)

| None —-> failwith "impossible"

()))

in

What’s wrong with this?
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Second Attempt

let r =
let t =
let y =

let rec

match

| Some

ref None

Thread.create (fun -> r :=

g() in
walt () =

'r with

vV —> Vv

| None -> wait ()

in
let v =

walt () in

(* compute with v and y *)

Some (£

()))

in

40




Two Problems

let r = ref None
let t = Thread.create (fun -> r := Some(f ())) in
let vy = g() in

let rec wait () =

match !r with
| Some v -> v

| None -> wait ()
in
let v = wait () 1in
(* compute with v and y *)

First, we are busy-waiting.
* consuming CPU without doing something useful.
* CPU could either be running a useful thread/program or power down.

41




Two Problems

let r = ref None
let t = Thread.create (fun -> r := Some(f ())) in
let vy = g() in

let rec wait () =

match !'r with
| Some v -> v

| None -> wait ()
in
let v = wait () 1in
(* compute with v and y *)

Second, an operation like r := Some v may not be atomic.
* r:=Somev requires us to copy the bytes of Some v into the ref r

*  we might see part of the bytes (corresponding to Some) before we’ve
written in the other parts (e.g., v).

*  Sothe waiter might see the wrong value.




Real Machines

Today’s multicore processors don’t even have sequentially
consistent memory models.

That means that we can’t even assume that what we will see
corresponds to some interleaving of the threads’ instructions!

Corel Core 2 Core 3 Core 4

ALU ALU ALU ALU

L1 cache L1 cache L1 cache L1 cache

L2 cache

Beyond the scope of this course.
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Solution: Synchronization Primitives

All systems for parallel programming have synchronization
primitives.

Examples:

* locks

* semaphores

* compare-and-swap

* synchronized methods

Today:
* fork-join parallelism
— join is the synchronization primitive



Recall our Problem

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create £ () 1in
let vy = g () in

How do we get back the result that t is computing?
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One Solution (using join)

let r = ref None

let t = Thread.create (fun -> r := Some (f
let v = g() in

Thread.join t ;

match !'r with
| Some v -> (* compute with v and y *)

| None -> failwith “impossible”

()))

in

59




One Solution (using join)

let r = ref None
let t = Thread.create (fun
let v = g() in
Thread.join t ;

match !r with
| Some v -> (* comp th

| None -> failwith “im

o

-> r := Some (f

()))

Thread.jolin t causes
the current thread to wait
until the thread t

terminates.

/

in




One Solution (using join)

let r = ref None

let t = Thread.create (fun -> r := Some(f ())) 1in
let v = g() in

Thread.join t ;

match 'r with
| Some v =-> (*

ute with v and y *)
| None -> failwith sible”

~

So after the join, we know
all the operations of t have
completed.

- /




The happens-before relation

Rule 1: Given two expressions (or instructions) in sequence,
el; e2, in a single thread, we know that el happens before e2.

Rule 2: Given a program:
let t = Thread.create f x in

Thread.join t;
e

we know that (f x) happens before e.

Rule 3: Transitivity



In Pictures

Thread 1 Thread 2
t=create f x

inst, ,; \

inst, ,; inst, ;
inst, 5; inst, ,;
inst, 4; inst, 5;
inst; ;. inst; .,
inst, ; /

joint

We know that for each
thread the previous
instructions must happen
before the later instructions.

So for instance, inst; ; must
happen before inst, ,.

63




In Pictures

Thread 1 Thread 2 We also know that the

t= te f fork must happen before
=Create 1 x4 the first instruction of the

INst, ,; second thread.

instl'z; instz,l;

inst, 5; inst, ,;

inst, 4; inst, 5;

inst; ;. inst; .,

inst, ; /

joint
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In Pictures

Thread 1 Thread 2 We also know that the
t= te f fork must happen before

Bl LR the first instruction of the
INst, ,; second thread.
inst, ,; inst, ;
inst, 5; inst, ,;
inst, 4; inst, 5; And thanks to the join,

’ ’ we know that all of the

_ instructions of the second
NSty ;. INSt; thread must be completed
inStl,n; / before the join finishes.

joint

65



Fork-Join

Fork-Join parallelism cuts down on the number of interleavings

Reduces non-determinism

A very useful pair of primitives

But we still do have to think about all those interleavings and
how they interact with mutable references. It’s very, very hard
to write and debug programs in this model.

Can we avoid doing such reasoning altogether?



FUTURES: A PARALLEL
PROGRAMMING ABSTRACTION



Futures

module type FUTURE =
sig
type ‘a future

(* future f x forks a thread to run f(x)
and stores the result in a future when complete *)
val future : (‘a->‘b) -> ‘a -> ‘b future

(* force f causes us to wailt until the
thread computing the future value 1s done
and then returns its value. *)

val force : ‘a future -> ‘a

end

68




Does that interface looks familiar .... ?



Future Implementation

.

module Future : FUTURE =
struct

type ‘a future = {tid : Thread.t ;
value : ’'a option ref }

end




Future Implementation

.

module Future : FUTURE =

struct
type ‘a future = {tid : Thread.t ;
value : ‘a option ref }
let future(f:‘'a->'‘b) (x:'a) : ‘b future =
let r = ref None in
let t = Thread.create (fun () -> r := Some(f x))
in

{tid=t ; wvalue=r}

end




Future Implementation

.

module Future : FUTURE =

struct
type ‘a future = {tid : Thread.t ;
value : ‘a option ref }
let future(f:‘'a->'‘b) (x:'a) : ‘b future =
let r = ref None in
let t = Thread.create (fun () -> r :=
in

{tid=t ; wvalue=r}

let force (f:‘a future) : ‘a =
Thread.join f.tid ;
match ! (f.value) with
| Some v -> v
| None -> failwith “impossible!”

end




Now using Futures

let x = future £ () 1in
let v = g () in
let v = force x in

(* compute with v and y *)

73



Back to the Futures

module type FUTURE =

sig
BP0 TEl EEnEEE val £ : unit -> int
val future : ("a->'b) -> "a -> ‘b future val g : unit -> int
val force :’a future -> ‘a

end

with futures library: without futures library:

let x = future £ () in let r = ref None

let vy = g () in let t = Thread.create

let v = force x in (fun _ -> r := Some(f ()))

in
let v = g() in
Thread.join t ;
match !'r with

Some v -> y + v

| None -> failwith “impossible”




Back to the Futures

module type FUTURE =
sig
type ‘a future

val £ : unit -> int

val future : (‘a->'b) -> ’a -> ‘b future val g : unit -> int

val force :'a future -> ‘a
end

with futures library:

let x = future £ () in
let vy = g () in

let v = force x in
y+v

what happens if /

we delete this
lines? (Forgetting to
synchronize)

without futures library:

let r = ref None

let t = Thread.create
(fun -> r := Some(f ()))
()

in

let v = g() in

Thread. join t ;

match !'r with

Some v -> vy + v

| None -> failwith “impossible”
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Back to the Futures

module type FUTURE =
sig

type ‘a future

val future : ("a->'b)

end

-> '"a -> ‘b future
val force :'a future -> ‘a

val £ : unit -> int

val g : unit -> int

with futures library:

without futures library:

let x = future £ () in
let vy = g () in

let v = force x in
y+x

let r = ref None

let t = Thread.create

0

what happens if
we use x and
forget to force?

in
let v = g() in
Thread.join t ;
match !'r with

Some v -> vy + v

| None -> failwith “impossible”

(fun -> r := Some(f ()))
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Back to the Futures

module type FUTURE =
sig
type ‘a future

val future :
val force :'a future -> ‘a
end

("a=>"b) -> "a -> ‘b future

val £ : unit -> int

val g : unit -> int

with futures library:

let x = future £ () in
let vy = g () in

let v = force x in
y+x

without futures library:

Moral: Futures + typing ensure
entire categories of errors can’t
happen -- you protect yourself
from your own stupidity

let r = ref None

let t = Thread.create
(fun -> r := Some(f ()))
0

in

let v = g() in

Thread.join t ;

match !'r with

Some v -> vy + v

| None -> failwith “impossible”
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Back to the Futures

\

module type FUTURE =

sig
type ‘a future val £ : unit -> int
val future ("a->'b) -> "a -> ‘b future val g : unit -> int
val force :’a future -> ‘a

end

with futures library:

without futures library:

let x = future £ () in

let v = force x in

let vy = g () in NR

let r = ref None
let t = Thread.create
(fun -> r := Some(f

0

()))

in

e——————____%y Thread. join t ;
let v = g() in

y + v
what happens if you
relocate force, join?

match !r with

Some v -> vy + v

| None -> failwith “impossible”
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Back to the Futures

\

module type FUTURE =

sig
type ‘a future val £ : unit -> int
val future ("a->'b) -> "a -> ‘b future val g : unit -> int
val force :’a future -> ‘a

end

with futures library:

without futures library:

let x = future £ () in

let v = force x in
let vy = g () in
y+X

let r = ref None
let t = Thread.create
(fun -> r := Some(f

0

()))

Moral: Futures are
not a universal savior

in
Thread.join t ;
let v = g() in
match !'r with
Some v -> vy + v

| None -> failwith “impossible”
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An Example

type 'a tree = Leaf | Node of 'a node

and 'a node = {left : 'a tree ;
value : 'a ;
right : 'a tree }

let rec fold (f:'a -> 'b -> 'b -> 'b) (u:'b)
(t:'a tree) : 'b =

match ¢t with
| Leaf -> u
| Node n ->
f n.value (fold f u n.left) (fold £ u n.right)

let sum (t:int tree) = fold (+) 0 t




An Example

type 'a tree = Leaf | Node of 'a node

and 'a node = {left : 'a tree ;
value : 'a ;
right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)
(t:'a tree) : 'b =
match t with
| Leaf -> u

| Node n ->
let 1 f = Future.future (pfold f u) n.left in
let r = pfold £ u n.right in

f n.value (Future.force 1 f) r

let sum (t:1nt tree) = pfold (+) 0 t




Performance Notes!

Creating a thread involves a lot of systems-level overhead.

You have to do a lot of work in parallel with other threads to
make up for that overhead.

So the code we wrote will be slower than sequential code unless
the functions we are mapping do a huge amount of work
(thousands of instructions at least).

Moreover, the tree had better be balanced.

But this is really not a course about program optimization!



Side Effects?

type 'a tree = Leaf | Node of 'a node

and 'a node = { left : 'a tree ;
value : 'a ;
right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)
(t:'a tree) : 'b =
match t with
| Leaf -> u

| Node n ->
let 1 f = Future.future (pfold f u) n.left in
let r = pfold £ u n.right in

f n.value (Future.force 1 f) r

let print (t:int tree) =
pfold (fun n -> Printf.print “%d\n” n) ()




Huge Point

If code is purely functional, the results get from using futures is
exactly the same as the result you would get from writing a
sequential program

The following are equivalent when f and g are pure functions

1 f =1 f '
let x = £() in et x uture () }n
let v = g() in ety =9 () i
- Y J let x = force x f in
e
1 = f '
et v = & 00 4n et v g uture g () }n
. let x = £ () in
let x = £ () 1n .
- let vy = force y g in
e

As soon as we introduce side-effects, all bets are off!
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SUMMARY



Summary: Threads & Futures

Reasoning about unstructured concurrent programs is very hard.

Futures + pure functions: an abstraction that makes reasoning
about the correctness of parallel programs easy.

Performance analysis is still hard.

thread 1 thread 2

Good programmers write simple code.

Good programmers use abstractions like
futures.

Good programmers engineer interfaces that
make it harder for clients to make mistakes.
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