
Type Inference

COS 326

David Walker

Princeton University

slides copyright 2018 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Last Time

We learned a number of facts about type inference in OCaml:

• Given an expression e, we can infer a best (“principle”) type for it

• All other types for that exp are instances of the principle type

• Principle types exist because OCaml has (prenex) polymorphism

• Type inference is undecidable for general polymorphism (System F)

Last Time: Fixing My Bugs

Haskell:

• generates constraints like s1 = s2

• but also type class constraints

• num a (“type a has number operations”)

• eq a (“type a has = operation”)

• type inference with class constraints gives
principle types

• different kind of solving engine for those
constraints (not just unification)

• you don’t have to put top-level types on all
Haskell definitions

• it is just a convention

• https://www.haskell.org/ghcup/

Stephanie Weirich
Professor, U Penn

Last Time

The type inference algorithm uses type schemes, which are types
with variables inside like ‘a -> ‘b

The algorithm:

• generates a type scheme for an expression

• generates constraints (scheme1 = scheme2) that must be solved
for an expression to type check

• solves constraints

Last Time

The type scheme for map is:

(‘a -> ‘b) -> ‘a list -> ‘b list

The full polymorphic type for map is:

map: forall ‘a, ‘b. (‘a -> ‘b) -> ‘a list -> ‘b list

When map is used, we instantiate ‘a and ‘b with types of our choice:

map [int,bool] : (int -> bool) -> int list -> bool list

type inference figures out which types to pick for us
may be different each time map is used

Last Time

We defined the type inference algorithm using a judgement with the
following form:

context
annotated
expressionunannotated

expression

type (scheme)

constraints that must be solved

inputs outputs

G Ͱ u => e : t, q

Example rules from the inference algorithm

G, x : a Ͱ u ==> e : t, q (for fresh a)

--
G Ͱ fun x -> u ==> fun (x : a) -> e : a -> t, q

G Ͱ u1 ==> e1 : t1, q1

G Ͱ u2 ==> e2 : t2, q2 (for fresh a)
--

G Ͱ u1 u2==> e1 e2 : a, q1 U q2 U {t1 = t2 -> a}

G Ͱ x ==> x : s, { } (if G(x) = s)

G Ͱ 3 ==> 3 : int, { }

SOLVING CONSTRAINTS

Solving Constraints

A solution to a system of type constraints is a substitution S

– a function from type variables to type schemes

– assume substitutions are defined on all type variables:

• S(a) = a (for almost all variables a)

• S(a) = s (for some type scheme s)

– dom(S) = set of variables s.t. S(a)  a

Solving Constraints

A solution to a system of type constraints is a substitution S

– a function from type variables to type schemes

– assume substitutions are defined on all type variables:

• S(a) = a (for almost all variables a)

• S(a) = s (for some type scheme s)

– dom(S) = set of variables s.t. S(a)  a

We can apply a substitution S to a type scheme s.

 apply: [int/a, int->bool/b]

 to: b -> a -> b

 returns: (int->bool) -> int -> (int->bool)

Solutions

When is a substitution S a solution to a set of constraints?

Constraints: { s1 = s2, s3 = s4, s5 = s6, ... }

When the substitution makes both sides of all equations the same.

Eg:

a = b -> c
c = int -> bool

constraints:

Solutions

When is a substitution S a solution to a set of constraints?

Constraints: { s1 = s2, s3 = s4, s5 = s6, ... }

When the substitution makes both sides of all equations the same.

Eg:

a = b -> c
c = int -> bool

b -> (int -> bool) / a
int -> bool / c
b / b

constraints:

solution:

Solutions

When is a substitution S a solution to a set of constraints?

Constraints: { s1 = s2, s3 = s4, s5 = s6, ... }

When the substitution makes both sides of all equations the same.

Eg:

a = b -> c
c = int -> bool

b -> (int -> bool) / a
int -> bool / c
b / b

b -> (int -> bool) = b -> (int -> bool)
 int -> bool = int -> bool

constraints:

solution:

constraints with solution applied:

Solutions

When is a substitution S a solution to a set of constraints?

Constraints: { s1 = s2, s3 = s4, s5 = s6, ... }

When the substitution makes both sides of all equations the same.

A second solution

a = b -> c
c = int -> bool

b -> (int -> bool) / a
int -> bool / c
b / b

constraints:

solution 1:

int -> (int -> bool) / a
int ->bool / c
int / b

solution 2:

Solutions

When is one solution better than another to a set of constraints?

a = b -> c
c = int -> bool

b->(int->bool) / a
int->bool / c
b / b

constraints:

solution 1:

int->(int->bool) / a
int->bool / c
int / b

solution 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:

Solutions

Solution 1 is "more general" – there is more flex.

Solution 2 is "more concrete"

We prefer solution 1.

solution 1: solution 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:

b->(int->bool) / a
int->bool / c
b / b

int->(int->bool) / a
int->bool / c
int / b

Solutions

Solution 1 is "more general" – there is more flex.

Solution 2 is "more concrete"

We prefer the more general (less concrete) solution 1.

Technically, we prefer T to S if there exists another substitution U
and for all types t, S (t) = U (T (t))

b -> (int -> bool)/a
int -> bool/c
b/b

solution 1:

int -> (int -> bool)/a
int -> bool/c
int/b

solution 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:

Solutions

If a solution exists, there is always a best solution, i.e., a principal
solution.

The best solution is (at least as) preferred as any other solution.

b -> (int -> bool)/a
int -> bool/c
b/b

solution 1:

int -> (int -> bool)/a
int -> bool/c
int/b

solution 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:

Examples

Example 1

– q = {a=int, b=a}

– principal solution S:

Examples

Example 1

– q = {a=int, b=a}

– principal solution S:

• S(a) = S(b) = int

• S(c) = c (for all c other than a,b)

Examples

Example 2

– q = {a=int, b=a, b=bool}

– principal solution S:

Examples

Example 2

– q = {a=int, b=a, b=bool}

– principal solution S:

• does not exist (there is no solution to q)

Unification

Unification: An algorithm that provides the principal solution to
a set of constraints (if one exists)

– Unification simplifies a set of constraints

• it looks to specialize the type variables involved, making them
more concrete, generating a subsitution

• it also looks for contradictions like “int = bool” or “a -> b = float”

– evidence that the program can’t type check

– unification fails

– Unification can be viewed as a computational process

• Starting state of unification process: (Id, q)

– Identity substitution + constraints q from type checking

• Final state of unification process: (S, { })

• If we find an “obviously unsolvable” equation along the way, such
as “int = bool,” then we fail

Implementing Unification

type ustate = substitution * constraints

unify_step : ustate -> ustate

Implementing Unification

unify_step (S, {bool=bool} U q) = (S, q)

unify_step (S, {int=int} U q) = (S, q)

type ustate = substitution * constraints

unify_step : ustate -> ustate

Easy Cases:
- Discard equations between equal base types
- There are no contradictions here and nothing is learned

Implementing Unification

type ustate = substitution * constraints

unify_step : ustate -> ustate

Easy Cases:
- Discard equations between equal type variables
- There are no contradictions here and nothing is learned

unify_step (S, {a=a} U q) = (S, q)

Unification

unify_step (S, {A -> B = C -> D} U q)

 = (S, {A = C, B = D} U q)

Recursive Cases:
- Check the top type constructor (eg: ->) is the same on each side
- Create new equations relating subparts of each type

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification

unify_step (S, {a=s} U q) = ([s/a] o S, [s/a]q)

 when a is not in FreeVars(s)

Tricky Case: equation a = s
- A variable a is equal to some other scheme s
- Idea: Eliminate a by replacing it with something equal to it -- s
- ie: substitute s for a

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification

unify_step (S, {a=s} U q) = ([s/a] o S, [s/a]q)

 when a is not in FreeVars(s)

the substitution S’ defined to:
do S then substitute s for a

the constraints q’ defined to:
be like q except s replacing a

Occurs Check

Recall this program:

If we assume x : a for some a,

we generate the constraints: a -> a = a

What is the solution to {a = a -> a}?

fun x -> x x

Occurs Check

Recall this program:

If we assume x : a for some a,

we generate the constraints: a -> a = a

What is the solution to {a = a -> a}? There is none!

Notice that a appears in FreeVars(s)

Whenever a appears in FreeVars(s) and s is not just a,
there is no solution to the system of constraints.

fun x -> x x

Occurs Check

Recall this program:

If we assume x : a for some a,

we generate the constraints: a -> a = a

What is the solution to {a = a -> a}? There is none!

fun x -> x x

“when a is not in FreeVars(s)” is known as the “occurs check”

Irreducible States

Unification simplifies equations step-by-step until
• there are no equations left to simplify:

(S, { }) no constraints left.
S is the final solution!

Irreducible States

Inconsistent equations imply the program does not type check.

Unification simplifies equations step-by-step until
• there are no equations left to simplify:

(S, { }) no constraints left.
S is the final solution!

• or we find basic equations are inconsistent:
• int = bool
• s1->s2 = int
• s1->s2 = bool
• a = s (s contains a)

(or is symmetric to one of the above)

Summary: Unification Engine

 (S, {bool=bool} U q) --> (S, q)

 (S, {int=int} U q) --> (S, q)

 (S, {a=a} U q) --> (S, q)

 (S, {A->B = C->D} U q) --> (S, {A = C} U {B = D} U q)

(S, {a=s} U q) --> ([s/a] o S, [s/a]q) when a is not in FreeVars(s)

and if you get stuck before eliminating all constraints,
the program does not type check

The value of a classics degree

36

John Alan Robinson
 1930 – 2016
PhD Princeton 1956 (philosophy)

"Robinson was born in Yorkshire, England in 1930 and left for the United States in
1952 with a classics degree from Cambridge University. He studied philosophy at
the University of Oregon before moving to Princeton University where he received
his PhD in philosophy in 1956. He then worked at Du Pont as an operations
research analyst, where he learned programming and taught himself
mathematics. He moved to Rice University in 1961, spending his summers as a
visiting researcher at the Argonne National Laboratory's Applied Mathematics
Division. He moved to Syracuse University as Distinguished Professor of Logic and
Computer Science in 1967 and became professor emeritus in 1993."
--Wikipedia

Inventor (1960s) of algorithms
now fundamental to computational
logical reasoning (about software,
 hardware, and other things…)

ML IS CAREFULLY DESIGNED TO
SUPPORT TYPE INFERENCE!
PART 3: WHICH FUNCTIONS ARE
ALLOWED TO BE POLYMORPHIC? 37

Type Inference So Far

So far, we have inferred type schemes like:

When do we convert them into full fledged polymorphic types
like the following (so they can be used multiple times at
different types ‘a and ‘b?

forall ‘a,b. ‘a -> ‘b -> ‘b

‘a -> ‘b -> ‘b

Generalization

let f = fun x -> [x] in
…

‘a -> ‘a list

Generalization converts a type scheme t with variables a, b, c
into a polymorphic type forall a,c.t that quantifiers over some
subset of them. (Which subset?)

For example

let f = fun x -> [x] in
…

forall ’a. ‘a -> ‘a list

When do we introduce polymorphic values?

Where do we introduce polymorphic values? Consider:

It is tempting to infer a polymorphic type like this:

And give g a type like this:

But then we are inferring System F types and we run into
decidability issues!

(fun x -> 3) : forall a. a -> int

g (fun x -> 3)

g : (forall a. a -> int) -> int

Generalization

Where do we introduce polymorphic values?

In ML languages: Only when values bound in ”let declarations”

g (fun x -> 3)

let f = fun x -> 3 in
g f

No polymorphism for fun x -> 3
fun x -> 3 has non-poly type
like int -> int or ‘a -> int

Yes polymorphism for f!

quantifiers instantiated when f is used!

f : forall a. a -> int

Unsound Generalization Example

Consider this function f – a fancy identity function:

let f = fun x ->
 let y = x in
 y

A sensible type for f would be:

f : forall a. a -> a

Unsound Generalization Example

Consider this function f – a fancy identity function:

A bad (unsound) type for f would be:

f : forall a, b. a -> b

let f = fun x ->
 let y = x in
 y

Unsound Generalization Example

Consider this function f – a fancy identity function:

A bad (unsound) type for f would be:

f : forall a, b. a -> b

(f true) + 7

goes wrong! but if f can have the bad type,
it all type checks. This counterexample to soundness shows
that f can’t possible be given the bad type safely

let f = fun x ->
 let y = x in
 y

let f = fun x -> let y = x in y

Unsound Generalization Example

Now, consider doing type inference:

use x : aassume x : a

Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

use x : a

now x has type a --- suppose we generalize a to forall a.a and
give y that type

assume x : a

Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

use x : a

then we
can use y
as if it has
any type,
such as y : bassume x : a

now x has type a --- suppose we generalize a to forall a.a and
give y that type

Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

use x : a

suppose we generalize and allow y : forall a.a

if we have
y : forall a. a
we can substitute
another type b
for a to get
y : b

but now we have inferred that (fun x -> ...) : a -> b
and if we generalize again,
f : forall a,b. a -> b

That’s the bad type!

Unsound Generalization Example

The bad step

let f = fun x -> let y = x in y

x : a

suppose we generalize and allow y : forall a.a

this was the bad step – y can’t really have
any type at all.

x : ‘a was in the context so we are not allowed to generalize
 over ‘a to get y : forall a.a

put x : a
in context

ML IS CAREFULLY DESIGNED TO
SUPPORT TYPE INFERENCE!
PART 4: THE VALUE RESTRICTION

52

The Value Restriction

let x = v

this has got to be an effect-free
computation -- a value
to enable polymorphic
generalization

Unsound Generalization Again

let x = ref [] in x : forall a . a list ref

not a value!

Unsound Generalization Again

let x = ref [] in

x := [true];

x : forall a . a list ref

use x at type bool as if x : bool list ref

not a value!

Unsound Generalization Again

let x = ref [] in

x := [true];

List.hd (!x) + 3

x : forall a . a list ref

use x at type bool as if x : bool list ref

use x at type int as if x : int list ref

and we crash

What does OCaml do?

let x = ref [] in x : '_weak1 list ref

a “weak” type variable
can’t be generalized

means “I don’t know
what type this is but
it can only be one
particular type”

look for the “_” to begin
a type variable name

What does OCaml do?

let x = ref [] in

x := [true];

x : '_weak1 list ref

x : bool list ref

the “weak” type variable
is now fixed as a bool
and can’t be anything else

bool was substituted for
‘_weak during type
inference

What does OCaml do?

let x = ref [] in

x := [true];

List.hd (!x) + 3

x : '_weak1 list ref

x : bool list ref

Error: This expression has type bool
 but an expression was expected
 of type int

type error ...

One other example

let x = fun () -> ref [] in x : forall ’a. unit -> ‘a list ref

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalization
is allowed

One other example

let x = fun () -> ref [] in

x () := [true];

x : forall ’a. unit -> ‘a list ref

x () : bool list ref

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalization
is allowed

One other example

let x = fun () -> ref [] in

x () := [true];

List.hd (!x ()) + 3

x : forall ’a. unit -> ‘a list ref

x () : bool list ref

what is the result of this program?

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalization
is allowed

x () : int list ref

One other example

let x = fun () -> ref [] in

x () := [true];

List.hd (!x ()) + 3

x : forall ’a. unit -> ‘a list ref

x () : bool list ref

what is the result of this program?

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalization
is allowed

x () : int list ref

List.hd raises an exception because it is applied to the empty list. why?

One other example

let x = fun () -> ref [] in

x () := [true];

List.hd (!x ()) + 3

what is the result of this program?

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

List.hd raises an exception because it is applied to the empty list. why?

creates one reference r1
and assigns [true]

creates a second totally
different reference r2
holding []

creates a new, different reference
every time it is called

TYPE INFERENCE:
THINGS TO REMEMBER

Type Inference: Things to Remember

Declarative algorithm: Given a context G, and untyped term u:

– Find e, t, q such that G Ͱ u ==> e : t, q

• understand the constraints that need to be generated

– Find substitution S that acts as a solution to q via unification

• if no solution exists, the program does not type check

– Apply S to e, ie our solution is S(e)

• S(e) contains schematic type variables a,b,c, etc that may be
instantiated with any type

– Since S is principal, S(e) characterizes all reconstructions.

– If desired, use the type checking algorithm to validate

Type Inference: Things to remember

In order to introduce polymorphic quantifiers, remember:

– Quantifiers must be on the outside only

• this is called “prenex” quantification

• otherwise, type inference may become undecidable

– Quantifiers can only be introduced at let bindings:

• let x = v

• only the type variables that do not appear in the environment may
be generalized

– The expression on the right-hand side must be a value

• no references or exceptions

Type Inference: Things to Remember

Where do we introduce polymorphic values?

let x = v

Full Rule:
• if v is a value (or guaranteed to evaluate to a value without effects)

• OCaml has some rules for this
• and v has type scheme s
• and s has free variables a, b, c, ...
• and a subset of them z1,z2, z3 ... do not appear in the types in the context
• then x can have type forall z1,z2,z3. s

Efficient type inference
Didier Rémy discovered the type generalization algorithm based on levels

when working on his Ph.D. on type inference of records and variants. He

prototyped his record inference in the original Caml (long before OCaml).

He had to recompile Caml frequently, which took a long time. The type

inference of Caml was the bottleneck: “The heart of the compiler code

were two mutually recursive functions for compiling expressions and

patterns, a few hundred lines of code together, but taking around 20

minutes to type check! This file alone was taking an abnormal proportion

of the bootstrap cycle.”

“I implemented unification on graphs in O(n log n)---doing path compression and

postponing the occurs-check; I kept the sharing introduced in types all the way down

without breaking it during generalization/instantiation; and I introduced the rank-based type

generalization.”

This efficient type inference algorithm was described in Rémy's PhD dissertation (in French)

and in the 1992 technical report.

Type inference in Caml was slow for several reasons. Instantiation of a

type schema would create a new copy of the entire type -- even of the parts

without quantified variables, which can be shared instead. Doing the occurs

check on every unification of a free type variable (as in our eager toy

algorithm), and scanning the whole type environment on each

generalization increased the time complexity of inference.

Quoted from: Oleg Kiselyov, http://okmij.org/ftp/ML/generalization.html

http://okmij.org/ftp/ML/generalization.html

	Slide 1: Type Inference
	Slide 2: Last Time
	Slide 3: Last Time: Fixing My Bugs
	Slide 4: Last Time
	Slide 5: Last Time
	Slide 6: Last Time
	Slide 7: Example rules from the inference algorithm
	Slide 8: Solving Constraints
	Slide 9: Solving Constraints
	Slide 10: Solving Constraints
	Slide 11: Solutions
	Slide 12: Solutions
	Slide 13: Solutions
	Slide 14: Solutions
	Slide 15: Solutions
	Slide 16: Solutions
	Slide 17: Solutions
	Slide 18: Solutions
	Slide 19: Examples
	Slide 20: Examples
	Slide 21: Examples
	Slide 22: Examples
	Slide 23: Unification
	Slide 24: Implementing Unification
	Slide 25: Implementing Unification
	Slide 26: Implementing Unification
	Slide 27: Unification
	Slide 28: Unification
	Slide 29: Unification
	Slide 30: Occurs Check
	Slide 31: Occurs Check
	Slide 32: Occurs Check
	Slide 33: Irreducible States
	Slide 34: Irreducible States
	Slide 35: Summary: Unification Engine
	Slide 36: The value of a classics degree
	Slide 37: ML Is Carefully Designed to support Type Inference! Part 3: Which functions are allowed to be Polymorphic?
	Slide 38: Type Inference So Far
	Slide 39: Generalization
	Slide 40: When do we introduce polymorphic values?
	Slide 41: Generalization
	Slide 44: Unsound Generalization Example
	Slide 45: Unsound Generalization Example
	Slide 46: Unsound Generalization Example
	Slide 47: Unsound Generalization Example
	Slide 48: Unsound Generalization Example
	Slide 49: Unsound Generalization Example
	Slide 50: Unsound Generalization Example
	Slide 51: Unsound Generalization Example
	Slide 52: ML Is Carefully Designed to support Type Inference! Part 4: The Value Restriction
	Slide 53: The Value Restriction
	Slide 54: Unsound Generalization Again
	Slide 55: Unsound Generalization Again
	Slide 56: Unsound Generalization Again
	Slide 57: What does OCaml do?
	Slide 58: What does OCaml do?
	Slide 59: What does OCaml do?
	Slide 60: One other example
	Slide 61: One other example
	Slide 62: One other example
	Slide 63: One other example
	Slide 64: One other example
	Slide 65: Type inference: things to remember
	Slide 66: Type Inference: Things to Remember
	Slide 67: Type Inference: Things to remember
	Slide 68: Type Inference: Things to Remember
	Slide 69: Efficient type inference

