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Last Time

We learned a number of facts about type inference in OCamil:

Given an expression e, we can infer a best (“principle”) type for it
All other types for that exp are instances of the principle type
Principle types exist because OCaml has (prenex) polymorphism
Type inference is undecidable for general polymorphism (System F)



[ Last Time: Fixing My Bugs

Haskell:

e generates constraints like s1 =s2

but also type class constraints
* num a (“type a has number operations”)
* eqga(“type a has = operation”)

* type inference with class constraints gives
principle types

Stephanie Weirich
Professor, U Penn

» different kind of solving engine for those
constraints (not just unification)

* you don’t have to put top-level types on all
Haskell definitions

* itisjusta convention

* https://www.haskell.org/ghcup/



[ Last Time

The type inference algorithm uses type schemes, which are types
with variables inside like a -> ‘b

The algorithm:

generates a type scheme for an expression

generates constraints (schemel = scheme?2) that must be solved
for an expression to type check

e solves constraints



[ Last Time

The type scheme for map is:

(‘a->‘b) ->‘a list -> ‘b list

The full polymorphic type for map is:

map: forall ‘a, ‘b. (‘a -> ‘b) -> ‘a list -> ‘b list

When map is used, we instantiate ‘a and ‘b with types of our choice:

map [int,bool] : (int -> bool) -> int list -> bool list

AN

type inference figures out which types to pick for us
may be different each time map is used



[ Last Time

We defined the type inference algorithm using a judgement with the
following form:

G Fu=>e: t
constraints that must be solved
type (scheme)
context
annotated

unannotated expression

expression
\ J \ I

! Y

inputs outputs



Example rules from the inference algorithm

G x:akFu==>e:tg (for fresh a)

GFx==>x:s, {} (ifG(x)=5)

GF3==>3:int,{}

GFul==>el:t1,ql
GFu2==>e2:1t2, 92 (for fresh a)

GFulu2==>ele2 ; a, QqluUqg2U{{tl =t2->a}




SOLVING CONSTRAINTS



Solving Constraints

A solution to a system of type constraints is a substitution S
— a function from type variables to type schemes

— assume substitutions are defined on all type variables:
 S(a)=a (for almost all variables a)
 S(a)=s (for some type scheme s)

— dom(S) = set of variables s.t. S(a) # a



Solving Constraints

A solution to a system of type constraints is a substitution S
— a function from type variables to type schemes

— assume substitutions are defined on all type variables:
 S(a)=a (for almost all variables a)
 S(a)=s (for some type scheme s)

— dom(S) = set of variables s.t. S(a) # a

We can apply a substitution S to a type scheme s.
apply: [int/a, int->bool/b ]
to: b->a->b

returns: (int->bool) -> int -> (int->bool)



Solutions

When is a substitution S a solution to a set of constraints?

Constraints: {s1=s2,s3=s4,s5=s6, ...}

When the substitution makes both sides of all equations the same.

Eg:

constraints:

a=b->c
c = int -> bool
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When is a substitution S a solution to a set of constraints?
Constraints: {s1=s2,s3=s4,s5=s6, ...}

When the substitution makes both sides of all equations the same.

Eg: solution:
constraints: b -> (int -> bool) / a
int -> bool /c
a=b->c b /b
c = int -> bool




Solutions

When is a substitution S a solution to a set of constraints?
Constraints: {s1=s2,s3=s4,s5=s6, ...}

When the substitution makes both sides of all equations the same.

Eg: solution:
constraints: b ->(int -> bool) / a
int -> bool /c
a=b->c o /b
c = int -> bool

constraints with solution applied:

b->(int->bool) = b->(int->bool)
int -> bool = int->bool




Solutions

When is a substitution S a solution to a set of constraints?
Constraints: {s1=s2,s3=s4,s5=s6, ...}
When the substitution makes both sides of all equations the same.

A second solution

solution 1:
constraints: b -> (int ->bool) / a
int -> bool / c
a=b->c b /b
c =int -> bool
solution 2:
int -> (int -> bool) / a
int ->bool / c
int / b




Solutions

When is one solution better than another to a set of constraints?

constraints:

a=b->c
c = int -> bool

solution 1: solution 2:

b->(int->bool) / a int->(int->bool) / a

int->bool / ¢ int->bool / ¢

b /b int/ b

type b -> ¢ with solution applied: type b -> ¢ with solution applied:

b -> (int -> bool) int -> (int -> bool)




Solutions

solution 1: solution 2:

b->(int->bool) / a int->(int->bool) / a

int->bool / ¢ int->bool / ¢

b /b int / b

type b -> ¢ with solution applied: type b -> ¢ with solution applied:
b -> (int -> bool) int -> (int -> bool)

Solution 1 is "more general" — there is more flex.
Solution 2 is "more concrete”
We prefer solution 1.



Solutions

solution 1: solution 2:

b -> (int -> bool)/a int -> (int -> bool)/a

int -> bool/c int -> bool/c

b/b int/b

type b -> ¢ with solution applied: type b -> ¢ with solution applied:
b -> (int -> bool) int -> (int -> bool)

Solution 1 is "more general" — there is more flex.
Solution 2 is "more concrete”
We prefer the more general (less concrete) solution 1.

Technically, we prefer T to S if there exists another substitution U
and for all typest, S (t) = U (T (t))



Solutions

solution 1: solution 2:

b -> (int -> bool)/a int -> (int -> bool)/a

int -> bool/c int -> bool/c

b/b int/b

type b -> ¢ with solution applied: type b -> ¢ with solution applied:
b -> (int -> bool) int -> (int -> bool)

If a solution exists, there is always a best solution, i.e., a principal
solution.

The best solution is (at least as) preferred as any other solution.



Examples

Example 1
— q = {a=int, b=a}
— principal solution S:



Examples

Example 1
— q = {a=int, b=a}
— principal solution S:
e S(a) =S(b) =int
* S(c)=c (for all cotherthan a,b)



Examples

Example 2
— q = {a=int, b=a, b=bool}
— principal solution S:



Examples

Example 2
— q = {a=int, b=a, b=bool}
— principal solution S:
e does not exist (there is no solution to q)



Unification

Unification: An algorithm that provides the principal solution to
a set of constraints (if one exists)

— Unification simplifies a set of constraints

* it looks to specialize the type variables involved, making them
more concrete, generating a subsitution

* it also looks for contradictions like “int = bool” or “a -> b = float”
— evidence that the program can’t type check

— unification fails

— Unification can be viewed as a computational process
 Starting state of unification process: (Id, q)
— Identity substitution + constraints q from type checking
* Final state of unification process: (S, { })

* If we find an “obviously unsolvable” equation along the way, such
as “int = bool,” then we fail



Implementing Unification

type ustate = substitution * constraints

unify_step : ustate -> ustate




Implementing Unification

type ustate = substitution * constraints

unify_step : ustate -> ustate

Easy Cases:
- Discard equations between equal base types
- There are no contradictions here and nothing is learned

unify_step (S, {bool=bool} U q) (S, q)

(S, q)

unify_step (S, {int=int} U Q)




Implementing Unification

type ustate = substitution * constraints

unify_step : ustate -> ustate

Easy Cases:
- Discard equations between equal type variables
- There are no contradictions here and nothing is learned

unify_step (S,{a=ayuq) = (S, q)




Unification

type ustate = substitution * constraints

unify_step : ustate -> ustate

Recursive Cases:
- Check the top type constructor (eg: ->) is the same on each side
- Create new equations relating subparts of each type

unify_step(S, {A->B = C->D} U q)

= (S, {A=C B=D} U q)




Unification

type ustate = substitution * constraints

unify_step : ustate -> ustate

Tricky Case: equationa=s
- Avariable a is equal to some other scheme s

- ldea: Eliminate a by replacing it with something equal to it -- s
- ie: substitute s for a

unify_step (S, {a=s} U q) = ([s/aJoS, [s/alq)

when a is not in FreeVars(s)




Unification ]

the constraints g’ defined to:

the substitution S’ defined to: be like q except s replacing a

do S then substitutes fora ~ ——
[ A | \

unify_step (S, {a=s} U q) = ([s/a]oS, [s/alq)

when a is not in FreeVars(s)




Occurs Check

Recall this program:

fun x -> x x

If we assume x : a for some a,
we generate the constraints: a->a=a

What is the solution to {a =a -> a}?



Occurs Check

Recall this program:

fun x -> x x

If we assume x : a for some a,
we generate the constraints: a->a=a

What is the solution to {a = a -> a}? There is none!

Notice that a appears in FreeVars(s)

Whenever a appears in FreeVars(s) and s is not just a,
there is no solution to the system of constraints.




Occurs Check

Recall this program:

fun x -> x x

If we assume x : a for some a,
we generate the constraints: a->a=a

What is the solution to {a = a -> a}? There is none!

"when a is not in FreeVars(s)” is known as the “occurs check”




Irreducible States

Unification simplifies equations step-by-step until
* there are no equations left to simplify:

S, {}) «<— noconstraints left.
S is the final solution!




Irreducible States

Unification simplifies equations step-by-step until
* there are no equations left to simplify:

S, {}) «<— noconstraints left.
S is the final solution!

e or we find basic equations are inconsistent:

* int=bool

e s1->s2 =int

e s1->s2 = bool

* a=s (s contains a)

(or is symmetric to one of the above)

Inconsistent equations imply the program does not type check.




Summary: Unification Engine

(S, {bool=bool} Uq) --> (5, q)
(S, {int=int} Uq) --> (S, q)
(S,{a=a} Uq) > (5q)

(S, {A->B = C>D}Uq) > (S, {A=CU{B=D}UQ)

(S, {a=s} U q)-->([s/a] oS, [s/alq) when ais notin FreeVars(s)

and if you get stuck before eliminating all constraints,
the program does not type check




The value of a classics degree

Inventor (1960s) of algorithms
now fundamental to computational

logical reasoning (about software,

hardware, and other things...) John Alan Robinson
1930 - 2016

PhD Princeton 1956 (philosophy)

"Robinson was born in Yorkshire, England in 1930 and left for the United States in
1952 with a classics degree from Cambridge University. He studied philosophy at
the University of Oregon before moving to Princeton University where he received
his PhD in philosophy in 1956. He then worked at Du Pont as an operations
research analyst, where he learned programming and taught himself
mathematics. He moved to Rice University in 1961, spending his summers as a
visiting researcher at the Argonne National Laboratory's Applied Mathematics
Division. He moved to Syracuse University as Distinguished Professor of Logic and
Computer Science in 1967 and became professor emeritus in 1993."

--Wikipedia 36




ML IS CAREFULLY DESIGNED TO

SUPPORT TYPE INFERENCE!
PART 3: WHICH FUNCTIONS ARE
ALLOWED TO BE POLYMORPHIC?



Type Inference So Far

So far, we have inferred type schemes like:

la _> lb _> lb

When do we convert them into full fledged polymorphic types
like the following (so they can be used multiple times at
different types ‘aand ‘b?

forall ‘a,b. ‘a->‘b->‘b




Generalization

Generalization converts a type scheme t with variables a, b, ¢
into a polymorphic type forall a,c.t that quantifiers over some
subset of them. (Which subset?)

For example
a->‘alist

letf=funx->[x]in

forall ‘a. ‘a-> ‘a list
1
[ | 1

letf=funx->[x]in




When do we introduce polymorphic values?

Where do we introduce polymorphic values? Consider:

g (fun x -> 3)

It is tempting to infer a polymorphic type like this:

(fun x -> 3) : forall a. a -> int

And give g a type like this:

g : (forall a. a->int) -> int

But then we are inferring System F types and we run into
decidability issues!



Generalization

Where do we introduce polymorphic values?

In ML languages: Only when values bound in ”let declarations”

No polymorphism for fun x -> 3
fun x -> 3 has non-poly type
like int ->int or ‘a->int

g (fun x -> 3)

/ f:foralla. a->int

let f_= fun x->3in

gf\

Yes polymorphism for f!

guantifiers instantiated when f is used!



Unsound Generalization Example

Consider this function f — a fancy identity function:

let f = fun x ->
lety =xin
y

A sensible type for f would be:

f:foralla.a->a




Unsound Generalization Example

Consider this function f — a fancy identity function:

let f = fun x ->
lety =xin
y
A bad (unsound) type for f would be:

f:foralla, b.a->b




Unsound Generalization Example

Consider this function f — a fancy identity function:

let f = fun x ->
lety =xin
y
A bad (unsound) type for f would be:

f:foralla, b.a->b

(f true) + 7

/

goes wrong! but if f can have the bad type,
it all type checks. This counterexample to soundness shows
that f can’t possible be given the bad type safely




Unsound Generalization Example

Now, consider doing type inference:

letf=funx->lety=xiny
2 X

/ \

assume X : a use x:ad




Unsound Generalization Example

Now, consider doing type inference:

letf=funx->lety=xiny

VAR

assume X : a use x:ad

now X has type a --- suppose we generalize a to forall a.a and
give y that type



Unsound Generalization Example

Now, consider doing type inference:

let f = funx > lety = xmy
/

VAR

assume X : a use x:ad

then we
can usey
as if it has
any type,
suchasy:b

now X has type a --- suppose we generalize a to forall a.a and

give y that type



Unsound Generalization Example

Now, consider doing type inference:

letf=funx->lety=xiny if we have

f / \\ T~ y : forall a. a

we can substitute

another type b
usex.a for a to get

y:b

suppose we generalize and allow y : forall a.a

but now we have inferred that (funx->...):a->b
and if we generalize again,
f:foralla,b.a->b

That’s the bad type!



Unsound Generalization Example

The bad step

letf=funx->lety=xiny
- /

X
putx:a \
X:a

in context

suppose we generalize and allow y : forall a.a

this was the bad step —y can’t really have
any type at all.

X : ‘a was in the context so we are not allowed to generalize
over ‘ato gety : forall a.a



ML IS CAREFULLY DESIGNED TO
SUPPORT TYPE INFERENCE!
PART 4: THE VALUE RESTRICTION



The Value Restriction

letx =v
.

AN

this has got to be an effect-free
computation -- a value

to enable polymorphic
generalization




Unsound Generalization Again

not a value!

.

let x = ref [] in X : forall a. alist ref




Unsound Generalization Again

not a value!

.

let x = ref [] in X : forall a. alist ref

X := [true]; use x at type bool as if x : bool list ref




Unsound Generalization Again

let x = ref [] in X : forall a. alist ref
X := [true]; use x at type bool as if x : bool list ref
List.hd (!X) +3 use x at type int as if x : int list ref

and we crash ....




What does OCaml do?

let x =ref[] in X :'_weak1 list ref

a “weak” type variable
can’t be generalized

means “l don’t know
what type this is but

it can only be one
particular type”

look for the “_” to begin
a type variable name



What does OCaml do?

let x =ref[]in

X := [true];

X :' weakl list ref

X : bool list ref

the “weak” type variable
is now fixed as a bool
and can’t be anything else

bool was substituted for
‘ weak during type
inference



What does OCaml do?

let x =ref[]in X :'_weakl list ref

X .= [true]; X : bool list ref

List.hd (Ix) + 3 Error: This expression has type bool
but an expression was expected
of type int

type error ...




One other example

notice that the RHS is now a value o
— it happens to be a function value now generalization
but any sort of value will do is allowed

. e

let x = fun () ->ref [] in x : forall “a. unit -> a list ref




One other example

notice that the RHS is now a value

— it happens to be a function value now generalization
but any sort of value will do A}a”c’wed
let x = fun () -> ref [] in x : forall a. unit -> ‘a list ref

X () := [true]; X () : bool list ref




One other example

notice that the RHS is now a value
— it happens to be a function value
but any sort of value will do

\

let x = fun () ->ref [] in
X () := [true];

List.hd (!x ()) + 3

now generalization
is allowed

/

X : forall ‘a. unit -> ‘a list ref

X () : bool list ref

X () :int list ref

what is the result of this program?




One other example

notice that the RHS is now a value
— it happens to be a function value
but any sort of value will do

\

let x = fun () ->ref [] in
X () := [true];

List.hd (!x ()) + 3

now generalization
is allowed

/

X : forall ‘a. unit -> ‘a list ref

X () : bool list ref

X () :int list ref

what is the result of this program?

List.hd raises an exception because it is applied to the empty list. why?




One other example

notice that the RHS is now a value
— it happens to be a function value
but any sort of value will do

\

creates a new, different reference
/\ every time it is called

let x = fun () ->ref [] in

X () := [true];

creates one reference rl

\//aﬁ:l assigns [true]

List.hd (!x ()) + 3
‘\

creates a second totally

different reference r2
holding []

what is the result of this program?

List.hd raises an exception because it is applied to the empty list. why?




TYPE INFERENCE:
THINGS TO REMEMBER



Type Inference: Things to Remember

Declarative algorithm: Given a context G, and untyped term u:

— Find e, t,gsuchthatGFu==>e:t,q
* understand the constraints that need to be generated

— Find substitution S that acts as a solution to g via unification
* if no solution exists, the program does not type check

— Apply S to e, ie our solution is S(e)

» S(e) contains schematic type variables a,b,c, etc that may be
instantiated with any type

— Since S is principal, S(e) characterizes all reconstructions.

— If desired, use the type checking algorithm to validate



Type Inference: Things to remember

In order to introduce polymorphic quantifiers, remember:

— Quantifiers must be on the outside only
* this is called “prenex” quantification
* otherwise, type inference may become undecidable

— Quantifiers can only be introduced at let bindings:
e letx=v

* only the type variables that do not appear in the environment may
be generalized

— The expression on the right-hand side must be a value
* no references or exceptions



Type Inference: Things to Remember

Where do we introduce polymorphic values?

letx=v

Full Rule:

e jifvisavalue (or guaranteed to evaluate to a value without effects)
 OCaml has some rules for this

 and v has type schemes

 and s has free variables a, b, c, ...

* and asubset of them z1,z2, z3 ... do not appear in the types in the context

 then x can have type forall z1,z2,23. s



[ Efficient type inference ]

Didier Rémy discovered the type generalization algorithm based on levels
when working on his Ph.D. on type inference of records and variants. He
prototyped his record inference in the original Caml (long before OCaml).
He had to recompile Caml frequently, which took a long time. The type
inference of Caml was the bottleneck: “The heart of the compiler code
were two mutually recursive functions for compiling expressions and
patterns, a few hundred lines of code together, but taking around 20
minutes to type check! This file alone was taking an abnormal proportion
of the bootstrap cycle.”

Type inference in Caml was slow for several reasons. Instantiation of a
type schema would create a new copy of the entire type -- even of the parts
without quantified variables, which can be shared instead. Doing the occurs
check on every unification of a free type variable (as in our eager toy
algorithm), and scanning the whole type environment on each
generalization increased the time complexity of inference.

“I implemented unification on graphs in O(n log n)---doing path compression and
postponing the occurs-check; I kept the sharing introduced in types all the way down
without breaking it during generalization/instantiation; and I introduced the rank-based type
generalization.”

This efficient type inference algorithm was described in Rémy's PhD dissertation (in French)
and in the 1992 technical report.

Quoted from: Oleg Kiselyov, http://okmij.org/ftp/ML/generalization.html



http://okmij.org/ftp/ML/generalization.html
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