
Type Checking

COS 326

David Walker

Princeton University

slides copyright 2018 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Implementing an Interpreter

let x = 3 in
x + x

Let (“x”,
 Num 3,
 Binop(Plus, Var “x”, Var “x”))

Num 6

6

Parsing

Evaluation

Pretty
Printing

2

Implementing an Interpreter

let x = 3 in
x + x

Let (“x”,
 Num 3,
 Binop(Plus, Var “x”, Var “x”))

Num 6

6

Parsing

Evaluation

Pretty
Printing

3

Type Checking

SYNTAX

Language Syntax

type t = IntT | BoolT | ArrT of t * t

type x = string (* variables *)

type c = Int of int | Bool of bool

type o = Plus | Minus | LessThan

type e =

 Const of c

 | Op of e * o * e

 | Var of x

 | If of e * e * e

 | Fun of x * typ * e

 | Call of e * e

 | Let of x * e * e

Language Syntax

type t = IntT | BoolT | ArrT of t * t

type x = string (* variables *)

type c = Int of int | Bool of bool

type o = Plus | Minus | LessThan

type e =

 Const of c

 | Op of e * o * e

 | Var of x

 | If of e * e * e

 | Fun of x * typ * e

 | Call of e * e

 | Let of x * e * e

Notice that we require
a type annotation here.

We'll see why this is required
for our type checking algorithm later.

Language Syntax (BNF Definition)

t ::= int | bool | t -> t

b -- ranges over booleans

n -- ranges over integers

x -- ranges over variable names

c ::= n | b

o ::= + | - | <

e ::=

 c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

type t = IntT | BoolT | ArrT of t * t

type x = string (* variables *)

type c = Int of int | Bool of bool

type o = Plus | Minus | LessThan

type e =

 Const of c

 | Op of e * o * e

 | Var of x

 | If of e * e * e

 | Fun of x * typ * e

 | Call of e * e

 | Let of x * e * e

JUDGEMENTS AND PROOFS

Judgement

A judgement is a “claim” or an “assertion” or a “property” or a
“relationship” – a statement that may or may not be true.

A valid judgement is a judgement that we have a proof of.

eg: e1 --> e2 A judgement stating that expression e1 evaluates
 to e2 in a single execution step.

eg: e1 ⇓ v A judgement stating that expression e1 fully
 evaluates to the value v

Recall Inference Rule Notation

An inference rule is a rigorous way to explain how to draw new
conclusions from existing knowledge – a means of obtaining a
proof for some judgement, often by using pre-existing proofs

judgment judgment . . . judgment
 judgment

 judgement

judgement judgment
 judgement

judgment
judgment

judgment

A proof is a stack (a tree really) of inference rules with axioms at
the top:

axiom
premises

conclusions

Recall Inference Rule Notation

An example inference rule for evaluation of function application

e1 ⇓ λx.e e2 ⇓ v2 e[v2/x] ⇓ v
 e1 e2 ⇓ v

“if e1 evaluates to a function with argument x and body e
 and e2 evaluates to a value v2
 and e with v2 substituted for x evaluates to v
 then e1 applied to e2 evaluates to v”

In English:

And we were also able to translate each rule into 1 case of
a function in OCaml. Together all the rules formed the basis
for an interpreter for the language.

TYPING RULES

The typing judgement

This notation:

is read in English as "e has type t in context G." It is going to

define how type checking works.

It describes a relation between three things – a type checking
context G, an expression e, and a type t.

We are going to think of G and e as given, and we are going to

compute t. The typing rules are going to tell us how.

G |- e : t

Typing Contexts

What is the type checking context G?

Technically, I'm going to treat G as if it were a (partial) function
that maps variable names to types. Notation:

G(x) -- look up x's type in G

G,x:t -- creates context G’ which is the same as

 G extended so that x maps to t

When G is empty, I'm just going to omit it. So I'll sometimes just
write: |- e : t

Example Typing Contexts

Here's an example context:

 x:int, y:bool, z:int

Think of a context as a set of "assumptions" or "hypotheses"

Read it as the assumption that "x has type int, y has type bool
and z has type int"

In the subsitution model, if you assumed x has type int, that
means that when you run the code, you had better actually wind
up substituting an integer for x.

Typing Contexts and Free Variables

One more bit of intuition:

If an expression e contains free variables x, y, and z then we need
to supply a context G that contains types for at least x, y and z. If
we don't, we won't be able to type check e.

For example, this judgement:

 |- x + y : int

won’t be a valid typing judgement because free variables x and y
aren’t assigned types by the context.

Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | <

e ::=

 c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

Goal: Give rules that define
the relation "G |- e : t".

To do that, we are going to give
one rule for every sort of expression.

(We can turn each rule into
a case of a recursive function that
takes an expression as an input and
implement rules pretty directly.)

Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | <

e ::=

 c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

 G |- b : bool

“boolean constants b always have type bool,
 no matter what the context G is"

English:

Rule for constant booleans:

Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | <

e ::=

 c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

 G |- n : int

“integer constants n always have type int,
 no matter what the context G is"

English:

Rule for constant integers:

Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | <

e ::=

 c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G |- e1 : t1 G |- e2 : t2 optype(o) = (t1, t2, t3)
 G |- e1 o e2 : t3

“e1 o e2 has type t3, if e1 has type t1, e2 has type t2
and o is an operator that takes arguments of
type t1 and t2 and returns a value of type t3"

where

Rule for operators:

optype (+) = (int, int, int)
optype (-) = (int, int, int)
optype (<) = (int, int, bool)

English:

Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | <

e ::=

 c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G(x) = t
G |- x : t

“variable x has the type given by the context"

Rule for variables:

English:

Note: this is rule explains (part) of why the
context needs to provide types for all of
the free variables in an expression

Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | <

e ::=

 c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G |- e1 : bool G |- e2 : t G |- e3 : t
G |- if e1 then e2 else e3 : t

“if e1 has type bool
and e2 has type t
and e3 has (the same) type t
then e1 then e2 else e3 has type t "

Rule for if:

English:

Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | <

e ::=

 c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G, x:t |- e : t2
G |- λx:t.e : t -> t2

“if G extended with x:t proves e has type t2
then λx:t.e has type t -> t2 "

Rule for functions:

English:

Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | <

e ::=

 c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G |- e1 : t1 -> t2 G |- e2 : t1
G |- e1 e2 : t2

“if G extended with x:t proves e has type t2
then λx:t.e has type t -> t2 "

Rule for function call:

English:

Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | <

e ::=

 c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G |- e1 : t1 G,x:t1 |- e2 : t2
G |- let x = e1 in e2 : t2

“if e1 has type t1
and G extended with x:t1 proves e2 has type t2
then let x = e1 in e2 has type t2 "

Rule for let:

English:

A Typing Derivation

A typing derivation is a "proof" that an expression is well-typed
in a particular context.

Such proofs consist of a tree of valid rules, with no obligations
left unfulfilled at the top of the tree. (ie: no axioms left over).

G |- λx:int. x + 2 : int -> int

A Typing Derivation

A typing derivation is a "proof" that an expression is well-typed
in a particular context.

Such proofs consist of a tree of valid rules, with no obligations
left unfulfilled at the top of the tree. (ie: no axioms left over).

G, x:int |- x + 2 : int
G |- λx:int. x + 2 : int -> int

G |- x : int G |- x + 2 : int
 G |- λx:int. x + 2 : int -> int

common error – the following is wrong: this rule suggests we check that the
parameter x has the right type. That’s
not something we can check. It is
something we assume.

A Typing Derivation

A typing derivation is a "proof" that an expression is well-typed
in a particular context.

Such proofs consist of a tree of valid rules, with no obligations
left unfulfilled at the top of the tree. (ie: no axioms left over).

G,x:int(x) = int
G, x:int |- x : int G,x:int |- 2 : int
G, x:int |- x + 2 : int
G |- λx:int. x + 2 : int -> int

Key Properties

Good type systems are sound.

In other words, if the type system says that e has type t then e
should have "well-defined" evaluation (ie, our interpreter should
not raise an exception part-way through because it doesn't know
how to continue evaluation).

Also, if e has type t and it terminates and produces a value, then
it should produce a value of that type. eg, if t is int, then it
should produce a value with type int.

Soundness = Progress + Preservation
Proving soundness boils down to two theorems:

Progress Theorem:

If |- e : t then either:

(1) e is a value, or

(2) e --> e'

Preservation Theorem:

If |- e : t and e --> e' then |- e' : t

See COS 510 for proofs of these theorems.
But you have most of the necessary techniques:
Proof by induction on the structure of ... various inductive data types. :-)

Progress says that well-typed
programs are not immediately stuck

Preservations says that well-typed
programs continue to be well-typed
after each execution step

The typing rules also define an algorithm for
... type checking ...

type t = IntT (* type int *)

 | BoolT (* type bool *)

 | ArrT of t * t (* type t -> t *)

type x = string (* variables *)

type c = Int of int | Bool of bool (* integer and boolean constants *)

type o = Plus | Minus | LessThan (* operators *)

type e = (* expressions *)

 Const of c

 | Op of e * o * e

 | Var of x

 | If of e * e * e

 | Fun of x * t * e (* t gives type of argument *)

 | Call of e * e

 | Let of x * e * e

Recall the OCaml Definition of Our Syntax

33

(* abstract type of contexts *)

type ctx

(* empty context *)

val empty : ctx

(* update ctx x t: updates context ctx by binding variable x to type t *)

val update : ctx -> x -> t -> ctx

(* look ctx x: retrieves the type t associated with x in ctx

 * raises NotFound if x does not appear in ctx *)

exception NotFound

val look : ctx -> x -> t

Signature for Context Operations

34

(* const c is the type of constant c *)

let const (c : c) : t =

 match c with

 | Int i -> IntT

 | Bool b -> BoolT

(* op o = (t1, t2, t3) when o has type t1 -> t2 -> t3 *)

let op (o : o) : t =

 match o with

 | Plus -> (IntT, IntT, IntT)

 | ...

(* use err s to signal a type error with message s *)

exception TypeError of string

let err s = raise (TypeError s)

Auxiliary Functions

35

(* type check expression e in ctx, producing t *)

let rec check (ctx : ctx) (e : e) : t =

 match e with

 | Const c -> const c

 | Op (e1, o, e2) ->

 let (t1, t2, t) = op o in (* op : t1 -> t2 -> t *)

 let t1' = check ctx e1 in

 let t2' = check ctx e2 in

 if (t1 = t1') && (t2 = t2') then

 t

 else

 err "bad argument to operator"

Simple Rules

optype(o) = (t1, t2, t3)
G Ͱ e1 : t1
G Ͱ e2 : t2

G Ͱ e1 o e2 : t3

const(c) = t
G Ͱ c : t

36

(* type check expression e in ctx, producing t *)

let rec check (ctx : ctx) (e : e) : t =

 match e with

 | Var x ->

 begin

 try look ctx x with

 NotFound -> err ("free variable: " ^ x)

 end

Simple Rules

G Ͱ x : G(x)

37

(* type check expression e in ctx, producing t *)

let rec check (ctx : ctx) (e : e) : t =

 match e with

 | Fun (x,t,e) ->

 ArrT t (check (update ctx x t) e)

Function Typing

G, x:t Ͱ e : t2
G Ͱ λx:t.e : t -> t2

Notice that if we did not have the type t as a
typing annotation we would not be able to make
progress in our type checker at this point. We
need to have a type for the variable x in our
context in order to recursively check the
expression e

38

(* type check expression e in ctx, producing t *)

let rec check (ctx : ctx) (e : e) : t =

 match e with

 | Call (e1, e2) ->

 begin

 let t1 = check ctx e1 in

 match t1 with

 | ArrT (targ, tresult) ->

 let t2 = check ctx e2 in

 if targ = t2 then tresult

 else err "bad argument to function"

 | _ -> err "not a function in call position"

 end

Function Typing

G Ͱ e1 : targ -> tresult
G Ͱ e2 : targ

G Ͱ e1 e2 : tresult

39

(* type check expression e in ctx, producing t *)

let rec check (ctx : ctx) (e : e) : t =

 match e with

 | If (e1, e2, e3) -> ...

 | Let (x, e1, e2) -> ...

Exercise: Other Rules

40

	Slide 1: Type Checking
	Slide 2: Implementing an Interpreter
	Slide 3: Implementing an Interpreter
	Slide 4: Syntax
	Slide 5: Language Syntax
	Slide 6: Language Syntax
	Slide 7: Language Syntax (BNF Definition)
	Slide 8: Judgements and Proofs
	Slide 9: Judgement
	Slide 10: Recall Inference Rule Notation
	Slide 11: Recall Inference Rule Notation
	Slide 13: Typing Rules
	Slide 14: The typing judgement
	Slide 15: Typing Contexts
	Slide 16: Example Typing Contexts
	Slide 17: Typing Contexts and Free Variables
	Slide 18: Type Checking Rules
	Slide 19: Typing Contexts and Free Variables
	Slide 20: Typing Contexts and Free Variables
	Slide 21: Typing Contexts and Free Variables
	Slide 22: Typing Contexts and Free Variables
	Slide 23: Typing Contexts and Free Variables
	Slide 24: Typing Contexts and Free Variables
	Slide 25: Typing Contexts and Free Variables
	Slide 26: Typing Contexts and Free Variables
	Slide 27: A Typing Derivation
	Slide 28: A Typing Derivation
	Slide 29: A Typing Derivation
	Slide 30: Key Properties
	Slide 31: Soundness = Progress + Preservation
	Slide 32: The typing rules also define an algorithm for ... type checking ...
	Slide 33: Recall the OCaml Definition of Our Syntax
	Slide 34: Signature for Context Operations
	Slide 35: Auxiliary Functions
	Slide 36: Simple Rules
	Slide 37: Simple Rules
	Slide 38: Function Typing
	Slide 39: Function Typing
	Slide 40: Exercise: Other Rules

