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SYNTAX



Language Syntax

type t = IntT | BoolT | ArrT of t * t

type x = string   (* variables *)

type c = Int of int | Bool of bool 

type o = Plus | Minus | LessThan 

type e = 

    Const of c

  | Op of e * o * e

  | Var of x

  | If of e * e * e

  | Fun of x * typ * e

  | Call of e * e

  | Let of x * e * e



Language Syntax

type t = IntT | BoolT | ArrT of t * t

type x = string   (* variables *)

type c = Int of int | Bool of bool 

type o = Plus | Minus | LessThan 

type e = 

    Const of c

  | Op of e * o * e

  | Var of x

  | If of e * e * e

  | Fun of x * typ * e

  | Call of e * e

  | Let of x * e * e

Notice that we require
a type annotation here.

We'll see why this is required
for our type checking algorithm later.



Language Syntax (BNF Definition)

t ::= int | bool | t -> t

b       -- ranges over booleans

n       -- ranges over integers

x        -- ranges over variable names

c ::= n | b

o ::= + | - | < 

e ::=

  c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

type t = IntT | BoolT | ArrT of t * t

type x = string   (* variables *)

type c = Int of int | Bool of bool 

type o = Plus | Minus | LessThan 

type e = 

    Const of c

  | Op of e * o * e

  | Var of x

  | If of e * e * e

  | Fun of x * typ * e

  | Call of e * e

  | Let of x * e * e



JUDGEMENTS AND PROOFS



Judgement

A judgement is a “claim” or an “assertion” or a “property” or a 
“relationship” – a statement that may or may not be true.

A valid judgement is a judgement that we have a proof of.

eg:       e1 --> e2          A judgement stating that expression e1 evaluates
   to e2 in a single execution step.

eg:         e1 ⇓ v       A judgement stating that expression e1 fully
   evaluates to the value v



Recall Inference Rule Notation

An inference rule is a rigorous way to explain how to draw new 
conclusions from existing knowledge – a means of obtaining a 
proof for some judgement, often by using pre-existing proofs

judgment    judgment    . . .      judgment
                           judgment

                                  judgement

judgement                judgment
                   judgement

judgment 
judgment

judgment

A proof is a stack (a tree really) of inference rules with axioms at 
the top:

axiom
premises

conclusions



Recall Inference Rule Notation

An example inference rule for evaluation of function application

e1 ⇓ λx.e           e2 ⇓ v2          e[v2/x] ⇓ v
                           e1 e2 ⇓  v

“if e1 evaluates to a function with argument x and body e
  and e2 evaluates to a value v2
  and e with v2 substituted for x evaluates to v
  then e1 applied to e2 evaluates to v”

In English:

And we were also able to translate each rule into 1 case of
a function in OCaml.  Together all the rules formed the basis
for an interpreter for the language.



TYPING RULES



The typing judgement

This notation:

is read in English as "e has type t in context G."  It is going to

define how type checking works.  

It describes a relation between three things – a type checking 
context G, an expression e, and a type t.

We are going to think of G and e as given, and we are going to

compute t.  The typing rules are going to tell us how.

G |- e : t



Typing Contexts

What is the type checking context  G?

Technically, I'm going to treat G as if it were a (partial) function 
that maps variable names to types.  Notation:

G(x) -- look up x's type in G

G,x:t -- creates context G’ which is the same as 

  G extended so that x maps to t

When G is empty, I'm just going to omit it.  So I'll sometimes just 
write:      |- e : t



Example Typing Contexts

Here's an example context:

                                x:int, y:bool, z:int

Think of a context as a set of "assumptions" or "hypotheses"

Read it as the assumption that "x has type int, y has type bool 
and z has type int"

In the subsitution model, if you assumed x has type int, that 
means that when you run the code, you had better actually wind 
up substituting an integer for x.



Typing Contexts and Free Variables

One more bit of intuition:

If an expression e contains free variables x, y, and z then we need 
to supply a context G that contains types for at least x, y and z.  If 
we don't, we won't be able to type check e. 

For example, this judgement:     

                   |- x + y : int

won’t be a valid typing judgement because free variables x and y 
aren’t assigned types by the context.



Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | < 

e ::=

  c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

Goal:  Give rules that define
the relation "G |- e : t".

To do that, we are going to give
one rule for every sort of expression.

(We can turn each rule into
a case of a recursive function that
takes an expression as an input and
implement rules pretty directly.)



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | < 

e ::=

  c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

     G |- b : bool

“boolean constants b always have type bool,
 no matter what the context G is"

English:

Rule for constant booleans:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | < 

e ::=

  c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

     G |- n : int

“integer constants n always have type int,
 no matter what the context G is"

English:

Rule for constant integers:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | < 

e ::=

  c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G |- e1 : t1      G |- e2 : t2      optype(o) = (t1, t2, t3)
                         G |- e1 o e2 : t3

“e1 o e2 has type t3, if e1 has type t1, e2 has type t2
and o is an operator that takes arguments of
type t1 and t2 and returns a value of type t3"

where

Rule for operators:

optype (+) = (int, int, int)
optype (-) = (int, int, int)
optype (<) = (int, int, bool)

English:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | < 

e ::=

  c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G(x) = t
G |- x : t

“variable x has the type given by the context"

Rule for variables:

English:

Note: this is rule explains (part) of why the
context needs to provide types for all of
the free variables in an expression



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | < 

e ::=

  c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G |- e1 : bool     G |- e2 : t         G |- e3 : t
G |- if e1 then e2 else e3 : t

“if e1 has type bool
and e2 has type t
and e3 has (the same) type t
then e1 then e2 else e3 has type t "

Rule for if:

English:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | < 

e ::=

  c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G, x:t |- e : t2
G |- λx:t.e : t -> t2

“if G extended with x:t proves e has type t2
then λx:t.e has type t -> t2 "

Rule for functions:

English:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | < 

e ::=

  c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G |- e1 : t1 -> t2          G |- e2 : t1
G |- e1 e2 : t2

“if G extended with x:t proves e has type t2
then λx:t.e has type t -> t2 "

Rule for function call:

English:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | < 

e ::=

  c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G |- e1 : t1          G,x:t1 |- e2 : t2
G |- let x = e1 in e2 : t2

“if e1 has type t1 
and G extended with x:t1 proves e2 has type t2
then let x = e1 in e2 has type t2 "

Rule for let:

English:



A Typing Derivation

A typing derivation is a "proof" that an expression is well-typed 
in a particular context. 

Such proofs consist of a tree of valid rules, with no obligations 
left unfulfilled at the top of the tree.  (ie: no axioms left over).

G |- λx:int. x + 2 : int -> int



A Typing Derivation

A typing derivation is a "proof" that an expression is well-typed 
in a particular context. 

Such proofs consist of a tree of valid rules, with no obligations 
left unfulfilled at the top of the tree.  (ie: no axioms left over).

G, x:int |- x + 2 : int 
G |- λx:int. x + 2 : int -> int

G |- x : int          G |- x + 2 : int 
     G |- λx:int. x + 2 : int -> int

common error – the following is wrong: this rule suggests we check that the 
parameter x has the right type.  That’s 
not something we can check.  It is
something we assume.



A Typing Derivation

A typing derivation is a "proof" that an expression is well-typed 
in a particular context. 

Such proofs consist of a tree of valid rules, with no obligations 
left unfulfilled at the top of the tree.  (ie: no axioms left over).

G,x:int(x) = int
G, x:int |- x : int           G,x:int |- 2 : int
G, x:int |- x + 2 : int 
G |- λx:int. x + 2 : int -> int



Key Properties

Good type systems are sound.

In other words, if the type system says that e has type t then e 
should have "well-defined" evaluation (ie, our interpreter should 
not raise an exception part-way through because it doesn't know 
how to continue evaluation).  

Also, if e has type t and it terminates and produces a value, then 
it should produce a value of that type.  eg, if t is int, then it 
should produce a value with type int.



Soundness = Progress + Preservation
Proving soundness boils down to two theorems:

Progress Theorem:

If |- e : t then either:

(1) e is a value, or

(2) e --> e'

Preservation Theorem:

If |- e : t and e --> e' then |- e' : t

See COS 510 for proofs of these theorems.
But you have most of the necessary techniques:
Proof by induction on the structure of ... various inductive data types. :-)

Progress says that well-typed
programs are not immediately stuck

Preservations says that well-typed
programs continue to be well-typed
after each execution step



The typing rules also define an algorithm for 
... type checking ...



type t = IntT   (* type int *)

           | BoolT   (* type bool *)

           | ArrT of t * t                  (* type t -> t *)

type x = string     (* variables *)

type c = Int of int | Bool of bool (* integer and boolean constants *) 

type o = Plus | Minus | LessThan (* operators *)

type e =    (* expressions *)

    Const of c

  | Op of e * o * e

  | Var of x

  | If of e * e * e

  | Fun of x * t * e   (* t gives type of argument *)

  | Call of e * e

  | Let of x * e * e

Recall the OCaml Definition of Our Syntax

33



(* abstract type of contexts *)

type ctx

(* empty context *)

val empty : ctx

(* update ctx x t:  updates context ctx by binding variable x to type t *)

val update : ctx -> x -> t -> ctx   

(* look ctx x: retrieves the type t associated with x in ctx

 *                    raises NotFound if x does not appear in ctx *)

exception NotFound

val look : ctx -> x -> t

Signature for Context Operations

34



(* const c is the type of constant c *)

let const (c : c) : t =

  match c with

  | Int i -> IntT

  | Bool b -> BoolT

(* op o = (t1, t2, t3) when o has type t1 -> t2 -> t3 *)

let op (o : o) : t  =

  match o with

  | Plus -> (IntT, IntT, IntT)

  | ...

(* use err s to signal a type error with message s *)

exception TypeError of string

let err s =  raise (TypeError s)

Auxiliary Functions

35



(* type check expression e in ctx, producing t *)

let rec check (ctx : ctx) (e : e) : t =

  match e with

  | Const c -> const c

  | Op (e1, o, e2) -> 

       let (t1, t2, t) = op o in     (* op : t1 -> t2 -> t *)

       let t1' = check ctx e1 in

       let t2' = check ctx e2 in

       if (t1 = t1') && (t2 = t2') then 

         t

       else 

         err "bad argument to operator"

Simple Rules

optype(o) = (t1, t2, t3)
G Ͱ e1 : t1      
G Ͱ e2 : t2      

G Ͱ e1 o e2 : t3

const(c) = t     
G Ͱ c : t

36



(* type check expression e in ctx, producing t *)

let rec check (ctx : ctx) (e : e) : t =

  match e with

  | Var x -> 

         begin

             try look ctx x with 

                 NotFound -> err ("free variable: " ^ x)

         end

 

Simple Rules

G Ͱ x : G(x)

37



(* type check expression e in ctx, producing t *)

let rec check (ctx : ctx) (e : e) : t =

  match e with

  | Fun (x,t,e) -> 

         ArrT t (check (update ctx x t) e)

 

Function Typing

G, x:t Ͱ e : t2
G Ͱ λx:t.e : t -> t2

Notice that if we did not have the type t as a 
typing annotation we would not be able to make 
progress in our type checker at this point.  We 
need to have a type for the variable x in our 
context in order to recursively check the 
expression e

38



(* type check expression e in ctx, producing t *)

let rec check (ctx : ctx) (e : e) : t =

  match e with

  | Call (e1, e2) ->

        begin

            let t1 = check ctx e1 in

            match t1 with

             | ArrT (targ, tresult) -> 

                   let t2 = check ctx e2 in

   if targ = t2 then tresult

   else  err "bad argument to function"

            | _ -> err "not a function in call position"

        end

 

Function Typing

G Ͱ e1 : targ -> tresult
G Ͱ e2 : targ

G Ͱ e1 e2 : tresult

39



(* type check expression e in ctx, producing t *)

let rec check (ctx : ctx) (e : e) : t =

  match e with

  | If (e1, e2, e3) -> ...

  | Let (x, e1, e2) -> ...

 

Exercise:  Other Rules

40
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