Type Checking

COS 326
David Walker
Princeton University

slides copyright 2018 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Implementing an Interpreter

letx =3 in

X + X \

Parsing
\ Let (“x”,
Num 3,
aw, . 7”n o" II))

Binop(Plus, Var “x”, Var “x

/ Evaluation
Num 6 \

Pretty \ .

Printing

Implementing an Interpreter

letx =3 in

Type Checking
X + X \
Parsing <>
Num 3,
“x”, Var “x”))

Binop(Plus, Var “x”, Var “x

/ Evaluation
Num 6 \

Pretty \ .

Printing

SYNTAX

Language Syntax

.

typet =IntT | BoolT | ArrTof t * t

type x = string (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e =
Const of c
| Opofe*o*e
| Var of x
| fofe*e*e
| Funof x *typ * e
| Callofe * e

| Letofx*e*e

.

Language Syntax

typet =IntT | BoolT | ArrTof t * t

type x = string (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e =
Const of ¢
| Opofe*o*e

| Var of x
||fOfE*e*e /
| Funof x * typ * e

| Callofe * e

| Letofx*e*e

Notice that we require

— a type annotation here.

We'll see why this is required
for our type checking algorithm later.

.

Language Syntax (BNF Definition)

typet =IntT | BoolT | ArrTof t * t

type x = string (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e =
Const of c
| Opofe*o*e
| Var of x
| fofe*e*e
| Funof x *typ * e
| Callofe * e

| Letofx*e*e

t=int | bool | t->t

b --ranges over booleans
n -- ranges over integers
X -- ranges over variable names
c:=n|b
on=+]-]|<
e =
C
| eoce
| x

| if ethen e elsee
| Ax:t.e

| ee

| letx=eine

JUDGEMENTS AND PROOFS

Judgement

A judgement is a “claim” or an “assertion” or a “property” or a
“relationship” — a statement that may or may not be true.

eg: el-->e2 A judgement stating that expression el evaluates
to e2 in a single execution step.

eg: ellv A judgement stating that expression el fully
evaluates to the value v

A valid judgement is a judgement that we have a proof of.

[Recall Inference Rule Notation

An inference rule is a rigorous way to explain how to draw new
conclusions from existing knowledge — a means of obtaining a
proof for some judgement, often by using pre-existing proofs

premises :
\\» axiom

judgment judgment ... judgment —
judgment judgment
conclusions /

A proof is a stack (a tree really) of inference rules with axioms at
the top:

judgment judgement judgment
judgment judgement
judgement

Recall Inference Rule Notation

An example inference rule for evaluation of function application

el U Ax.e e2 Jv2 e[v2/x] U v
ele2l v

In English:

“if el evaluates to a function with argument x and body e
and e2 evaluates to a value v2
and e with v2 substituted for x evaluates to v
then el applied to e2 evaluates to v”

And we were also able to translate each rule into 1 case of
a function in OCaml. Together all the rules formed the basis
for an interpreter for the language.

TYPING RULES

The typing judgement

This notation:

Gl-e:t

is read in English as "e has type t in context G." It is going to
define how type checking works.

It describes a relation between three things — a type checking
context G, an expression e, and a type t.

We are going to think of G and e as given, and we are going to
compute t. The typing rules are going to tell us how.

Typing Contexts

What is the type checking context G?

Technically, I'm going to treat G as if it were a (partial) function
that maps variable names to types. Notation:

G(x) --look up x's typeinG
G,x:t -- creates context G’ which is the same as
G extended so that x maps to t

When G is empty, I'm just going to omit it. So I'll sometimes just
write: |-e:t

Example Typing Contexts

Here's an example context:
x:int, y:bool, z:int
Think of a context as a set of "assumptions" or "hypotheses"

Read it as the assumption that "x has type int, y has type bool
and z has type int"

In the subsitution model, if you assumed x has type int, that
means that when you run the code, you had better actually wind
up substituting an integer for x.

Typing Contexts and Free Variables

One more bit of intuition:

If an expression e contains free variables x, y, and z then we need
to supply a context G that contains types for at least x, y and z. If
we don't, we won't be able to type check e.

For example, this judgement:

|-x+y:int

won’t be a valid typing judgement because free variables x and y
aren’t assigned types by the context.

Type Checking Rules

t:=int | bool | t->t

c:=n|b
on=+|-]<
e =

| eoe

| x

| if etheneelsee
| Ax:t.e

| ee

| letx=eine

Goal: Give rules that define
the relation "G |- e : t".

- — To do that, we are going to give

one rule for every sort of expression.

(We can turn each rule into

a case of a recursive function that
takes an expression as an input and
implement rules pretty directly.)

Typing Contexts and Free Variables

t:=int | bool | t->t

cu=n| b Rule for constant booleans:
o:n=+]|-|<
G |- b : bool
e =
C
|eoe English:
| x

“boolean constants b a/lways have type bool,

| ifetheneelsee no matter what the context G is"

| Ax:t.e

| ee
| letx=eine

Typing Contexts and Free Variables

t:=int | bool | t->t

e || Rule for constant integers:
o:n=+]|-|<
G |-n:int
e .=
C
|eoe English:
| x

“integer constants n always have type int,

| ifetheneelsee no matter what the context G is"

| Ax:t.e

| ee
| letx=eine

Typing Contexts and Free Variables

t:=int | bool | t->t

cu=n|b Rule for operators:
on=+|-]<
G|l-el:t1 G|-e2:t2 optype(o)=(t1,t2,1t3)

e = G|-eloe2:1t3

C

leoe where

optype (+) = (int, int, int)
optype (-) = (int, int, int)
optype (<) = (int, int, bool)

| x

| if etheneelsee
| Ax:t.e

| ee

English:

| letx=eine

“el1 o e2 has type t3, if el has type t1, e2 has type t2
and o is an operator that takes arguments of
type t1 and t2 and returns a value of type t3"

Typing Contexts and Free Variables

t:=int | bool | t->t

e Rule for variables:
on=+|-|< G(x) = t
G|-x:t
e .=
C
: €0€ English:
X

| @ e = clEe @ “variable x has the type given by the context"

| Ax:t.e
| ee
| letx=eine

Note: this is rule explains (part) of why the

context needs to provide types for all of
the free variables in an expression

Typing Contexts and Free Variables

t:=int | bool | t->t

ci=n|b Rule for if:

o:n=+]|-|<
G|-el:bool G|-e2:t G|-e3:t

G |-ifelthene2elsee3:t
e .=

C
| eoe

English:

“if e1 has type bool

and e2 has type t

and e3 has (the same) type t

then el then e2 else e3 has type t "

| x

| if etheneelsee
| Ax:t.e

| ee

| letx=eine

Typing Contexts and Free Variables

t:=int | bool | t->t

c:=n|b
o:n=+]|-|<
e =

C

| eoe

| x

| if etheneelsee
| Ax:t.e

| ee

| letx=eine

Rule for functions:

G, xt]-e:t2
G |-Ax:ite:t->t2

English:

“if G extended with x:t proves e has type t2
then Ax:t.e hastypet->t2"

Typing Contexts and Free Variables

t:=int | bool | t->t
cu=nlb Rule for function call:
o:n=+]|-|<

G|-el:tl1->t2 G|-e2:tl
G|-ele2:t2

e =
C
| eoe

English:

X
| “if G extended with x:t proves e has type t2

if e th |
| fethene elsee then Ax:t.e hastypet->t2"

| Ax:t.e

| ee
| letx=eine

Typing Contexts and Free Variables

t:=int | bool | t->t

c:=n|b
o:n=+]|-|<

e =
C
| eoe
| x
| if etheneelsee
| Ax:t.e
| ee
| letx=eine

Rule for let:

G|-el:tl G,x:tl |-e2:t2
G|-letx=eline2:t2

English:

“if el has type t1
and G extended with x:t1 proves e2 has type t2
then let x=eline2 hastypet2"

A Typing Derivation

A typing derivation is a "proof" that an expression is well-typed
in a particular context.

Such proofs consist of a tree of valid rules, with no obligations
left unfulfilled at the top of the tree. (ie: no axioms left over).

G |- Ax:int. x + 2 : int -> int

A Typing Derivation

A typing derivation is a "proof" that an expression is well-typed
in a particular context.

Such proofs consist of a tree of valid rules, with no obligations
left unfulfilled at the top of the tree. (ie: no axioms left over).

G, x:iint |[-x+2:int
G |- Ax:int. x+ 2 : int -> int

common error — the following is wrong: this rule suggests we check that the

arameter x has the right type. That’s
G |-x:int G|-x+2:int P : SNt EYP :
: : . not something we can check. ltis
G |- Ax:int. x+ 2 : int -> int)
something we assume.

A Typing Derivation

A typing derivation is a "proof" that an expression is well-typed
in a particular context.

Such proofs consist of a tree of valid rules, with no obligations
left unfulfilled at the top of the tree. (ie: no axioms left over).

G,x:int(x) = int

G, x:int [-x :int G,x:int |- 2 :int
G, x:iint |-x+ 2 :int

G |- Ax:int. x+ 2 : int -> int

Key Properties

Good type systems are sound.

In other words, if the type system says that e has type t then e
should have "well-defined" evaluation (ie, our interpreter should
not raise an exception part-way through because it doesn't know
how to continue evaluation).

Also, if e has type t and it terminates and produces a value, then
it should produce a value of that type. eg, if tisint, then it
should produce a value with type int.

Soundness = Progress + Preservation

Proving soundness boils down to two theorems:

Progress Theorem:

Progress says that well-typed

If |- e:tthen either: . .
programs are not immediately stuck

(1) e is a value, or
(2) e --> €'

Preservation Theorem: Preservations says that well-typed

If |-e:tande-->e'then |-e':t programs continue to be well-typed
after each execution step

See COS 510 for proofs of these theorems.
But you have most of the necessary techniques:
Proof by induction on the structure of ... various inductive data types. :-)

The typing rules also define an algorithm for
... type checking ...

Recall the OCaml Definition of Our Syntax

type t = IntT (* type int *)
| BoolT (* type bool *)
| ArrTof t * t (* type t >t *)
type x = string (* variables *)
type c = Int of int | Bool of bool (* integer and boolean constants *)
type o = Plus | Minus | LessThan (* operators *)
type e = (* expressions *)
Const of ¢

| Opofe *o * e

| Var of x

| fofe*e*e

| Funofx *t*e (* t gives type of argument *)
| Callofe * e

| Letofx*e*e

Signature for Context Operations

(* abstract type of contexts *)

type ctx

(* empty context *)

val empty : ctx

(* update ctx x t: updates context ctx by binding variable x to type t *)
val update : ctx -> x -> t -> ctx

(* look ctx x: retrieves the type t associated with xin ctx

* raises NotFound if x does not appearin ctx *)
exception NotFound

val look : ctx -> x->t

Auxiliary Functions

(* const cis the type of constant ¢ *)
let const (c:c):t=

match c with

| Inti->IntT

| Bool b ->BoolT

(* op o =(t1, t2, t3) when o has type tl ->t2 -> t3 *)
letop(o:0):t =

match o with

| Plus -> (IntT, IntT, IntT)

(* use err s to signal a type error with message s *)
exception TypeError of string
let err s = raise (TypeError s)

Simple Rules

(* type check expression e in ctx, producing t *)
let rec check (ctx:ctx) (e:e):t=
match e with

| Const c -> constc const(c) = t
GFc:t
| Op (el, o, e2) ->
let (t1,t2,t)=opoin (*op:tl->t2->t%*)
let t1' = check ctx el in optype(o) = (t1, t2, t3)
let t2' = check ctx e2 in GFel:tl
if (t1=1t1') && (t2 =12') then GFe2:t2
t GFeloe2:t3

else
err "bad argument to operator"

36

Simple Rules

(* type check expression e in ctx, producing t *)
let rec check (ctx:ctx) (e:e):t=
match e with

| Var x ->
begin

try look ctx x with
NotFound -> err ("free variable: " ~ x)

GFx:G(x)

end

37

Function Typing

(* type check expression e in ctx, producing t *)
let rec check (ctx:ctx) (e:e):t=
match e with

| Fun (xt,e) -> G, xtke: t2

ArrT t (check (update ctx x t) e) GFAxte:t->t2

Notice that if we did not have the type t as a
typing annotation we would not be able to make
progress in our type checker at this point. We
need to have a type for the variable x in our
context in order to recursively check the
expression e

Function Typing

(* type check expression e in ctx, producing t *)
let rec check (ctx:ctx) (e:e):t=
match e with

| Call (el, e2) ->
begin
let t1 = check ctx el in
match t1 with
| ArrT (targ, tresult) ->
let t2 = check ctx e2 in
if targ = t2 then tresult
else err "bad argument to function"
| _->err "not a function in call position"
end

G | el : targ -> tresult

GFe2:targ
G Fele2:tresult

39

Exercise: Other Rules

(* type check expression e in ctx, producing t *)
let rec check (ctx : ctx) (e : e) : t=
match e with

| If (el, e2,e3)-> ...

| Let (x, el, e2) -> ...

40

	Slide 1: Type Checking
	Slide 2: Implementing an Interpreter
	Slide 3: Implementing an Interpreter
	Slide 4: Syntax
	Slide 5: Language Syntax
	Slide 6: Language Syntax
	Slide 7: Language Syntax (BNF Definition)
	Slide 8: Judgements and Proofs
	Slide 9: Judgement
	Slide 10: Recall Inference Rule Notation
	Slide 11: Recall Inference Rule Notation
	Slide 13: Typing Rules
	Slide 14: The typing judgement
	Slide 15: Typing Contexts
	Slide 16: Example Typing Contexts
	Slide 17: Typing Contexts and Free Variables
	Slide 18: Type Checking Rules
	Slide 19: Typing Contexts and Free Variables
	Slide 20: Typing Contexts and Free Variables
	Slide 21: Typing Contexts and Free Variables
	Slide 22: Typing Contexts and Free Variables
	Slide 23: Typing Contexts and Free Variables
	Slide 24: Typing Contexts and Free Variables
	Slide 25: Typing Contexts and Free Variables
	Slide 26: Typing Contexts and Free Variables
	Slide 27: A Typing Derivation
	Slide 28: A Typing Derivation
	Slide 29: A Typing Derivation
	Slide 30: Key Properties
	Slide 31: Soundness = Progress + Preservation
	Slide 32: The typing rules also define an algorithm for ... type checking ...
	Slide 33: Recall the OCaml Definition of Our Syntax
	Slide 34: Signature for Context Operations
	Slide 35: Auxiliary Functions
	Slide 36: Simple Rules
	Slide 37: Simple Rules
	Slide 38: Function Typing
	Slide 39: Function Typing
	Slide 40: Exercise: Other Rules

