¥ C0S226 Precept 7 Spring ‘25

Precept Outline Relevant Book Sections
* Review of Lectures 15 and 16: + Book chapters: 4.1 and 4.2

- Graphs and Digraphs
- Graph search: DFS and BFS

A. Review: Graphs, Digraphs and Graph Search

Your preceptor will briefly review key points of this week's lectures. They may use the following graph to
trace examples:

@

B. Rooted DAGs

Suppose G is a digraph (i.e. a directed graph). G is acyclic if it doesn’t contain any directed cycles (i.e. a
directed path whose first and last vertices are the same). Describe an algorithm that runs in O(V + E)-
time to detect if G is acyclic.

Note. A directed acyclic graph is often known by its acronym DAG.




In a DAG, a vertex v is an ancestor of a vertex w if there is a directed path from w to v.

Arooted DAG is a DAG that has one vertex - the root - that is an ancestor of every other vertex. Describe
an algorithm that runs in O(V + E)-time to detect if a given DAG G is rooted.

C. Tag Game on a Graph

Two players compete on a game of tag on a (undirected) graph G. Here are the rules of the game.

* The first player starts at vertex s; and wins if it reaches a certain vertex ¢.

+ The second player starts at vertex so and wins if it tags the first player before they reach vertex ¢. The
second player tags the first if they are ever both on the same vertex. (we assume that if both players
arein t, then it counts as a tag, so the second player wins)

+ The players move simultaneously by taking a step to a vertex adjacent to the one they are currently on,
or they can choose to stay in the same vertex they are on.

+ The second player cannot be more than k steps away from s,.

+ The second player is omniscient, which means that they can always find their optimal path and they
can know the path taken by the first player in advance. In other words, you can assume that the game
is played in the following way:

- The first player picks some path from s; to t.
- Then, the second player sees what the first player picked, and based on that picks some path.

- The second player wins if it shares a vertex with the first player at any point, and otherwise the first
player wins.

Given G, s1, s2, t, and k, your task is to design an algorithm to decide whether the first player can win the
game.
Example:

Suppose the following graph is the one the players are using, labeled accordingly.



Then, the first player can win by moving to the bottom vertex and then to ¢, regardless of what k is. It's
easy to see that the second player can never catch the first if they follow this path.

Now, suppose the following graph is the one the players are using, labeled accordingly.

If £ is 3, then the first player cannot win. If the first player decides to take the bottom path, then the
second player can use the top path to go around and tag it just before they reach ¢. If the first player
decides to take the top path, then the second player can just wait in ss.

However, if k is 1, then the first player can win by taking the bottom path.

Performance requirements. For full credit, your algorithm must take ©(F + V') time, where V and E
are the number of vertices and edges in G, respectively.

To help you think about this problem, let's start by considering a simpler version of the problem. Suppose
G is a cycle graph. A cycle graph with V vertices has V' edges and follows the pattern: vertex 1 is adjacent
to V and 2, vertex 2 is adjacentto 3, ..., vertex V' — 1 is adjacent to V. So it looks like a cycle.

Describe a solution to the tag game on a graph when the graph is a cycle graph.




Now, suppose G is a path graph. A path graph with V vertices has V' — 1 edges and follows the pattern:
vertex 1 is adjacent to 2, vertex 2 is adjacent to 3, ..., vertex V — 1 is adjacent to V. So it looks like a path.

Describe a solution to the tag game on a graph when the graph is a path graph.

With the intuition developed before, describe a solution to the tag game on an arbitrary graph.




	Review: Graphs, Digraphs and Graph Search
	Rooted DAGs
	Tag Game on a Graph

