¥ C0S226 Precept 3 Spring ‘25

Precept Outline Relevant Book Sections
* Review of Lectures 5 and 6: * Book chapters: 2.1, 2.2 and 2.5

- Comparators and Comparables
- Elementary sorts
- Mergesort

A. Review: O/() Notation + Elementary Sorts + Mergesort + Comparable/Comparator

Your preceptor will briefly review key points of this week’s lectures. They may refer to the warm-up
exercise and the code snippet shown below.

Warm-up: Let f(n) = 3n + 4nlogy n + 8y/nlogy n. Select all that apply.

() f(n)=0(0)

() f(n)=290(n)

() f(n)=0(V/nlogn)
() f(n)=Q(/nlogn)
() f(n)=0(nlogn)
() f(n)=Q(nlogn)
() f(n)=0(n?

() f(n)=9Q(n?

() f(n) =0(logn)

() f(n)=Q(logn)
() fin)=0(@2")

() fn)=29Q(2")

1 public class YourClass implements Comparable<YourClass> {

2 public int compareTo(YourClass that) {

3 // returns int > @ if this > that

4 // returns int < @ if this < that

5 // returns @ otherwise

6 }

7

8 private static class YourComparator implements Comparator<YourClass> {
9 public int compare(YourClass obj1l, YourClass obj2) {
0 // returns int > @ if obj1 > obj2

1 // returns int < @ if objl1 < obj2

2 // returns @ otherwise

3 }

4 }

5 public static Comparator<YourClass> yourComparison() {

6 return new YourComparator();

7 }

8 ..

9 }

B. Comparable & Comparator

The code snippet below shows the instance variables of a class Movie, and partially filled instance methods
that should support comparing elements of this class in three ways:

* by alphabetical order of title (the default order);
* by release year; and
* by rating (0-5 stars).

Fill in the blanks numbered 1 to 6.

1 public class Movie implements
2 private String title;

3 private int year;

4 private int rating;

5

6 public int compareTo(Movie m) {
return (2) _____________ ;

3

public static Comparator<Movie> byYear () {
return new YearComparator();

3

private static class YearComparator implements
public int compare(Movie m1, Movie m2) {
return 4) ____________ ;

3

©® N o A W N =2 O OV o N

3

public static Comparator<Movie> byRating() {
return new RatingComparator();

}

private static class RatingComparator implements
public int compare(Movie ml, Movie m2) {
b6 return (6) o ____ ;

LT e

C. Sorting Algorithms
Part 1: Spring'24 Midterm Problem
Given two integer arrays, al] and b[1], the symmetric difference between a[] and b[] is the set of ele-

ments that appear in exactly one of the arrays. Design an algorithm that receives two sorted arrays, each
consisting of n distinct elements, and outputs the size of their symmetric difference.

For full credit, it must use ©(1) extra memory and its running time must be ©(n) in the worst case (the
arrays al] and b[] should not be modified).

Part 2: Sorting Lower Bounds

Imagine you are given unlimited access to call a method (say, via “the cloud”) which costs your program
constant time in order to help sort an array Comparable[] a.

Suppose the method is argmin(Comparable[] a, int i), which returns arg min;<;,{alk]}, i.e. the min-
imum elements in the range [i, n]. Can you use it to implement a (comparison-based) sorting algorithm
with O(n) running time? If so, how? If not, why not?

Part 3: Finding the Missing Element

Suppose that you are given a sorted array a[] with n — 1 distinct integers between 0 and n — 1. In
other words, you are given the array [@, 1, ..., n - 1] but with one of the elements missing. Design an
algorithm with ©(log n) worst-case running time that outputs the missing element.

For example, if the arrayisal]l=1[9, 1, 2, 3, 5, 6, 7], then n = 8 and the missing element is 4.

	Review: O/ Notation + Elementary Sorts + Mergesort + Comparable/Comparator
	Comparable & Comparator
	Sorting Algorithms
	Spring'24 Midterm Problem
	Sorting Lower Bounds
	Finding the Missing Element

