¥ C0S226

Precept 2

Spring '25

Precept Outline
» Review of Lectures 3 and 4:

- Stacks and Queues |
- Stacks and Queues Il

* Problem Solving

Relevant Book Sections
+ 1.3 (Stacks and Queues)

A. Review: Linked Lists, Resizable Arrays, Stacks, Queues and Iterators/Iterables

Your preceptor will briefly review key points of this week’s lectures.

Here are some code snippets that your instructor might refer to as examples:

public class SinglylLinkedList<Item> {

1

2 private Node first = null;
3 private class Node {

4 Item item;

5 Node next;

6 }

7

8 public void push(Item item) {
9 Node oldFirst = first;
0 first = new Node();

1 first.item = item;

2 first.next = oldFirst;
3 }

4

5 public Item pop() {

6 Item item = first.item;
7 first = first.next;

8 return item;

9 }

o}

Stack<String> stack = new Stack<String>();

stack.
stack.

push("0One");
push("Two");
stack.push("Three");
stack.push("Four");
stack.push("Five");

© N o A W N =

o

for (i = @0; i < 5; i++)
StdOut.println(stack.pop());

o

© N O A W N =

o ©

Queue<String> queue = new Queue<String>();
enqueue ("One");

enqueue ("Two");

enqueue ("Three");

enqueue ("Four");

enqueue ("Five");

queue.
queue.
queue.
queue.
queue.

for (i = 0; i < 5; i++)
StdOut.println(queue.dequeue());

public class YourClass<Item> implements Iterable<Item> {

1

2 public Iterator<Item> iterator () {

3 return new YourClassIterator();

4 }

5

6 private class YourClassIterator implements Iterator<Item> {

7 // instance variable(s) to keep track of where iterator is
8

9 public boolean hasNext() {

0 // condition to end iteration

1 3

2

3 public Item next() {

4 // returns next item and updates instance variable(s)

5 }

6 }

1 Stack<String> stack = 1 Stack<String> stack =

2 new Stack<String>(); // initialize 2 new Stack<String>(); // initialize
4 Iterator<String> it = stack.iterator(); 4 for (String s : stack) {

5 5 // do something with s
6 while (it.hasNext()) { 6 }

7 String s = iter.next();

8 // do something with s

9}

B. Stacks and Queues

Part 1: Resizable arrays

In lecture, you saw how the repeated doubling strategy solves the problem of resizable arrays too often.
There was a caveat, however: we resize up at 100% capacity but resize down at 25% (rather than 50%).

(Warm-up) Recall what goes wrong if we resize down at 50%: give an example of a sequence of m push()
and pop() operations with ©(m) amortized cost (per operation). The cost of a sequence of operations
(as in lecture) is the total number of array accesses made throughout their execution.

Consider the following “resizing policies”:

1. Double at 100% capacity, halve at 25%;

2. Triple at 100% capacity, multiply by 1/3 at 1/3;
3. Triple at 100% capacity, multiply by 2/3 at 1/3;
4. Double at 75% capacity, halve at 25%.

Identify which policies have ©(1) amortized running time per operation.

Part 2: Linked Lists

Recall that in a singly linked list, each node stores an item (of generic type) and a reference to the next
node in the list. Describe a method that given a linked list it reverses the order of the elements. So, for
example, a list of integers containing 1 — 2 — 3 — 4 would become 4 — 3 — 2 — 1.

Assume that you are implementing a public instance method in the SinglyLinkedList implementation
from the review section (so public Node reverse() would be the function signature). You can modify the
original input list, but you can’t create extra nodes or linked lists. Feel free to write code or pseudocode.

Part 3: Fall'22 Midterm Problem

We wish to implement a method public static String parseUndos(String str), which takes as input a

string that represents a series of keystrokes and interprets each occurrence of the < symbol as a one-
character undo request. The method returns the string that is obtained after the undo requests are
implemented.

For example,

String s parseUndos ("Princesses<<<<ton");
String t = parseUndos ("COM<S217<<40<<267?<!");

StdOut.println(s);

1
2
4
5 StdOut.println(t);

prints the strings Princeton and C0S226!.
(a) Fill in the two blanks in the following Java implementation of parseUndos().

1 public static String parseUndos(String str) {

2 Stack<Character> stack = new Stack<Character>();
3 for (int i = 0; i < str.length(); i++) {

4 char current = str.charAt(i);

5 if (current != ’<7)

6 // first blank

7 else

& _______ // second blank

9 }

0 // copy the content of the stack to a new string.
1 StringBuilder newStr = new StringBuilder();

2 while (!stack.isEmpty()) {

3 newStr.append(stack.pop()); // Append characters (in reverse order)
4 }

5

6 return newStr.reverse().toString();

7}

(e)

(
(

Recall that appending a character to a String takes linear time in the length of the string, so we
use the StringBuilder class instead to append characters in constant time. Also, note that when
removing characters from a stack they come in reverse order (since the last character is popped
first), so we need to reverse the string at the end.

Executing the statement parseUndos ("C0S226 ! <<<<<<<<<<") yields a(n)

) Stack overflow.

) Stack underflow.

) Infinite loop.

) Return value "C0S226!".

) Return value "<<<<<<<<<<”,

) None of the above.

Assume that the Stack data type is implemented as a resizable array. How many times would the

array shrink when calling parseUndos(str), where str is a string that consists of 16n non-undo
characters followed by 13n undo characters?

Assume that the stack is 100% full after parseUndos processes the first 16n non-undo characters,
and recall that pop() resizes the array (to half of its size) when it reaches 25% capacity.

When the stack is implemented as a linked list, the worst-case running time of parseUndos() on a
string of length n is O(n).

) True.
) False.

When the stack is implemented as a resizable array, the worst-case running time of parseUndos ()
on a string of length n is O(n).

) True.
) False.

	Review: Linked Lists, Resizable Arrays, Stacks, Queues and Iterators/Iterables
	Stacks and Queues
	Resizable arrays
	Linked Lists
	Fall'22 Midterm Problem

