
COS226 Precept 9 - Advanced Fall ’25
Precept Outline• DP algorithms for NP-complete problems
– Knapsack
– Subset Sum

• Push-relabel maxflow algorithms

A. Dynamic Programming for NP-Complete Problems

It is fairly common for well-known hard (i.e., NP-complete) problems to admit dynamic programmingsolutions; these solutions aren’t efficient in general, of course (otherwise they would imply P = NP), butcan still be efficient in special cases. These are known as pseudo-polynomial time algorithms. (The generalcoin changing problem is one such example.)
Part 1: Subset Sum

(One version of) the SUBSET-SUM problem is defined by a set S ⊂ N and a target value v ∈ Z. A solutionis a subset ∅ ̸= T ⊆ S whose numbers add to v, i.e., such that∑x∈T x = v.
Suppose, without loss of generality, that S is given by the sequence (x1, x2, . . . , xn). Find a dynamicprogramming recurrence considering subproblems on Si := {x1, . . . , xi}. Conclude, from it, a O(nv)-time algorithm for SUBSET-SUM.

Part 2: Knapsack

(One version of) the KNAPSACK is defined by a set P ⊂ N2 (of weight and value pairs) of the same sizealong with a (maximumweight)m ∈ N. Writing P = {(w1, v1), . . . , (wn, vn)}, a solution is a subset S ⊆ [n]that maximizes the value ∑
i∈[n] vi under the maximum weight constraint ∑i∈S wi ≤ m. (Note that this

1

problem generalizes SUBSET-SUM, by checking if the optimal solution for instance P = {(xi, xi) : i ∈ [n]}with maximum weight v has value v.)
Find a dynamic programming recurrence for KNAPSACK, and conclude from it a Θ(mn)-time algorithmfor the problem.

B. Push-Relabel Maxflow Algorithms

Push-relabel algorithms are a “second generation” ofmaxflowalgorithms developed after Ford-Fulkersonthat improve on its O(V E2) complexity: simpler implementations run in O(V 2E) time, and can achieve
O(V E log(V 2/E)) with advanced data structures (namely, link-cut trees).
Part 1: The Residual Graph

Defining the Ford-Fulkerson algorithm usually involves the definition of another graph related to a flownetwork: the residual graph (which we work with in the course, but don’t define explicitly).
Since push-relabel algorithms also rely on residual graphs, let’s define them and work through an exam-ple. The residual graph of a flow network f : E → R+ on the graph G = (V,E) with capacity c(e) andflow f(e) on edge e ∈ E is the weighted graph Rf = (V,E′) defined as follows:
• edge e = (u, v) ∈ E belongs to E′ if c(e)− f(e) > 0 (i.e., if the residual capacity is positive). Its weight isdefined as the residual capacity w(e) := c(e)− f(e).
• edge e′ = (v, u) belongs toE′ if and only if (u, v) ∈ E has positive flow: f(u, v) > 0. Its weight is definedas w(v, u) := f(u, v).
Draw the residual graph corresponding to the following flownetwork, and succinctly explain how it relatesto the Ford-Fulkerson algorithm.

2

Part 2: Preflows, Height Functions and Pushes

Push-relabel algorithms work by violating flow conservation in their execution, but still satisfy it whenthey finish. They instead preserve a relaxation of flow conservation: we say f is a preflow if the net flowat every non-source/sink vertex is non-negative (as opposed to 0). If v has positive inflow, we say thevertex is overflowing and call the excess flow e(v).
One of the (two) key operations of push-relabel algorithms is push(u, v), applied to an overflowing vertex
u and a vertex v adjacent to it in the residual graph. This operation increases the preflow f in the edgeby min{e(u), w(u, v)} (where w(u, v) is the residual capacity, i.e., the weight of the edge in the residualgraph).
Prove the following properties of preflows and pushes:

3

• the function f : E → R+ with f(s, v) := c(s, v) for all vertices v adjacent to the source and f(e) := 0 forall other edges is a preflow.
• if f is a preflow and f ′ the function obtained from f after a push() operation, then f ′ is a preflow.

Part 3: Height Functions

A height function h is a function h : V → N (with respect to a preflow f) that satisfies the following prop-erties:
• h(s) = 0 and h(t) = |V | (where s is the source and t is the target);• if (u, v) is an edge of the residual graph Rf , then h(u) ≤ h(v) + 1.
Prove that, given any preflow f and height function h, the residual graph Rf does not contain an st-path.

4

Part 4: Relabels and the Full Algorithm

The operation relabel(u) is applied to an overflowing vertex u such that h(u) ≤ h(v) for all vertices vadjacent to u in the residual graph. The operation increases h(u) to the smallest value thatmakes pushingpossible on u, namely, h(u) := 1 +min(u,v)∈E′{h(v)}.
The full “meta-algorithm” is the following:

1. Initialize the preflow f with f(s, v) := c(s, v) for all vertices adjacent from the source and f(e) := 0otherwise.2. Repeat until there are no more overflowing vertices:
• Select an overflowing vertex u. If there is a vertex v adjacent to it with h(v) = h(u) − 1, apply
push(u, v). Otherwise, apply relabel(u).

Prove that the algorithm is well-defined, i.e., that
• every overflowing vertex either satisfies the conditions for a push() or a relabel() operation underany height function; and
• if h is a height function and h′ is the function obtained from h after a relabel() operation, then h′ is aheight function (with respect to the same preflow).
• if f is a preflow, h is a height function with respect to f and f ′ is the preflow obtained from f by a
push() operation, then h is also a height function with respect to f ′.

Conclude that if the push-relabel meta-algorithm terminates, then f is a maxflow.

5

	Dynamic Programming for NP-Complete Problems
	Subset Sum
	Knapsack

	Push-Relabel Maxflow Algorithms
	The Residual Graph
	Preflows, Height Functions and Pushes
	Height Functions
	Relabels and the Full Algorithm

