¥ C0S226 Precept 9 - Advanced Fall 25

Precept Outline
+ DP algorithms for NP-complete problems

- Knapsack
- Subset Sum

*+ Push-relabel maxflow algorithms

A. Dynamic Programming for NP-Complete Problems

It is fairly common for well-known hard (i.e., NP-complete) problems to admit dynamic programming
solutions; these solutions aren't efficient in general, of course (otherwise they would imply P = NP), but
can still be efficient in special cases. These are known as pseudo-polynomial time algorithms. (The general
coin changing problem is one such example.)

Part 1: Subset Sum

(One version of) the SUBSET-SUM problem is defined by a set S C N and a target value v € Z. A solution
is a subset @ # T C S whose numbers add to v, i.e., such that erTm = .

Suppose, without loss of generality, that S is given by the sequence (z1,z2,...,z,). Find a dynamic
programming recurrence considering subproblems on S; := {z1,...,z;}. Conclude, from it, a O(nv)-
time algorithm for SUBSET-SUM.

Part 2: Knapsack

(One version of) the KNAPSACK is defined by a set P C N? (of weight and value pairs) of the same size
along with a (maximum weight) m € N. Writing P = {(w1,v1), ..., (wn,v,)}, a solutionis a subset S C [n]
that maximizes the value -, v; under the maximum weight constraint 3, ¢ w; < m. (Note that this

problem generalizes SUBSET-SUM, by checking if the optimal solution for instance P = {(x;,x;) : i € [n]}
with maximum weight v has value v.)

Find a dynamic programming recurrence for KNAPSACK, and conclude from it a ©(mn)-time algorithm
for the problem.

B. Push-Relabel Maxflow Algorithms

Push-relabel algorithms are a “second generation” of maxflow algorithms developed after Ford-Fulkerson
that improve on its O(V E?) complexity: simpler implementations run in O(V2E) time, and can achieve
O(VElog(V?/E)) with advanced data structures (namely, link-cut trees).

Part 1: The Residual Graph

Defining the Ford-Fulkerson algorithm usually involves the definition of another graph related to a flow
network: the residual graph (which we work with in the course, but don't define explicitly).

Since push-relabel algorithms also rely on residual graphs, let's define them and work through an exam-
ple. The residual graph of a flow network f: E — R, on the graph G = (V, E) with capacity ¢(e) and
flow f(e) on edge e € E is the weighted graph R; = (V, E’) defined as follows:

* edge e = (u,v) € F belongs to E' if ¢c(e) — f(e) > 0 (i.e., if the residual capacity is positive). Its weight is
defined as the residual capacity w(e) = c(e) — f(e).
+ edge ¢/ = (v,u) belongs to E’ if and only if (u,v) € E has positive flow: f(u,v) > 0. Its weight is defined

U
as w(v,u) = f(u,v).

Draw the residual graph corresponding to the following flow network, and succinctly explain how it relates
to the Ford-Fulkerson algorithm.

source flow capacity
1

'4 \
@ 16/19—>®—16/2 —>©—34/34—>%19/22—@
7/9

10/10 <6 0/13 o 0/13

target

Part 2: Preflows, Height Functions and Pushes

Push-relabel algorithms work by violating flow conservation in their execution, but still satisfy it when
they finish. They instead preserve a relaxation of flow conservation: we say f is a preflow if the net flow
at every non-source/sink vertex is non-negative (as opposed to 0). If v has positive inflow, we say the
vertex is overflowing and call the excess flow e(v).

One of the (two) key operations of push-relabel algorithms is push(u, v), applied to an overflowing vertex
u and a vertex v adjacent to it in the residual graph. This operation increases the preflow f in the edge
by min{e(u), w(u,v)} (where w(u,v) is the residual capacity, i.e., the weight of the edge in the residual
graph).

Prove the following properties of preflows and pushes:

* the function f: F — R, with f(s,v) = ¢(s,v) for all vertices v adjacent to the source and f(e) := 0 for
all other edges is a preflow.

« if fis a preflow and f’ the function obtained from f after a push() operation, then f’ is a preflow.

Part 3: Height Functions
A height function h is a function h: V' — N (with respect to a preflow f) that satisfies the following prop-
erties:

* h(s) =0and h(t) = |V| (where s is the source and t is the target);
* if (u,v) is an edge of the residual graph Ry, then h(u) < h(v) + 1.

Prove that, given any preflow f and height function h, the residual graph R, does not contain an st-
path.

Part 4: Relabels and the Full Algorithm

The operation relabel(u) is applied to an overflowing vertex u such that h(u) < h(v) for all vertices v
adjacenttowintheresidual graph. The operation increases h(u) to the smallest value that makes pushing
possible on u, namely, h(u) == 1 + min(, ,)ep {h(v)}.

The full “meta-algorithm” is the following:
1. Initialize the preflow f with f(s,v) := ¢(s,v) for all vertices adjacent from the source and f(e) =0

otherwise.
2. Repeat until there are no more overflowing vertices:

+ Select an overflowing vertex u. If there is a vertex v adjacent to it with h(v) = h(u) — 1, apply
push(u, v). Otherwise, apply relabel (u).

Prove that the algorithm is well-defined, i.e., that
« every overflowing vertex either satisfies the conditions for a push() or a relabel() operation under

any height function; and

« if his a height function and &' is the function obtained from h after a relabel () operation, then /' is a
height function (with respect to the same preflow).

- if fis a preflow, h is a height function with respect to f and f’ is the preflow obtained from f by a
push() operation, then A is also a height function with respect to f’.

Conclude that if the push-relabel meta-algorithm terminates, then f is a maxflow.

	Dynamic Programming for NP-Complete Problems
	Subset Sum
	Knapsack

	Push-Relabel Maxflow Algorithms
	The Residual Graph
	Preflows, Height Functions and Pushes
	Height Functions
	Relabels and the Full Algorithm

