

Precept Outline

- · DP algorithms for NP-complete problems
 - Knapsack
 - Subset Sum
- Push-relabel maxflow algorithms

A. Dynamic Programming for NP-Complete Problems

It is fairly common for well-known hard (i.e., NP-complete) problems to admit dynamic programming solutions; these solutions aren't efficient in general, of course (otherwise they would imply P = NP), but can still be efficient in special cases. These are known as *pseudo-polynomial time* algorithms. (The general coin changing problem is one such example.)

Part 1: Subset Sum

(One version of) the SUBSET-SUM problem is defined by a set $S \subset \mathbb{N}$ and a target value $v \in \mathbb{Z}$. A solution	ion
is a subset $\varnothing \neq T \subseteq S$ whose numbers add to v , i.e., such that $\sum_{x \in T} x = v$.	

Suppose, without loss of generality, that S is given by the sequence (x_1, x_2, \dots, x_n) . Find a dynamic

for SUBSET-SUM	ems on $S_i \coloneqq \cdot$	$\{x_1,\ldots,x_i\}$. Co	onclude, from i	t, a $O(nv)$ -

Part 2: Knapsack

(One version of) the KNAPSACK is defined by a set $P\subset \mathbb{N}^2$ (of weight and value pairs) of the same size along with a (maximum weight) $m\in \mathbb{N}$. Writing $P=\{(w_1,v_1),\ldots,(w_n,v_n)\}$, a solution is a subset $S\subseteq [n]$ that maximizes the value $\sum_{i\in [n]}v_i$ under the maximum weight constraint $\sum_{i\in S}w_i\leq m$. (Note that this

with maximum weight v has value v .)	diffial solution for instance $P = \{(x_i, x_i) : i \in [n]\}$
Find a dynamic programming recurrence for KNAPSAC for the problem.	K, and conclude from it a $\Theta(mn)$ -time algorithm

B. Push-Relabel Maxflow Algorithms

Push-relabel algorithms are a "second generation" of maxflow algorithms developed after Ford-Fulkerson that improve on its $O(VE^2)$ complexity: simpler implementations run in $O(V^2E)$ time, and can achieve $O(VE\log(V^2/E))$ with advanced data structures (namely, link-cut trees).

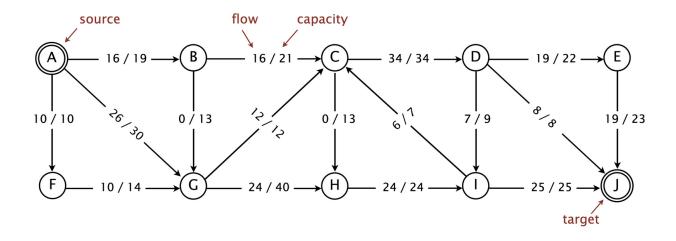
Part 1: The Residual Graph

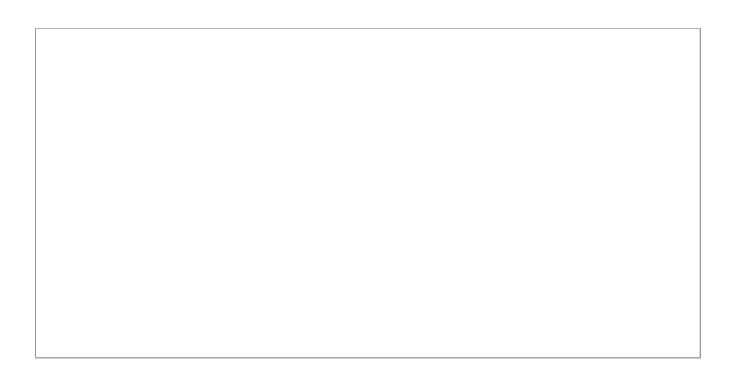
Defining the Ford-Fulkerson algorithm usually involves the definition of another graph related to a flow network: the *residual graph* (which we work with in the course, but don't define explicitly).

Since push-relabel algorithms also rely on residual graphs, let's define them and work through an example. The residual graph of a flow network $f \colon E \to \mathbb{R}_+$ on the graph G = (V, E) with capacity c(e) and flow f(e) on edge $e \in E$ is the weighted graph $R_f = (V, E')$ defined as follows:

- edge $e=(u,v)\in E$ belongs to E' if c(e)-f(e)>0 (i.e., if the *residual capacity* is positive). Its weight is defined as the residual capacity $w(e)\coloneqq c(e)-f(e)$.
- edge e'=(v,u) belongs to E' if and only if $(u,v)\in E$ has positive flow: f(u,v)>0. Its weight is defined as w(v,u):=f(u,v).

Draw the residual graph corresponding to the following flow network, and succinctly explain how it relates to the Ford-Fulkerson algorithm.





Part 2: Preflows, Height Functions and Pushes

Push-relabel algorithms work by violating flow conservation in their execution, but still satisfy it when they finish. They instead preserve a relaxation of flow conservation: we say f is a *preflow* if the net flow at every non-source/sink vertex is *non-negative* (as opposed to 0). If v has positive inflow, we say the vertex is *overflowing* and call the excess flow e(v).

One of the (two) key operations of push-relabel algorithms is $\operatorname{push}(u, v)$, applied to an overflowing vertex u and a vertex v adjacent to it in the residual graph. This operation increases the preflow f in the edge by $\min\{e(u), w(u, v)\}$ (where w(u, v) is the residual capacity, i.e., the weight of the edge in the residual graph).

Prove the following properties of preflows and pushes:

• the function $f \colon E \to \mathbb{R}_+$ with $f(s,v) \coloneqq c(s,v)$ for all vertices v adjacent to the source and $f(e) \coloneqq 0$ for all other edges is a preflow.
• if f is a preflow and f' the function obtained from f after a push() operation, then f' is a preflow.
Part 3: Height Functions
A <i>height function</i> h is a function $h \colon V \to \mathbb{N}$ (with respect to a preflow f) that satisfies the following properties:
• $h(s)=0$ and $h(t)= V $ (where s is the source and t is the target); • if (u,v) is an edge of the residual graph R_f , then $h(u)\leq h(v)+1$.
Prove that, given any preflow f and height function h , the residual graph R_f does not contain an st path.

Part 4: Relabels and the Full Algorithm

The operation relabel(u) is applied to an overflowing vertex u such that $h(u) \leq h(v)$ for all vertices v adjacent to u in the residual graph. The operation increases h(u) to the smallest value that makes pushing possible on u, namely, $h(u) \coloneqq 1 + \min_{(u,v) \in E'} \{h(v)\}$.

The full "meta-algorithm" is the following:

- 1. Initialize the preflow f with $f(s,v)\coloneqq c(s,v)$ for all vertices adjacent from the source and $f(e)\coloneqq 0$ otherwise.
- 2. Repeat until there are no more overflowing vertices:
 - Select an overflowing vertex u. If there is a vertex v adjacent to it with h(v) = h(u) 1, apply push(u, v). Otherwise, apply relabel(u).

Prove that the algorithm is well-defined, i.e., that

- every overflowing vertex either satisfies the conditions for a push() or a relabel() operation under any height function; and
- if h is a height function and h' is the function obtained from h after a relabel() operation, then h' is a height function (with respect to the same preflow).
- if f is a preflow, h is a height function with respect to f and f' is the preflow obtained from f by a push() operation, then h is also a height function with respect to f'.

Conclude that if the push relabel meta-algorithm terminates, then f is a maxflow

Conclude that if the push-relaber meta-algorithm terminates, their j is a maxilow.				