¥ C0S226 Precept 8 - Advanced Fall 25

Precept Outline

+ Defining Trees

+ Binomial Heaps
+ Algorithm Design

A. What is a tree, exactly?

Prove formally that the following conditions on an n-vertex undirected graph G are equivalent:

1. G is acyclic and connected;

2. G is maximal among all n-vertex acyclic graphs (i.e., adding an edge creates a cycle);
3. G is minimal among all n-vertex connected graphs (i.e., removing any edge disconnects it).

(Therefore, the mathematical definition of a tree is any - equivalently, all - of the above.)




B. Binomial Heaps

It's been a while since we discussed data structures for priority queues, but they'll make a comeback in
the course! Since there’s also a beautiful application of (so-called soft) heaps for MST algorithms, now is
a great time to explore advanced priority queue implementations.

In order to construct binomial heaps (one such implementation that performs efficient melding - see
below), we need to (recursively) define binomial trees:

* By is a single node.
* By is two copies of By_; with an additional edge between the roots (one of which is the root of By,).

Prove the following key property of binomial trees: the root of By, has k children, and the subtree rooted
at child 0 < i < kis B; (when they are ordered in increasing order of degree). Then show the following
simple corollaries:

* Bj has 2% nodes.
* By has height k.




Binomial heaps consist of binomial trees in heap order of distinct sizes with additional links: the roots of
each tree are in a linked list sorted by degree; and likewise for the nodes at each layer of each binomial
tree. (This linked structure also makes it easier to handle children: each node only needs an edge to the
leftmost one. For a technical reason, children are ordered in decreasing order of degree.)

Prove that a binomial heap with n items contains at most log,(n + 1) binomial trees. (Proving O(logn) is
also fine.)

The main advantage of binomial over binary heaps is that they support efficient melding: given two pri-
ority queues, creating a single priority queue with the keys in both.

Give a high-level description of how to implement all main priority queue operations, as well as melding,
on a binomial heap in O(logn) time. Specifically, describe an implementation of insert(), delMax() or
delMin() and meld(). Hint: handle melding first.




C. Algorithm Design
This problem was adapted from the Spring’25 Final Exam.

Given a connected graph G with positive integer edge weights, determine the smallest integer w* such
that removing all edges with weight strictly greater than w* leaves the graph connected. (Equivalently,
w* is the largest integer such that removing all edged with weight at least w* disconnects the graph.)

The runtime of your algorithm must be O(F log E), where E is the number of edges in G.




	What is a tree, exactly?
	Binomial Heaps
	Algorithm Design

