
COS226 Precept 2 - Advanced Fall ’25
Precept Outline• Amortized Runtime• Accounting Method: Resizing Arrays

Relevant Book Sections• Accounting Method: Union-Find• Persistent Data Structures

A. Advanced Precept Problems

Part 1: Amortized Analysis

Let c > 0 be a constant such that
• removing an element from a non-empty array takes ≤ c units of time;• adding an element to a non-full array requires ≤ c units of time;• allocating an array of size n and copying ≤ n elements from one array to another takes ≤ cn units oftime;
Prove that the amortized runtime of a resizable array withminimum capacity 2 and the double-when-full,halve-when-one-quarter-full resizing policy is ≤ 5c.

Adapt your proof above to show a≤ 4c amortized runtime under the resizing policy that triples when fulland multiplies by 1/3 when 1/9 full.

1



Part 2: Persistent Data Structures

Construct two variants of partially persistent stacks that support the usual stack API (push() and pop()

operate on the current state of the stack) as well as an Iterator<Item> iterator(int i)method, whichreturns an iterator for the i-th state of the stack.
They should satisfy optimal performance with respect to space (Θ(m) after m operations) and the fol-lowing runtime guarantees:
• push()/pop() take Θ(1) and iterator() takes O(m) time in the worst case;
• push()/pop() take Θ(1) amortized (but Θ(m) worst-case) time and iterator() takes Θ(1) worst-casetime.

2


	Advanced Precept Problems
	Amortized Analysis
	Persistent Data Structures


