

Precept Outline

- · Analysis of Karger's Algorithm
- · Approximate Counting

A. Analysis of Karger's Algorithm

In lecture, we state but don't prove a $\Omega(1/V^2)$ lower bound for one iteration of Karger's algorithm; the goal of this problem is to prove this fact.

Fix a mincut $C \subset E$ in the graph G; we will prove something slightly stronger, in fact: that *no edge* in C is added to the forest throughout the execution of Kruskal's algorithm with random edge weights.

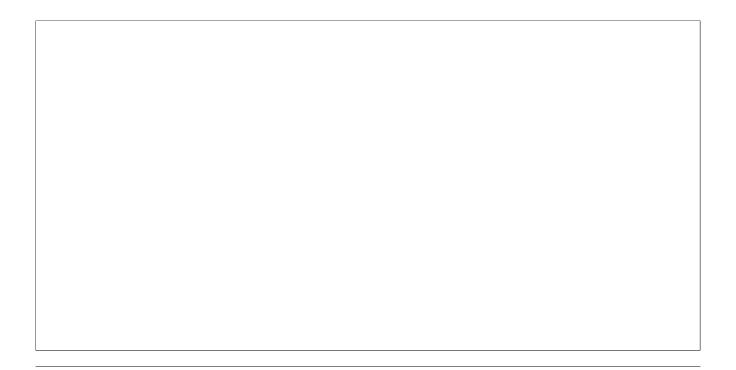
Start by proving that |C| is a lower bound on the *minimum degree* $\delta(G) \coloneqq \min_{v \le V} \{d(v)\}$ of G.

Next, prove that $E \ge |C|V/2$ and that the first edge added by Kruska's algorithm is in C with probability $\le 2/V$.

Finally, define $p_{n,k}$ as the probability that (a fresh run of) Karger's algorithm on an n-vertex graph never adds an edge from a fixed set of k edges. Prove the recurrence

$$p_{n,k} \ge \left(1 - \frac{2}{n}\right) p_{n-1,k}$$

and conclude that one iteration of Karger's algorithm succeeds with probability $\geq \frac{2}{V(V-1)} \sim \frac{2}{V^2}$.



B. Approximate Counting

In this exercise, we'll learn how to use randomness for a somewhat unintuitive purpose: to save space. Recall that we need $\log_2 n$ bits to store a counter with value $0 \le v < n$; our goal is to store an *approximate* counter—trading space for accuracy in the sense explained next—with only $\Theta(\log\log n)$ bits.

The approximate counting algorithm is the following:

- Initialize a variable k := 0.
- At every event, increment k with probability $1/2^k$ (and leave k unchanged with probability $1-1/2^k$).

Let $0 \le C_n \le n$ be the random variable corresponding to the value of the counter after n events. Prove that $\mathbb{E}[2^{C_n}] = n+1$ for all $n \in \mathbb{N}$. Hint: find a recurrence for $\mathbb{P}[C_n = k]$.

