
COS226 Precept 1 - Advanced Fall ’25
Precept Outline• Course Introduction• Induction

Relevant Book Sections• The (Inverse) Ackermann Function• Union-by-Height and Path Compression

A. Introduction

We’re pretty psyched for you to see what we’ve got in store, but, before we let you loose, here are just afew words about the format of precept in this course:
The exercises are meant to be done in pairs. We want to encourage you to talk about the details ofalgorithms and data structures with a peer so you can help fill in the blind spots of each other.
These exercises are not graded. You don’t have to hand in any solutions andwewon’t grade any of yourprecept work. Students are strongly encouraged to ask questions about the problems. The solutions toeach exercise will be released after all precepts are done.
You are not expected to complete all of the problems in each handout. These handouts are intendedfor practice, and explicitly designed to exceed what can feasibly be completed in precept. Indeed, it’s veryunlikely to happen in any precept. Some of the problems are marked as “optional”, which means thatthey are outside the scope of the course and are intended to be bonus challenge problems.
Attendance ismandatory. Your preceptor will keep track of your attendance (except for this first week),which will count towards 2.5% of your grade.

1



B. Advanced Precept Problems

Part 1: Useful Identities

We will make extensive use (really) of two identities throughout this course: for partial sums of arithmeticand (special cases of) geometric progressions.
Let’s start by proving these identities: formally show that

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

and
n−1∑
i=0

2i = 1 + 2 + 4 + · · ·+ 2n−1 = 2n − 1.

Part 2: More (Somewhat) Useful Identities

Prove that
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
∼ n3

3

and
Hn :=

n∑
i=1

1

i
∼ lnn.

2



Part 3: Union-by-Height and Path Compression

Prove that weighted quick-union with the weight of a set defined as the height of the tree it represents (in-stead of its size) also yieldsO(log n)worst-case array accesses per operation. How would you implementthis in Java?

Now, prove that weighted quick-unionwith path compression, using ranks as weights, also yieldsΘ(log n)worst-case array accesses per operation.

3


	Introduction
	Advanced Precept Problems
	Useful Identities
	More (Somewhat) Useful Identities
	Union-by-Height and Path Compression


