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Which of these outcomes is most likely to occur in a sequence of 6 coin flips?

A.   

B.   

C.   

D. All of the above. 

E. Both B and C.

Randomness:  quiz 1

3



The uniform distribution

Coin flip. 

 

 

. 

 

Roll of a die. 

 

 

.

ℙ[C lands heads] = ℙ[C lands tails] =
1
2

ℙ[D rolls 1] = ℙ[D rolls 2] = ⋯ = ℙ[D rolls 6] =
1
6
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Terminology and notation. 

 

“  lands heads” and “  is even” are events with 

probabilities , . 

Distribution: all outcome-probability pairs.

C D

ℙ[C lands heads] ℙ[D rolls even]

outcome probability

heads 1/2

tails 1/2

distribution of unbiased coin



The uniform distribution

Coin flip. 

 

 

. 

 

Roll of a die. 

 

 

.

ℙ[C lands heads] = ℙ[C lands tails] =
1
2

ℙ[D rolls 1] = ℙ[D rolls 2] = ⋯ = ℙ[D rolls 6] =
1
6
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Terminology and notation. 

 

“  lands heads” and “  is even” are events with 

probabilities , . 

Distribution: all outcome-probability pairs. 

[uniform distribution: all probabilities equal]

C D

ℙ[C lands heads] ℙ[D rolls even]

outcome probability

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

distribution of 6-sided die

uniform over 
 outcomes2

uniform over 
 outcomes6



The uniform distribution

Coin flip. 

 

 

. 

 

Roll of a die. 

 

 

. 

 

Independent coin flips. 

 

 

 

.

ℙ[C lands heads] = ℙ[C lands tails] =
1
2

ℙ[D rolls 1] = ℙ[D rolls 2] = ⋯ = ℙ[D rolls 6] =
1
6

ℙ[C1 heads, C2 tails, … Ck heads] =
1
2

×
1
2

⋯ ×
1
2

=
1
2k
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Terminology and notation. 

 

“  lands heads” and “  is even” are events with 

probabilities , . 

Distribution: all outcome-probability pairs. 

[uniform distribution: all probabilities equal]

C D

ℙ[C lands heads] ℙ[D rolls even]uniform over 
 outcomes2

uniform over 
 outcomes6

uniform over 
 outcomes2k



Flip a coin 6 times and count how often it lands heads. Which count is most likely?

A. 2 

B. 3 

C. 4 

D. All of the above. 

E. None of the above.

Randomness:  quiz 2
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Deterministic and Randomized Algorithms

Def. A deterministic algorithm is an algorithm that doesn’t use randomness, i.e., given a certain input, its behavior 

(output, running time, memory, …) is always the same

8

most of algorithms you’ve 
seen so far are deterministic

Def. A randomized algorithm is an algorithm that uses randomness as part of its logic
you’ve seen some randomized algorithms 

already! E.g., Quicksort with shuffling

(also known as a probabilistic algorithm)

Goal for today: Use probability to help us design algorithms that are better on average (i.e., most of the time)
randomized

⇒



Two “Flavors” of Algorithms Using Randomness

Monte Carlo algorithm. 

・Running time is deterministic. 

[doesn’t depend on coin flips] 

・Not guaranteed to be correct.

9

Las Vegas algorithm. 

・Guaranteed to be correct. 

・Running time depends on outcomes of random coin flips. 

Ex. Quicksort, quickselect.



How do we use randomness?

Question. How do we toss a coin in a program? 

Easy, just use StdRandom.uniformInt(2)

10

Question. How is StdRandom.uniformInt(n) implemented? 

That’s pretty tricky. Randomness is rare so we usually pseudorandomness: using a small amount of randomness 

that gets “boosted” into a large amount of something that looks random 

E.g., this is like simulating tossing  coins by tossing a small number of coins (say )n ∼ log n
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Treasure Hunt Problem

Input. An array a of length  containing 50% treasures and 50% duds (i.e., empty) 

Output. Any index containing a treasure

n

12

Goal. Minimize array accesses



Treasure Hunt Problem - Deterministic Algorithms

 

 

 

 

 

 

Deterministic algorithms. 

・scan the array left-to-right; return once treasure found.

13

 accesses in worst case
n
2

+ 1



Treasure Hunt Problem - Deterministic Algorithms

 

 

 

 

 

 

Deterministic algorithms. 

・scan the array left-to-right; return once treasure found. 

・scan the array right-to-left; return once treasure found.

14

 accesses in worst case
n
2

+ 1

 accesses in worst case
n
2

+ 1



Treasure Hunt Problem - Deterministic Algorithms

 

 

 

 

 

 

Deterministic algorithms. 

・scan the array left-to-right; return once treasure found. 

・scan the array right-to-left; return once treasure found. 

・look at even entries, then odd; return once treasure found.

15

 accesses in worst case
n
2

+ 1

 accesses in worst case
n
2

+ 1

 accesses in worst case
n
2

+ 1



Treasure Hunt Problem - Deterministic Algorithms

Proposition. For every deterministic algorithm, there is a 50%-treasure array where it makes  accesses. 

 

Pf. 

A deterministic algorithm always accesses the array in the same order 

Consider the sequence of the first  accesses it makes 

Create an array with duds on those positions and treasures elsewhere, it requires  accesses

n
2

+ 1

n/2

n
2

+ 1

16



Treasure Hunt Problem - A Monte Carlo Algorithm

Randomized algorithm (Monte Carlo): 

・look at a[StdRandom.uniformInt(n)], return treasure (if found). 

・look at two uniformly random entries, return 1st treasure found (if any). 

・look at three uniformly random entries, return 1st treasure found (if any). 

・look at  uniformly random entries, return 1st treasure found (if any).k
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1 flip lands tails

3 flips land tails

⋯

2 flips land tails

×
1
2

×
1
2

… ×
1
2

=
1
2k

=

What can we do with randomness?

Fails with probability 
1
2



Treasure Hunt Problem: A Monte Carlo Algorithm
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int treasureHuntMonteCarlo(int[] a, int k) { 
    for (int i = 0; i < k; i++) { 
        if (a[StdRandom.uniformInt(a.length)] == 1) 
            return i; 
    } 
    return -1; // Fail 
}

Properties. 

‣ Number of accesses =  

‣ Failure probability = [  coin flips land tails] = 

O(k)

ℙ k
1
2k

If we want a probability of success then: 

‣ Pick , then number of accesses is  

‣ Failure probability 

99 %

k = 7 O(1)

≤ 1 %



Treasure Hunt Problem: A Las Vegas Algorithm

Randomized algorithm (Las Vegas): 

・repeatedly look at uniformly random entry; return only when treasure found. 

 

Returns in 1st try with probability . 

Returns in 2nd try with probability . 

 

Returns in kth try with probability .

1/2

1/4

⋮

1/2k
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⋯

What if we always want to be correct?



At most how many array accesses made by Las Vegas treasure hunt?  
(Recall: we can look at the same entry twice.)

A. 1 

B. 2 

C.  

D.  

E. None of the above.

n/2

n

Randomness:  quiz 3

20



Las Vegas Algorithms - Expected Value

Definition. The expected number of accesses of an algorithm  on a given input  is the average number of 

                 accesses, weighted by  for all possible . It’s given by the following formula: 

A I

ℙ[A(I) makes k accesses] k

E(A, I) = 1 × ℙ[A(I) makes 1 access] + 2 × ℙ[A(I) makes 2 accesses] + 3 × ℙ[A(I) makes 3 accesses] + ⋯

21

Example. We previously saw that the worst-case expected number of compares Quicksort does is ∼ 2n ln n

We can extend the above definitions to any other cost model (running time, compares, memory). For example, 

expected running time is given by: 

T(A, I) = 1 × ℙ[A(I) takes 1 units of time] + 2 × ℙ[A(I) takes 2 units of time] + 3 × ℙ[A(I) takes 3 units of time] + ⋯

Note. The above definition is a “worst-case” definition, the probability is over the randomness in the algorithm, 

not the randomness of the input

Definition. The worst-case expected number of accesses of an algorithm  is the maximum of the expected 

                 number of accesses over all possible inputs. It’s given by the following formula: 

A

E(A) = max
I

E(A, I)



Treasure Hunt Problem: A Las Vegas Algorithm

22

int treasureHuntLasVegas(int[] a, int k) { 
    while (true) { 
        if (a[StdRandom.uniformInt(a.length)] == 1) 
            return i; 
    } 
}

Worst-case expected number of accesses. 

 

Which is !

1 × ℙ[A(I) makes 1 access] + 2 × ℙ[A(I) makes 2 accesses] + ⋯ = 1 ×
1
2

+ 2 ×
1
4

+ … + k
1
2k

+ … = 2

O(1)
variant of geometric sum:

lim
n→∞

1
2

+
2
4

+ … +
i

2n
= 2



Treasure Hunt Summary

23

doesn’t need 

randomness

worst-case 

accesses

expected 

accesses
can’t fail?

deterministic

Monte Carlo

Las Vegas

n
2

+ 1

O(1)

∞

n
2

+ 1

O(1)

O(1)



Suppose 1% of the array contains treasure and 99% contain duds. Then 
a[StdRandom.uniformInt(n)] finds a treasure with probability

A. 1% 

B. 10% 

C. 50% 

D. 99% 

E. None of the above.

Randomness:  quiz 4

24



Rare treasures and biased coins

Randomized algorithm (Monte Carlo): 

・look at  uniformly random entries, return treasure (if found). 

 

Failure probability = [k biased coin flips land tails] 

                            = . 

 

Example. If we want , setting  suffices!

k

ℙ

(0.99)k

0.99k < 1 % k = 459

25

outcome probability

heads 1/100

tails 99/100

distribution of 99%-1%  
biased coin

Input. An array of length  containing 1% treasures and 99% duds (i.e., empty) 

Output. Any index containing a treasure

n



Error Reduction

26

independence

Error reduction. 

If  and want failure , repeat  times. 

 

Then, .

ℙ[A fails] = p ≤ q k ≥ logp q

ℙ[A fails k times] = pk ≤ q

Note. We can generalize the previous method to any algorithm. Suppose we have a randomized algorithm A
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Duplicates Finding Problem

Input. An array a of length  containing  pairs of integers, one per element between  and  

Output. Any two indices that have the same integer

n n/2 1 n/2

28

Goal. Minimize array accesses

0 1 2 3 4 5 6 7 8 9

Motivation. Finding collisions in hash tables

1 4 5 3 2 5 2 3 4 6 1 6

n = 12



Duplicates Finding Problem - Deterministic Algorithms

29

1 4 5 3 2 5 2 3 4 6 1 6

Proposition. For every deterministic algorithm, there is an array where it makes  accesses. 

 

Pf. 

Same as in the case of the treasure hunt problem

n
2

+ 1

Deterministic algorithms. 

・scan the array left-to-right; keep a counter array; return once a pair is found. 

・scan the array right-to-left; keep a counter array; return once a pair is found.



Duplicates Finding Problem - A Monte Carlo Algorithm

30

1 4 5 3 2 5 2 3 4 6 1 6

Failure probability (of one single iteration). It’s the probability that we exactly find the pair, which is  

If we want a probability of success then we need , so this is no better than the deterministic one!

1
n − 1

99 % k = O(n)

Randomized algorithm (Monte Carlo):  

Repeat  times:  

・pick two distinct uniformly random entries, i1 and i2 

・return them if a[i1] == a[i2]

k



Duplicates Finding Problem - A Monte Carlo Algorithm - Take 2

31

1 4 5 3 2 5 2 3 4 6 1 6

Failure probability of the algorithm. Since there are  distinct values appearing the same number of times,  

                     picking a random array index is the same as picking a uniformly random integer from  to . 

So put  and  in the birthday paradox theorem and we get 

n
2

1
n
2

a = k b = n/2 exp −O ( k2

n )

Randomized algorithm 2 (Monte Carlo):  

・pick  uniformly random entries (not necessarily distinct) 

・check if there is a pair among them; if so return it

k

Theorem (birthday paradox). Suppose we draw  integers uniformly from  to  (and ). Then the 

probability we get the same number twice is 

a 1 b a < b

1 − exp (−
a(a − 1)

2b ) = 1 − exp −O ( a2

b )

If we want a probability of success then pick  and the above becomes smaller than 99 % k = 4 n 1 %

when , this is the probability 
two people in a room of  people 

share a birthday

b = 365
a



Duplicates Finding Problem - A Monte Carlo Algorithm - Take 2

32

1 4 5 3 2 5 2 3 4 6 1 6

Pair duplicatesFindingMonteCarlo(int[] a) { 
    int n = a.length; 
    LinearProbingHashST<Integer, Integer> seen = new LinearProbingHashST<Integer, Integer>(); 
    for (int i = 0; i*i < 16 * n; i++) { 
        int randomId = StdRandom.uniformInt(n); 
        if (seen.contains(a[randomId]) 
            return new Pair(randomId, seen.get(a[randomId])); 
        seen.put(a[randomId], randomId); 
    } 
    return null; // Fail 
}

 accesses versus  for a deterministic algorithmO ( n) O(n)
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Goal. Find cut in undirected graph with fewest edges (for any source and sink). 

 

Equivalent. Smallest min st-cut among all pairs (s, t) with antiparallel edges of capacity 1.

Global minimum cut problem

34



Goal. Find cut in undirected graph with fewest edges (for any source and sink). 

 

Deterministic algorithms. 

・Brute-force: iterate over all cuts, return smallest. [  cuts  exponential time!] 

・Ford-Fulkerson-based: pick any  as source, try every  as target. [  runs of FF   runtime.]

2V−1 − 1 ⟹

s t V − 1 ⟹ Θ(VE2)

Global minimum cut problem - Deterministic Algorithms

35



Goal. Find cut in undirected graph with fewest edges (for any source and sink). 

Idea. Pick a uniformly random cut, by tossing a coin per vertex and keeping the ones that landed heads

Global minimum cut problem - Randomized Attempt 1

36



How good is it? There may be 1 mincut but  total cuts — takes a lot of luck to find it 

Example.

O(2V)

Global minimum cut problem - Randomized Attempt 1

37

V / 2 vertices on each side

The algorithm only succeeds if all of the vertices on one side are picked and none on the other side, which happens 

with probability  

Failure probability. Is  for this graph, which is pretty low 

                              We can try running algorithm many times and return best cut. 

                              If we want success probability we need to repeat  times ☹

2 ×
1
2V

=
1

2V−1

1 −
1

O(2V)

99 % O(2V)



Algorithm. 

・Assign a random weight (uniform between 0 and 1) to each edge . 

・Run Kruskal’s MST algorithm until 2 connected components left. 

・Return cut defined by connected components.

e

Global minimum cut problem - Randomized Attempt 2 - Karger’s algorithm

38



Karger’s algorithm demo

・Assign random edge weights. 

・Run Kruskal’s algorithm until 2 connected components left.

39

5

4

7

1
3

0

2

6

0-2 

0-4 

0-7  

0-6  

1-2 
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Karger’s algorithm demo

・Assign random edge weights. 

・Run Kruskal’s algorithm until 2 connected components left.
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5

4

7

1
3

0

2

6

graph edges
sorted by weight

0-7  0.16 

2-3  0.17 

1-7  0.19 

2-6  0.26 

3-6  0.47 

5-7  0.49  

1-5  0.61 

4-6  0.62  

2-7  0.65 

4-5  0.71 

1-2  0.74 

4-7  0.81 

0-4  0.84 

0-2  0.89 

1-3  0.92 

0-6  0.94



Consider edges in ascending order of weight. 

・Add next edge to T unless doing so would create a cycle. 

・Stop if  contains  edges.T V − 2 2-3  0.17 

1-7  0.19 

2-6  0.26 

3-6  0.47 

5-7  0.49  

1-5  0.61 

4-6  0.62  

2-7  0.65 

4-5  0.71 

1-2  0.74 

4-7  0.81 

0-4  0.84 

0-2  0.89 

1-3  0.92 

0-6  0.94

Karger’s algorithm demo
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0-7  0.16

5

4

7

1
3

0

2

6

does not
create a cycle

in MST



Consider edges in ascending order of weight. 

・Add next edge to T unless doing so would create a cycle. 

・Stop if  contains  edges.T V − 2

1-7  0.19 

2-6  0.26 

3-6  0.47 

5-7  0.49  

1-5  0.61 

4-6  0.62  

2-7  0.65 

4-5  0.71 

1-2  0.74 

4-7  0.81 

0-4  0.84 

0-2  0.89 

1-3  0.92 

0-6  0.94

Karger’s algorithm demo
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0-7  0.16 

2-3  0.17

5

4

7

1
3

0

2

6

in MST

does not
create a cycle



Consider edges in ascending order of weight. 

・Add next edge to T unless doing so would create a cycle. 

・Stop if  contains  edges.T V − 2

2-6  0.26 

3-6  0.47 

5-7  0.49  

1-5  0.61 

4-6  0.62  

2-7  0.65 

4-5  0.71 

1-2  0.74 

4-7  0.81 

0-4  0.84 

0-2  0.89 

1-3  0.92 

0-6  0.94

Karger’s algorithm demo
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0-7  0.16 

2-3  0.17 

1-7  0.19



Consider edges in ascending order of weight. 

・Add next edge to T unless doing so would create a cycle. 

・Stop if  contains  edges.T V − 2

3-6  0.47 

5-7  0.49  

1-5  0.61 

4-6  0.62  

2-7  0.65 

4-5  0.71 

1-2  0.74 

4-7  0.81 

0-4  0.84 

0-2  0.89 

1-3  0.92 

0-6  0.94

Karger’s algorithm demo
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2-6  0.26in MST



Consider edges in ascending order of weight. 

・Add next edge to T unless doing so would create a cycle. 

・Stop if  contains  edges.T V − 2

5-7  0.49  

1-5  0.61 

4-6  0.62  

2-7  0.65 

4-5  0.71 

1-2  0.74 

4-7  0.81 

0-4  0.84 

0-2  0.89 

1-3  0.92 

0-6  0.94

Karger’s algorithm demo
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0-7  0.16 

2-3  0.17 

1-7  0.19 

2-6  0.26 

3-6  0.47



Consider edges in ascending order of weight. 

・Add next edge to T unless doing so would create a cycle. 

・Stop if  contains  edges.T V − 2

1-5  0.61 

4-6  0.62  

2-7  0.65 

4-5  0.71 

1-2  0.74 

4-7  0.81 

0-4  0.84 

0-2  0.89 

1-3  0.92 

0-6  0.94

Karger’s algorithm demo
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3-6  0.47 

5-7  0.49



Consider edges in ascending order of weight. 

・Add next edge to T unless doing so would create a cycle. 

・Stop if  contains  edges.T V − 2

4-6  0.62  

2-7  0.65 

4-5  0.71 

1-2  0.74 

4-7  0.81 

0-4  0.84 

0-2  0.89 

1-3  0.92 

0-6  0.94

Karger’s algorithm demo
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2-3  0.17 

1-7  0.19 
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3-6  0.47 

5-7  0.49 

1-5  0.61not in MST



Consider edges in ascending order of weight. 

・Add next edge to T unless doing so would create a cycle. 

・Stop if  contains  edges.T V − 2

2-7  0.65 

4-5  0.71 

1-2  0.74 

4-7  0.81 

0-4  0.84 

0-2  0.89 

1-3  0.92 

0-6  0.94

Karger’s algorithm demo
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Karger’s algorithm demo

Consider edges in ascending order of weight. 

・Add next edge to T unless doing so would create a cycle. 

・Stop if  contains  edges.T V − 2

49

5

4

7

1
3

0

2

6

a cut:  and {0,1,5,7} {2,3,4,6}

2-7  0.65 

4-5  0.71 

1-2  0.74 

4-7  0.81 

0-4  0.84 

0-2  0.89 

1-3  0.92 

0-6  0.94

0-7  0.16 

2-3  0.17 

1-7  0.19 

2-6  0.26 

3-6  0.47 

5-7  0.49 

1-5  0.61 

4-6  0.62



How good is it on the previous hard case?

Global minimum cut problem - Randomized Attempt 2 - Karger’s algorithm

50

V / 2 vertices on each side

The algorithm only succeeds if the middle edge is not picked by the Kruskal’s algorithm step 

If the middle edge has the largest weight, then it won’t be picked  happens with probability  

Failure probability. Is  for this graph, which is much better! 

                              If we want success probability we need to repeat  times 🙂

→
1
E

∼
4

V2

1 −
1

O(V2)
99 % O(V2)

(optional) use error 
reduction and 

exponential inequality

(1 −
1
x )

kx

≤ e−k

(1 −
1

V2 )
5V2

≤ e−5 ≈ 0.67 %

⇓



What about for a general graph? 

Failure probability. Surprisingly, it’s still  ! 

So we can repeat  times the  Kruskal iteration and get a  time algorithm

1 −
1

O(V2)

O(V2) Θ(E log E) Θ(V2E log E)

Global minimum cut problem - Randomized Attempt 2 - Karger’s algorithm

51

Remark 1.  Finds global mincut in  time — better than the Ford–Fulkerson based algorithm! 

Remark 2.  With clever idea, improved to  time (still randomized) 

Remark 3.  With (really really) clever idea, improved to  time deterministic

Θ(V2E log E)

Θ(E log3 V )

Θ(E log3 V )

(optional) we have to observe that probability 
the th edge added by Kruskal is:i

(1 −
2

V − i + 1 )
and then we multiply these for 1 ≤ i ≤ V − 2
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Algorithms
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Beyond this course

・Approximation algorithms  [intractability: stay tuned!] 

・Machine learning [randomized MW] 

・Optimization [stochastic gradient descent] 

・Cryptography  [average-case hardness] 

・Complexity theory [derandomization] 

・Quantum computation [Shor’s factoring algorithm] 

・Networking [load balancing] 

・Graphics [procedural generation] 

・Mathematics [probabilistic method] 

・Health sciences [randomized control trials] 

 

 

 

ORF 309. Probability and Stochastic Systems 

COS 330. Great Ideas in Theoretical Computer Science 

COS 433. Cryptography
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IBM Quantum System One
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