
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

RANDOMNESS

‣ randomness and algorithms
‣ treasure hunt problem
‣duplicates finding
‣Karger’s algorithm
‣more applications

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

RANDOMNESS

‣ randomness and algorithms
‣ treasure hunt problem
‣duplicates finding
‣Karger’s algorithm
‣more applications ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Which of these outcomes is most likely to occur in a sequence of 6 coin flips?

A.

B.

C.

D. All of the above.

E. Both B and C.

Randomness: quiz 1

3

The uniform distribution

Coin flip.

.

Roll of a die.

.

ℙ[C lands heads] = ℙ[C lands tails] =
1
2

ℙ[D rolls 1] = ℙ[D rolls 2] = ⋯ = ℙ[D rolls 6] =
1
6

4

Terminology and notation.

“ lands heads” and “ is even” are events with

probabilities , .

Distribution: all outcome-probability pairs.

C D

ℙ[C lands heads] ℙ[D rolls even]

outcome probability

heads 1/2

tails 1/2

distribution of unbiased coin

The uniform distribution

Coin flip.

.

Roll of a die.

.

ℙ[C lands heads] = ℙ[C lands tails] =
1
2

ℙ[D rolls 1] = ℙ[D rolls 2] = ⋯ = ℙ[D rolls 6] =
1
6

5

Terminology and notation.

“ lands heads” and “ is even” are events with

probabilities , .

Distribution: all outcome-probability pairs.

[uniform distribution: all probabilities equal]

C D

ℙ[C lands heads] ℙ[D rolls even]

outcome probability

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

distribution of 6-sided die

uniform over
 outcomes2

uniform over
 outcomes6

The uniform distribution

Coin flip.

.

Roll of a die.

.

Independent coin flips.

.

ℙ[C lands heads] = ℙ[C lands tails] =
1
2

ℙ[D rolls 1] = ℙ[D rolls 2] = ⋯ = ℙ[D rolls 6] =
1
6

ℙ[C1 heads, C2 tails, … Ck heads] =
1
2

×
1
2

⋯ ×
1
2

=
1
2k

6

Terminology and notation.

“ lands heads” and “ is even” are events with

probabilities , .

Distribution: all outcome-probability pairs.

[uniform distribution: all probabilities equal]

C D

ℙ[C lands heads] ℙ[D rolls even]uniform over
 outcomes2

uniform over
 outcomes6

uniform over
 outcomes2k

Flip a coin 6 times and count how often it lands heads. Which count is most likely?

A. 2

B. 3

C. 4

D. All of the above.

E. None of the above.

Randomness: quiz 2

7

Deterministic and Randomized Algorithms

Def. A deterministic algorithm is an algorithm that doesn’t use randomness, i.e., given a certain input, its behavior

(output, running time, memory, …) is always the same

8

most of algorithms you’ve
seen so far are deterministic

Def. A randomized algorithm is an algorithm that uses randomness as part of its logic
you’ve seen some randomized algorithms

already! E.g., Quicksort with shuffling

(also known as a probabilistic algorithm)

Goal for today: Use probability to help us design algorithms that are better on average (i.e., most of the time)
randomized

⇒

Two “Flavors” of Algorithms Using Randomness

Monte Carlo algorithm.

・Running time is deterministic.

[doesn’t depend on coin flips]

・Not guaranteed to be correct.

9

Las Vegas algorithm.

・Guaranteed to be correct.

・Running time depends on outcomes of random coin flips.

Ex. Quicksort, quickselect.

How do we use randomness?

Question. How do we toss a coin in a program?

Easy, just use StdRandom.uniformInt(2)

10

Question. How is StdRandom.uniformInt(n) implemented?

That’s pretty tricky. Randomness is rare so we usually pseudorandomness: using a small amount of randomness

that gets “boosted” into a large amount of something that looks random

E.g., this is like simulating tossing coins by tossing a small number of coins (say)n ∼ log n

RANDOMNESS

‣ randomness and algorithms
‣ treasure hunt problem
‣duplicates finding
‣Karger’s algorithm
‣more applications ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Treasure Hunt Problem

Input. An array a of length containing 50% treasures and 50% duds (i.e., empty)

Output. Any index containing a treasure

n

12

Goal. Minimize array accesses

Treasure Hunt Problem - Deterministic Algorithms

Deterministic algorithms.

・scan the array left-to-right; return once treasure found.

13

 accesses in worst case
n
2

+ 1

Treasure Hunt Problem - Deterministic Algorithms

Deterministic algorithms.

・scan the array left-to-right; return once treasure found.

・scan the array right-to-left; return once treasure found.

14

 accesses in worst case
n
2

+ 1

 accesses in worst case
n
2

+ 1

Treasure Hunt Problem - Deterministic Algorithms

Deterministic algorithms.

・scan the array left-to-right; return once treasure found.

・scan the array right-to-left; return once treasure found.

・look at even entries, then odd; return once treasure found.

15

 accesses in worst case
n
2

+ 1

 accesses in worst case
n
2

+ 1

 accesses in worst case
n
2

+ 1

Treasure Hunt Problem - Deterministic Algorithms

Proposition. For every deterministic algorithm, there is a 50%-treasure array where it makes accesses.

Pf.

A deterministic algorithm always accesses the array in the same order

Consider the sequence of the first accesses it makes

Create an array with duds on those positions and treasures elsewhere, it requires accesses

n
2

+ 1

n/2

n
2

+ 1

16

Treasure Hunt Problem - A Monte Carlo Algorithm

Randomized algorithm (Monte Carlo):

・look at a[StdRandom.uniformInt(n)], return treasure (if found).

・look at two uniformly random entries, return 1st treasure found (if any).

・look at three uniformly random entries, return 1st treasure found (if any).

・look at uniformly random entries, return 1st treasure found (if any).k

17

1 flip lands tails

3 flips land tails

⋯

2 flips land tails

×
1
2

×
1
2

… ×
1
2

=
1
2k

=

What can we do with randomness?

Fails with probability
1
2

Treasure Hunt Problem: A Monte Carlo Algorithm

18

int treasureHuntMonteCarlo(int[] a, int k) {
 for (int i = 0; i < k; i++) {
 if (a[StdRandom.uniformInt(a.length)] == 1)
 return i;
 }
 return -1; // Fail
}

Properties.

‣ Number of accesses =

‣ Failure probability = [coin flips land tails] =

O(k)

ℙ k
1
2k

If we want a probability of success then:

‣ Pick , then number of accesses is

‣ Failure probability

99 %

k = 7 O(1)

≤ 1 %

Treasure Hunt Problem: A Las Vegas Algorithm

Randomized algorithm (Las Vegas):

・repeatedly look at uniformly random entry; return only when treasure found.

Returns in 1st try with probability .

Returns in 2nd try with probability .

Returns in kth try with probability .

1/2

1/4

⋮

1/2k

19

⋯

What if we always want to be correct?

At most how many array accesses made by Las Vegas treasure hunt?  
(Recall: we can look at the same entry twice.)

A. 1

B. 2

C.

D.

E. None of the above.

n/2

n

Randomness: quiz 3

20

Las Vegas Algorithms - Expected Value

Definition. The expected number of accesses of an algorithm on a given input is the average number of

 accesses, weighted by for all possible . It’s given by the following formula:

A I

ℙ[A(I) makes k accesses] k

E(A, I) = 1 × ℙ[A(I) makes 1 access] + 2 × ℙ[A(I) makes 2 accesses] + 3 × ℙ[A(I) makes 3 accesses] + ⋯

21

Example. We previously saw that the worst-case expected number of compares Quicksort does is ∼ 2n ln n

We can extend the above definitions to any other cost model (running time, compares, memory). For example,

expected running time is given by:

T(A, I) = 1 × ℙ[A(I) takes 1 units of time] + 2 × ℙ[A(I) takes 2 units of time] + 3 × ℙ[A(I) takes 3 units of time] + ⋯

Note. The above definition is a “worst-case” definition, the probability is over the randomness in the algorithm,

not the randomness of the input

Definition. The worst-case expected number of accesses of an algorithm is the maximum of the expected

 number of accesses over all possible inputs. It’s given by the following formula:

A

E(A) = max
I

E(A, I)

Treasure Hunt Problem: A Las Vegas Algorithm

22

int treasureHuntLasVegas(int[] a, int k) {
 while (true) {
 if (a[StdRandom.uniformInt(a.length)] == 1)
 return i;
 }
}

Worst-case expected number of accesses.

Which is !

1 × ℙ[A(I) makes 1 access] + 2 × ℙ[A(I) makes 2 accesses] + ⋯ = 1 ×
1
2

+ 2 ×
1
4

+ … + k
1
2k

+ … = 2

O(1)
variant of geometric sum:

lim
n→∞

1
2

+
2
4

+ … +
i

2n
= 2

Treasure Hunt Summary

23

doesn’t need

randomness

worst-case

accesses

expected

accesses
can’t fail?

deterministic

Monte Carlo

Las Vegas

n
2

+ 1

O(1)

∞

n
2

+ 1

O(1)

O(1)

Suppose 1% of the array contains treasure and 99% contain duds. Then
a[StdRandom.uniformInt(n)] finds a treasure with probability

A. 1%

B. 10%

C. 50%

D. 99%

E. None of the above.

Randomness: quiz 4

24

Rare treasures and biased coins

Randomized algorithm (Monte Carlo):

・look at uniformly random entries, return treasure (if found).

Failure probability = [k biased coin flips land tails]

 = .

Example. If we want , setting suffices!

k

ℙ

(0.99)k

0.99k < 1 % k = 459

25

outcome probability

heads 1/100

tails 99/100

distribution of 99%-1%  
biased coin

Input. An array of length containing 1% treasures and 99% duds (i.e., empty)

Output. Any index containing a treasure

n

Error Reduction

26

independence

Error reduction.

If and want failure , repeat times.

Then, .

ℙ[A fails] = p ≤ q k ≥ logp q

ℙ[A fails k times] = pk ≤ q

Note. We can generalize the previous method to any algorithm. Suppose we have a randomized algorithm A

RANDOMNESS

‣ randomness and algorithms
‣ treasure hunt problem
‣duplicates finding
‣Karger’s algorithm
‣more applications ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Duplicates Finding Problem

Input. An array a of length containing pairs of integers, one per element between and

Output. Any two indices that have the same integer

n n/2 1 n/2

28

Goal. Minimize array accesses

0 1 2 3 4 5 6 7 8 9

Motivation. Finding collisions in hash tables

1 4 5 3 2 5 2 3 4 6 1 6

n = 12

Duplicates Finding Problem - Deterministic Algorithms

29

1 4 5 3 2 5 2 3 4 6 1 6

Proposition. For every deterministic algorithm, there is an array where it makes accesses.

Pf.

Same as in the case of the treasure hunt problem

n
2

+ 1

Deterministic algorithms.

・scan the array left-to-right; keep a counter array; return once a pair is found.

・scan the array right-to-left; keep a counter array; return once a pair is found.

Duplicates Finding Problem - A Monte Carlo Algorithm

30

1 4 5 3 2 5 2 3 4 6 1 6

Failure probability (of one single iteration). It’s the probability that we exactly find the pair, which is

If we want a probability of success then we need , so this is no better than the deterministic one!

1
n − 1

99 % k = O(n)

Randomized algorithm (Monte Carlo):

Repeat times:

・pick two distinct uniformly random entries, i1 and i2

・return them if a[i1] == a[i2]

k

Duplicates Finding Problem - A Monte Carlo Algorithm - Take 2

31

1 4 5 3 2 5 2 3 4 6 1 6

Failure probability of the algorithm. Since there are distinct values appearing the same number of times,

 picking a random array index is the same as picking a uniformly random integer from to .

So put and in the birthday paradox theorem and we get

n
2

1
n
2

a = k b = n/2 exp −O (k2

n)

Randomized algorithm 2 (Monte Carlo):

・pick uniformly random entries (not necessarily distinct)

・check if there is a pair among them; if so return it

k

Theorem (birthday paradox). Suppose we draw integers uniformly from to (and). Then the

probability we get the same number twice is

a 1 b a < b

1 − exp (−
a(a − 1)

2b) = 1 − exp −O (a2

b)

If we want a probability of success then pick and the above becomes smaller than 99 % k = 4 n 1 %

when , this is the probability
two people in a room of people

share a birthday

b = 365
a

Duplicates Finding Problem - A Monte Carlo Algorithm - Take 2

32

1 4 5 3 2 5 2 3 4 6 1 6

Pair duplicatesFindingMonteCarlo(int[] a) {
 int n = a.length;
 LinearProbingHashST<Integer, Integer> seen = new LinearProbingHashST<Integer, Integer>();
 for (int i = 0; i*i < 16 * n; i++) {
 int randomId = StdRandom.uniformInt(n);
 if (seen.contains(a[randomId])
 return new Pair(randomId, seen.get(a[randomId]));
 seen.put(a[randomId], randomId);
 }
 return null; // Fail
}

 accesses versus for a deterministic algorithmO (n) O(n)

RANDOMNESS

‣ randomness and algorithms
‣ treasure hunt problem
‣duplicates finding
‣Karger’s algorithm
‣more applications ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Equivalent. Smallest min st-cut among all pairs (s, t) with antiparallel edges of capacity 1.

Global minimum cut problem

34

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Deterministic algorithms.

・Brute-force: iterate over all cuts, return smallest. [cuts exponential time!]

・Ford-Fulkerson-based: pick any as source, try every as target. [runs of FF runtime.]

2V−1 − 1 ⟹

s t V − 1 ⟹ Θ(VE2)

Global minimum cut problem - Deterministic Algorithms

35

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Idea. Pick a uniformly random cut, by tossing a coin per vertex and keeping the ones that landed heads

Global minimum cut problem - Randomized Attempt 1

36

How good is it? There may be 1 mincut but total cuts — takes a lot of luck to find it

Example.

O(2V)

Global minimum cut problem - Randomized Attempt 1

37

V / 2 vertices on each side

The algorithm only succeeds if all of the vertices on one side are picked and none on the other side, which happens

with probability

Failure probability. Is for this graph, which is pretty low

 We can try running algorithm many times and return best cut.

 If we want success probability we need to repeat times ☹

2 ×
1
2V

=
1

2V−1

1 −
1

O(2V)

99 % O(2V)

Algorithm.

・Assign a random weight (uniform between 0 and 1) to each edge .

・Run Kruskal’s MST algorithm until 2 connected components left.

・Return cut defined by connected components.

e

Global minimum cut problem - Randomized Attempt 2 - Karger’s algorithm

38

Karger’s algorithm demo

・Assign random edge weights.

・Run Kruskal’s algorithm until 2 connected components left.

39

5

4

7

1
3

0

2

6

0-2

0-4

0-7

0-6

1-2

1-3

1-5

1-7

2-3

2-6

2-7

3-6

4-6

4-5

4-7

5-7

0.16

0.17
0.19

0.26

0.470.49

0.61

0.62

0.65

0.71

0.74

0.81

0.84

0.89

0.92

0.94

 0.89

 0.84

 0.16

 0.94

 0.74

 0.92

 0.61

 0.19

 0.17

 0.26

 0.65

 0.47

 0.62

 0.71

 0.81

 0.49

Karger’s algorithm demo

・Assign random edge weights.

・Run Kruskal’s algorithm until 2 connected components left.

40

5

4

7

1
3

0

2

6

graph edges
sorted by weight

0-7 0.16

2-3 0.17

1-7 0.19

2-6 0.26

3-6 0.47

5-7 0.49

1-5 0.61

4-6 0.62

2-7 0.65

4-5 0.71

1-2 0.74

4-7 0.81

0-4 0.84

0-2 0.89

1-3 0.92

0-6 0.94

Consider edges in ascending order of weight.

・Add next edge to T unless doing so would create a cycle.

・Stop if contains edges.T V − 2 2-3 0.17

1-7 0.19

2-6 0.26

3-6 0.47

5-7 0.49

1-5 0.61

4-6 0.62

2-7 0.65

4-5 0.71

1-2 0.74

4-7 0.81

0-4 0.84

0-2 0.89

1-3 0.92

0-6 0.94

Karger’s algorithm demo

41

0-7 0.16

5

4

7

1
3

0

2

6

does not
create a cycle

in MST

Consider edges in ascending order of weight.

・Add next edge to T unless doing so would create a cycle.

・Stop if contains edges.T V − 2

1-7 0.19

2-6 0.26

3-6 0.47

5-7 0.49

1-5 0.61

4-6 0.62

2-7 0.65

4-5 0.71

1-2 0.74

4-7 0.81

0-4 0.84

0-2 0.89

1-3 0.92

0-6 0.94

Karger’s algorithm demo

42

0-7 0.16

2-3 0.17

5

4

7

1
3

0

2

6

in MST

does not
create a cycle

Consider edges in ascending order of weight.

・Add next edge to T unless doing so would create a cycle.

・Stop if contains edges.T V − 2

2-6 0.26

3-6 0.47

5-7 0.49

1-5 0.61

4-6 0.62

2-7 0.65

4-5 0.71

1-2 0.74

4-7 0.81

0-4 0.84

0-2 0.89

1-3 0.92

0-6 0.94

Karger’s algorithm demo

43

5

4

7

1
3

0

2

6

in MST

does not
create a cycle

0-7 0.16

2-3 0.17

1-7 0.19

Consider edges in ascending order of weight.

・Add next edge to T unless doing so would create a cycle.

・Stop if contains edges.T V − 2

3-6 0.47

5-7 0.49

1-5 0.61

4-6 0.62

2-7 0.65

4-5 0.71

1-2 0.74

4-7 0.81

0-4 0.84

0-2 0.89

1-3 0.92

0-6 0.94

Karger’s algorithm demo

44

5

4

7

1
3

0

2

6

does not
create a cycle

0-7 0.16

2-3 0.17

1-7 0.19

2-6 0.26in MST

Consider edges in ascending order of weight.

・Add next edge to T unless doing so would create a cycle.

・Stop if contains edges.T V − 2

5-7 0.49

1-5 0.61

4-6 0.62

2-7 0.65

4-5 0.71

1-2 0.74

4-7 0.81

0-4 0.84

0-2 0.89

1-3 0.92

0-6 0.94

Karger’s algorithm demo

45

5

4

7

1
3

0

2

6

not in MST

creates a cycle

0-7 0.16

2-3 0.17

1-7 0.19

2-6 0.26

3-6 0.47

Consider edges in ascending order of weight.

・Add next edge to T unless doing so would create a cycle.

・Stop if contains edges.T V − 2

1-5 0.61

4-6 0.62

2-7 0.65

4-5 0.71

1-2 0.74

4-7 0.81

0-4 0.84

0-2 0.89

1-3 0.92

0-6 0.94

Karger’s algorithm demo

46

5

4

7

1
3

0

2

6

in MST

does not
create a cycle

0-7 0.16

2-3 0.17

1-7 0.19

2-6 0.26

3-6 0.47

5-7 0.49

Consider edges in ascending order of weight.

・Add next edge to T unless doing so would create a cycle.

・Stop if contains edges.T V − 2

4-6 0.62

2-7 0.65

4-5 0.71

1-2 0.74

4-7 0.81

0-4 0.84

0-2 0.89

1-3 0.92

0-6 0.94

Karger’s algorithm demo

47

5

4

7

1
3

0

2

6

creates a cycle

0-7 0.16

2-3 0.17

1-7 0.19

2-6 0.26

3-6 0.47

5-7 0.49

1-5 0.61not in MST

Consider edges in ascending order of weight.

・Add next edge to T unless doing so would create a cycle.

・Stop if contains edges.T V − 2

2-7 0.65

4-5 0.71

1-2 0.74

4-7 0.81

0-4 0.84

0-2 0.89

1-3 0.92

0-6 0.94

Karger’s algorithm demo

48

5

4

7

1
3

0

2

6

does not
create a cycle

0-7 0.16

2-3 0.17

1-7 0.19

2-6 0.26

3-6 0.47

5-7 0.49

1-5 0.61

4-6 0.62in MST

Karger’s algorithm demo

Consider edges in ascending order of weight.

・Add next edge to T unless doing so would create a cycle.

・Stop if contains edges.T V − 2

49

5

4

7

1
3

0

2

6

a cut: and {0,1,5,7} {2,3,4,6}

2-7 0.65

4-5 0.71

1-2 0.74

4-7 0.81

0-4 0.84

0-2 0.89

1-3 0.92

0-6 0.94

0-7 0.16

2-3 0.17

1-7 0.19

2-6 0.26

3-6 0.47

5-7 0.49

1-5 0.61

4-6 0.62

How good is it on the previous hard case?

Global minimum cut problem - Randomized Attempt 2 - Karger’s algorithm

50

V / 2 vertices on each side

The algorithm only succeeds if the middle edge is not picked by the Kruskal’s algorithm step

If the middle edge has the largest weight, then it won’t be picked happens with probability

Failure probability. Is for this graph, which is much better!

 If we want success probability we need to repeat times 🙂

→
1
E

∼
4

V2

1 −
1

O(V2)
99 % O(V2)

(optional) use error
reduction and

exponential inequality

(1 −
1
x)

kx

≤ e−k

(1 −
1

V2)
5V2

≤ e−5 ≈ 0.67 %

⇓

What about for a general graph?

Failure probability. Surprisingly, it’s still !

So we can repeat times the Kruskal iteration and get a time algorithm

1 −
1

O(V2)

O(V2) Θ(E log E) Θ(V2E log E)

Global minimum cut problem - Randomized Attempt 2 - Karger’s algorithm

51

Remark 1. Finds global mincut in time — better than the Ford–Fulkerson based algorithm!

Remark 2. With clever idea, improved to time (still randomized)

Remark 3. With (really really) clever idea, improved to time deterministic

Θ(V2E log E)

Θ(E log3 V)

Θ(E log3 V)

(optional) we have to observe that probability
the th edge added by Kruskal is:i

(1 −
2

V − i + 1)
and then we multiply these for 1 ≤ i ≤ V − 2

RANDOMNESS

‣ randomness and algorithms
‣ treasure hunt problem
‣duplicates finding
‣Karger’s algorithm
‣more applications ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Beyond this course

・Approximation algorithms [intractability: stay tuned!]

・Machine learning [randomized MW]

・Optimization [stochastic gradient descent]

・Cryptography [average-case hardness]

・Complexity theory [derandomization]

・Quantum computation [Shor’s factoring algorithm]

・Networking [load balancing]

・Graphics [procedural generation]

・Mathematics [probabilistic method]

・Health sciences [randomized control trials]

ORF 309. Probability and Stochastic Systems

COS 330. Great Ideas in Theoretical Computer Science

COS 433. Cryptography
53

IBM Quantum System One

https://xkcd.com/221/

Lecture Slides © Copyright 2025 Marcel Dall'Agnol, Pedro Paredes

Credits

55

image source license

Quarter Adobe Stock Education License

6-sided dice Adobe Stock Education License

20-sided die Adobe Stock Education License

Lava lamps Fast Company

Coin Toss clipground.com CC BY 4.0

IDQ Quantum Key Factory idquantique.com

SG100 protego.bytehost16.com

Las Vegas Adobe Stock Education License

Monte Carlo Adobe Stock Education License

Treasure chests Adobe Stock Education License

Random number generator XKCD CC BY-NC 2.5

https://stock.adobe.com/images/close-up-of-a-us-quarter-dollar-1994-png-isolated-on-transparent-background/531124379
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/playing-dice-white-dice-falling-3d-illustration-transparent-dices-two/522136779
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/one-brown-marbled-w20-or-20-sided-dice/563897479
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.fastcompany.com/90137157/the-hardest-working-office-design-in-america-encrypts-your-data-with-lava-lamps
https://clipground.com/images/toss-clipart-1.jpg%20%20CC%20BY%204.0
https://creativecommons.org/licenses/by/4.0/
https://www.idquantique.com/wp-content/uploads/Quantis-AIS-31-Validated-RNG-500-x-400-1.png
http://protego.byethost16.com/images/sg100_big.jpg
https://stock.adobe.com/images/aerial-las-vegas-at-night/274951182
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/the-monte-carlo-casino-gambling-and-entertainment-complex-located-in-monte-carlo-monaco-cote-de-azul-france-europe/400966373
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/cartoon-chest-treasure-box-with-gold-coins-and-gemstones-vector-pirate-treasure-open-wooden-chests-with-gold-jewel-crystals-or-empty-with-locks-pirate-treasure-game-asset/523663701
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://xkcd.com/221/
https://creativecommons.org/licenses/by-nc/2.5/

