
Computer
Science

An Interdisciplinary Approach

Robert Sedgewick
Kevin Wayne

Princeton University

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

Sāo Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

introCS.indb 3 11/21/16 10:22 AM

284 Functions and Modules

Dynamic programming A general approach to implementing recursive pro-
grams, known as dynamic programming, provides effective and elegant solutions to
a wide class of problems. The basic idea is to recursively divide a complex problem
into a number of simpler subproblems; store the answer to each of these subprob-
lems; and, ultimately, use the stored answers to solve the original problem. By solv-
ing each subproblem only once (instead of over and over), this technique avoids a
potential exponential blow-up in the running time.

For example, if our original problem is to compute the nth Fibonacci number,
then it is natural to define n + 1 subproblems, where subproblem i is to compute
the ith Fibonacci number for each 0 ! i ! n. We can solve subproblem i easily if
we already know the solutions to smaller subproblems—specifically, subproblems
i"1 and i"2. Moreover, the solution to our original problem is simply the solution
to one of the subproblems—subproblem n.

Top-down dynamic programming. In top-down dynamic programming, we
store or cache the result of each subproblem that we solve, so that the next time we
need to solve the same subproblem, we can use the cached values instead of solving
the subproblem from scratch. For our Fibonacci example, we use an array f[] to
store the Fibonacci numbers that have already been computed. We accomplish this
in Java by using a static variable, also known as a class variable or global variable,
that is declared outside of any method. This allows us to save information from one
function call to the next.

Top-down dynamic programming is also known as memoization because it avoids
duplicating work by remembering the results of function calls.

cached values

Top-down dynamic programming approach for computing Fibonacci numbers

return cached value
(if previously computed)

compute and cache value

static variable
(declared outside
of any method)

public class TopDownFibonacci
{
 private static long[] f = new long[92];

 public static long fibonacci(int n)
 {
 if (n == 0) return 0;
 if (n == 1) return 1;
 if (f[n] > 0) return f[n];
 f[n] = fibonacci(n-1) + fibonacci(n-2);
 return f[n];
 }
}

introCS.indb 284 11/21/16 10:23 AM

2852.3 Recursion

Bottom-up dynamic programming. In bottom-up dynamic programming, we
compute solutions to all of the subproblems, starting with the “simplest” subprob-
lems and gradually building up solutions to more and more complicated subprob-
lems. To apply bottom-up dynamic programming, we must order the subproblems
so that each subsequent subproblem can be solved by combining solutions to sub-
problems earlier in the order (which have already been solved). For our Fibonacci
example, this is easy: solve the subproblems in the order 0, 1, and 2, and so forth.
By the time we need to solve subproblem i, we have already solved all smaller sub-
problems—in particular, subproblems i"1 and i"2.

public static long fibonacci(int n)
{
 long[] f = new int[n+1];
 f[0] = 0;
 f[1] = 1;
 for (int i = 2; i <= n; i++)
 f[i] = f[i-1] + f[i-2];
 return f[n];
}

When the ordering of the subproblems is clear, and space is available to store all the
solutions, bottom-up dynamic programming is a very effective approach.

NEXT, WE CONSIDER A MORE SOPHISTICATED application of dynamic programming,
where the order of solving the subproblems is not so clear (until you see it). Un-
like the problem of computing Fibonacci numbers, this problem would be much
more difficult to solve without thinking recursively and also applying a bottom-up
dynamic programming approach.

Longest common subsequence problem. We consider a fundamental string-pro-
cessing problem that arises in computational biology and other domains. Given
two strings x and y, we wish to determine how similar they are. Some examples
include comparing two DNA sequences for homology, two English words for spell-
ing, or two Java files for repeated code. One measure of similarity is the length of
the longest common subsequence (LCS). If we delete some characters from x and
some characters from y, and the resulting two strings are equal, we call the resulting
string a common subsequence. The LCS problem is to find a common subsequence
of two strings that is as long as possible. For example, the LCS of GGCACCACG and
ACGGCGGATACG is GGCAACG, a string of length 7.

introCS.indb 285 11/21/16 10:23 AM

286 Functions and Modules

Algorithms to compute the LCS are used in data comparison programs like
the diff command in Unix, which has been used for decades by programmers
wanting to understand differences and similarities in their text files. Similar algo-
rithms play important roles in scientific applications, such as the Smith–Waterman
algorithm in computational biology and the Viterbi algorithm in digital commu-
nications theory.

Longest common subsequence recurrence. Now we describe a recursive formula-
tion that enables us to find the LCS of two given strings s and t. Let m and n be the
lengths of s and t, respectively. We use the notation s[i..m) to denote the suffix
of s starting at index i, and t[j..n) to denote the suffix of t starting at index j.
On the one hand, if s and t begin with the same character, then the LCS of x and
y contains that first character. Thus, our problem reduces to finding the LCS of the
suffixes s[1..m) and t[1..n). On the other hand, if s and t begin with different
characters, both characters cannot be part of a common subsequence, so we can
safely discard one or the other. In either case, the problem reduces to finding the
LCS of two strings—either s[0..m) and t[1..n) or s[1..m) and t[0..n)—one
of which is strictly shorter. In general, if we let opt[i][j] denote the length of the
LCS of the suffixes s[i..m) and t[j..m), then the following recurrence expresses
opt[i][j] in terms of the length of the LCS for shorter suffixes.

 0 if i = m or j = n
opt[i][j] = opt[i+1, j+1] + 1 if s[i] = t[j]
 max(opt[i, j+1], opt[i+1, j]) otherwise

Dynamic programming solution. LongestCommonSubsequence (PROGRAM 2.3.6)
begins with a bottom-up dynamic programming approach to solving this recur-
rence. We maintain a two-dimensional array opt[i][j] that stores the length of
the LCS of the suffixes s[i..m) and t[j..n). Initially, the bottom row (the values
for i = m) and the right column (the values for j = n) are 0. These are the initial
values. From the recurrence, the order of the rest of the computation is clear: we
start with opt[m][n]. Then, as long as we decrease either i or j or both, we know
that we will have computed what we need to compute opt[i][j], since the two
options involve an opt[][] entry with a larger value of i or j or both. The method
lcs() in PROGRAM 2.3.6 COmputes the elements in opt[][] by filling in values in
rows from bottom to top (i = m-1 to 0) and from right to left in each row (j = n-1
to 0). The alternative choice of filling in values in columns from right to left and

introCS.indb 286 11/21/16 10:23 AM

2872.3 Recursion

Program 2.3.6 Longest common subsequence

public class LongestCommonSubsequence
{
 public static String lcs(String s, String t)
 { // Compute length of LCS for all subproblems.
 int m = s.length(), n = t.length();
 int[][] opt = new int[m+1][n+1];
 for (int i = m-1; i >= 0; i--)
 for (int j = n-1; j >= 0; j--)
 if (s.charAt(i) == t.charAt(j))
 opt[i][j] = opt[i+1][j+1] + 1;
 else
 opt[i][j] = Math.max(opt[i+1][j], opt[i][j+1]);

 // Recover LCS itself.
 String lcs = "";
 int i = 0, j = 0;
 while(i < m && j < n)
 {
 if (s.charAt(i) == t.charAt(j))
 {
 lcs += s.charAt(i);
 i++;
 j++;
 }
 else if (opt[i+1][j] >= opt[i][j+1]) i++;
 else j++;
 }
 return lcs;
 }

 public static void main(String[] args)
 { StdOut.println(lcs(args[0], args[1])); }
}

The function lcs() computes and returns the LCS of two strings s and t using bottom-up
dynamic programming. The method call s.charAt(i) returns character i of string s.

s, t two strings

m, n lengths of two strings

opt[i][j]
length of LCS of
x[i..m) and y[j..n)

lcs longest common subsequence

% java LongestCommonSubsequence GGCACCACG ACGGCGGATACG
GGCAACG

introCS.indb 287 11/21/16 10:23 AM

288 Functions and Modules

from bottom to top in each row would work as well. The diagram at the bottom
of this page has a blue arrow pointing to each entry that indicates which value was
used to compute it. (When there is a tie in computing the maximum, both options
are shown.)

The final challenge is to recover the longest common subsequence itself, not
just its length. The key idea is to retrace the steps of the dynamic programming
algorithm backward, rediscovering the path of choices (highlighted in gray in the
diagram) from opt[0][0] to opt[m][n]. To determine the choice that led to
opt[i][j], we consider the three possibilities:

• The character s[i] equals t[j]. In this case, we must have opt[i][j] =
opt[i+1][j+1] + 1, and the next character in the LCS is s[i] (or t[j]), so
we include the character s[i] (or t[j]) in the LCS and continue tracing
back from opt[i+1][j+1].

• The LCS does not contain s[i]. In this case, opt[i][j] = opt[i+1][j]
and we continue tracing back from opt[i+1][j].

• The LCS does not contain t[j]. In this case, opt[i][j] = opt[i][j+1]
and we continue tracing back from opt[i][j+1].

We begin tracing back at opt[0][0] and continue until we reach opt[m][n]. At
each step in the traceback either i increases or j increases (or both), so the process
terminates after at most m + n iterations of the while loop.

Longest common subsequence of GGCACCACG and ACGGCGGATACG

 j 0 1 2 3 4 5 6 7 8 9 10 11 12

 s[j] A C G G C G G A T A C G -

i t[i]

0 G 7 7 7 6 6 6 5 4 3 3 2 1 0

1 G 6 6 6 6 5 5 5 4 3 3 2 1 0

2 C 6 5 5 5 5 4 4 4 3 3 2 1 0

3 A 6 5 4 4 4 4 4 4 3 3 2 1 0

4 C 5 5 4 4 4 3 3 3 3 3 2 1 0

5 C 4 4 4 4 4 3 3 3 3 3 2 1 0

6 A 3 3 3 3 3 3 3 3 3 3 2 1 0

7 C 2 2 2 2 2 2 2 2 2 2 2 1 0

8 G 1 1 1 1 1 1 1 1 1 1 1 1 0

9 - 0 0 0 0 0 0 0 0 0 0 0 0 0

introCS.indb 288 11/21/16 10:23 AM

2892.3 Recursion

DYNAMIC PROGRAMMING IS A FUNDAMENTAL ALGORITHM design paradigm, intimately
linked to recursion. If you take later courses in algorithms or operations research,
you are sure to learn more about it. The idea of recursion is fundamental in com-
putation, and the idea of avoiding recomputation of values that have been comput-
ed before is certainly a natural one. Not all problems immediately lend themselves
to a recursive formulation, and not all recursive formulations admit an order of
computation that easily avoids recomputation—arranging for both can seem a bit
miraculous when one first encounters it, as you have just seen for the LCS problem.

Perspective Programmers who do not use recursion are missing two oppor-
tunities. First recursion leads to compact solutions to complex problems. Second,
recursive solutions embody an argument that the program operates as anticipated.
In the early days of computing, the overhead associated with recursive programs
was prohibitive in some systems, and many people avoided recursion. In modern
systems like Java, recursion is often the method of choice.

Recursive functions truly illustrate the power of a carefully articulated ab-
straction. While the concept of a function having the ability to call itself seems
absurd to many people at first, the many examples that we have considered are
certainly evidence that mastering recursion is essential to understanding and ex-
ploiting computation and in understanding the role of computational models in
studying natural phenomena.

Recursion has reinforced for us the idea of proving that a program operates
as intended. The natural connection between recursion and mathematical induc-
tion is essential. For everyday programming, our interest in correctness is to save
time and energy tracking down bugs. In modern applications, security and privacy
concerns make correctness an essential part of programming. If the programmer
cannot be convinced that an application works as intended, how can a user who
wants to keep personal data private and secure be so convinced?

Recursion is the last piece in a programming model that served to build much
of the computational infrastructure that was developed as computers emerged to
take a central role in daily life in the latter part of the 20th century. Programs built
from libraries of functions consisting of statements that operate on primitive types
of data, conditionals, loops, and function calls (including recursive ones) can solve
important problems of all sorts. In the next section, we emphasize this point and
review these concepts in the context of a large application. In CHAPTER 3 and in
CHAPTER 4, we will examine extensions to these basic ideas that embrace the more
expansive style of programming that now dominates the computing landscape.

introCS.indb 289 11/21/16 10:23 AM

