
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/20/25 10:40  AM

RANDOMNESS

‣what it is and what it isn’t
‣ Las Vegas and Monte Carlo
‣ rejection sampling
‣Karger’s algorithm

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Percolation. Monte Carlo simulation: open random blocked sites.
 
 
 
 
 
 
 
Randomized queues. Remove item chosen uniformly at random.

3

A brief recap: where we’ve already encountered randomness

A brief recap: where we’ve already encountered randomness

4

Test 2: open random sites until the system percolates
Test 7: open random sites with large n
Test 12: call open(), isOpen(), and numberOfOpenSites()
 in random order until just before system percolates
Test 13: call open() and percolates() in random order until just before system
percolates
Test 14: call open() and isFull() in random order until just before system percolates
Test 15: call all methods in random order until just before system percolates
Test 16: call all methods in random order until almost all sites are open
 (with inputs not prone to backwash)
Test 20: call all methods in random order until all sites are open
 (these inputs are prone to backwash)

A brief recap: where we’ve already encountered randomness

5

Tests 1-8 make random intermixed calls to addFirst(), addLast(),
removeFirst(), removeLast(), isEmpty(), and size(), and iterator().
Test 12: check iterator() after random calls to addFirst(), addLast(),
 removeFirst(), and removeLast() with probabilities (p1, p2, p3, p4)
Tests 1-6 make random intermixed calls to enqueue(), dequeue(), sample(),
isEmpty(), size(), and iterator().

Test 16: check randomness of sample() by enqueueing n items, repeatedly calling
 sample(), and counting the frequency of each item
Test 17: check randomness of dequeue() by enqueueing n items, dequeueing n items,
 and seeing whether each of the n! permutations is equally likely
Test 18: check randomness of iterator() by enqueueing n items, iterating over those
 n items, and seeing whether each of the n! permutations is equally likely

A brief recap: where we’ve already encountered randomness

Quicksort is a randomized algorithm.  
Shuffling is needed for performance guarantee.  
 
 
 
 
 
 
 

Hash tables.

6

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

p ≤ p ≥ p

during

≤ p p ≥ p

after

lo j hi

p

before

lo hi

RANDOMNESS

‣what it is and what it isn’t
‣ Las Vegas and Monte Carlo
‣ rejection sampling
‣Karger’s algorithm

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Which of these outcomes is most likely to occur in a sequence of 6 coin flips?

A.

B.

C.

D. All of the above.

E. Both B and C.

Randomness: quiz 1

8

The uniform distribution

Coin flip.
 
 

.
 
Roll of a die.
 
 

.
 
 
Independent coin flips.
 
 
 

.

ℙ[C lands heads] = ℙ[C lands tails] = 1
2

ℙ[D rolls 1] = ℙ[D rolls 2] = ⋯ = ℙ[D rolls 6] = 1
6

ℙ[C1 heads, C2 tails, … Ck heads] = 1
2 × 1

2 ⋯ × 1
2 = 1

2k
9

Terminology and notation.
 
“ lands heads” and “ is even” are events with
probabilities , .  

Distribution: all outcome-probability pairs.
[uniform distribution: all probabilities equal]

C D
ℙ[C lands heads] ℙ[D rolls even]

outcome probability

heads 1/2

tails 1/2

distribution of unbiased coin

outcome probability

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

distribution of 6-sided die

uniform over
 outcomes2

uniform over
 outcomes6

uniform over
 outcomes2k

Pseudorandomness

Computers can’t generate randomness (without specialized hardware).
 
 
 
 
 
 
 
 
 
Pseudorandom functions.

10

Flip a coin 6 times and count how often it lands heads. Which count is most likely?

A. 2

B. 3

C. 4

D. All of the above.

E. None of the above.

Randomness: quiz 2

11

Binomial distribution

Experiment. Flip 5000 coins, count # of heads.

12

2,500

RANDOMNESS

‣what it is and what it isn’t
‣ Las Vegas and Monte Carlo
‣ rejection sampling
‣Karger’s algorithm

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Deterministic algorithms.

・scan the array left-to-right; return once treasure found.

n

14

 accesses in worst case
n
2 + 1

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Deterministic algorithms.

・scan the array left-to-right; return once treasure found.

・scan the array right-to-left; return once treasure found.

n

15

 accesses in worst case
n
2 + 1

 accesses in worst case
n
2 + 1

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Deterministic algorithms.

・scan the array left-to-right; return once treasure found.

・scan the array right-to-left; return once treasure found.

・look at even entries, then odd; return once treasure found.

n

16

 accesses in worst case
n
2 + 1

 accesses in worst case
n
2 + 1

 accesses in worst case
n
2 + 1

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 
 
Proposition. For every deterministic algorithm, there is a 50%-treasure array
where it makes accesses.

 

Pf. Consider the sequence of accesses it makes when all are duds.

The array with duds there and treasures elsewhere requires accesses. ▪

n

n
2 + 1

n
2 n

2 + 1

17

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 

 
Randomized algorithms (Monte Carlo):

・look at a[StdRandom.uniformInt(n)], return treasure (if found).

 

 

 

 

 

Fails with probability .

n

n/2
n

= 1
2

18

fails 1 flip lands tails≡

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 

 
Randomized algorithms (Monte Carlo):

・look at a[StdRandom.uniformInt(n)], return treasure (if found).

・look at two uniformly random entries, return 1st treasure found (if any).

 

 

 

 

Fails with probability .

n

1
2 × 1

2
19

fails 2 flips land tails≡

fails 1 flip lands tails≡

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 

 
Randomized algorithms (Monte Carlo):

・look at a[StdRandom.uniformInt(n)], return treasure (if found).

・look at two uniformly random entries, return 1st treasure found (if any).

・look at three uniformly random entries, return 1st treasure found (if any).

 

 

 

Fails with probability .

n

1
2 × 1

2 × 1
2

20

fails 1 flip lands tails≡

fails 3 flips land tails≡

fails 2 flips land tails≡

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 

 
Randomized algorithms (Monte Carlo):

・look at a[StdRandom.uniformInt(n)], return treasure (if found).

・look at two uniformly random entries, return 1st treasure found (if any).

・look at three uniformly random entries, return 1st treasure found (if any).

・look at uniformly random entries, return 1st treasure found (if any).

 

 

Fails with probability .

n

k

1
2k

21

fails 3 flips land tails≡

⋯

fails 2 flips land tails≡

fails 1 flip lands tails≡

fails k flips land tails≡

Suppose 1% of the array contains treasure and 99% contain duds. Then
a[StdRandom.uniformInt(n)] finds a treasure with probability

A. 1%

B. 10%

C. 50%

D. 99%

E. None of the above.

Randomness: quiz 3

22

Rare treasures and biased coins

Treasure hunt. Length- array with 1% treasures, 99% duds.  
 
 
 
 
 
 
Randomized algorithm (Monte Carlo):

・look at uniformly random entries, return treasure (if found).
 
Failure probability = [biased coin flips land tails]
 = .  
 
 
Remark. For , setting suffices.

n

k

ℙ k
(0.99)k

0.99k < 1 % k = 459

23

outcome probability

heads 1/100

tails 99/100

distribution of 99%-1%  
biased coin

Monte Carlo algorithms

Monte Carlo.

・Running time is deterministic.  
[doesn’t depend on coin flips]

・Not guaranteed to be correct.
 
 
 
 
 
Error reduction. If but want , repeat

 times and return best solution:
ℙ[A fails] = p ≤ q

k ≥ logp q

24

independence

ℙ[A fails k times] = pk ≤ plogp q = q

Las Vegas algorithms

Las Vegas.

・Guaranteed to be correct.

・Running time depends on outcomes of coin flips.
 
Ex. Quicksort, quickselect.

25

≤ p p ≥ p

lo j hi

Las Vegas vs. Monte Carlo

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Randomized algorithm (Las Vegas):

・repeatedly look at uniformly random entry; return only when treasure found.
 
Returns in 1st try with probability .

n

1/2

26

Las Vegas vs. Monte Carlo

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Randomized algorithm (Las Vegas):

・repeatedly look at uniformly random entry; return only when treasure found.
 
Returns in 1st try with probability .
Returns in 2nd try with probability .

n

1/2
1/4

27

Las Vegas vs. Monte Carlo

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Randomized algorithm (Las Vegas):

・repeatedly look at uniformly random entry; return only when treasure found.
 
Returns in 1st try with probability .
Returns in 2nd try with probability .  

Returns in th try with probability .  

Expected # of array accesses:

n

1/2
1/4

⋮
k 1/2k

1 × ℙ[1 access] + 2 × ℙ[2 accesses] + 3 × ℙ[3 accesses] + ⋯
28

⋯

int findTreasureLasVegas(boolean[] hasTreasure) {
 int n = a.length;
 while (true) {
 int sample = StdRandom.uniformInt(n);
 if (a[sample])
 return sample;
 }
}

int findTreasureMonteCarlo(boolean[] hasTreasure, int k) {
 int n = a.length;
 for (int i = 0; i < k; i++) {
 int sample = StdRandom.uniformInt(n);
 if (a[sample])
 return sample;
 }
 return -1;
}

Monte Carlo and Las Vegas in Java

29

maximum tries

failure

treasure
found

In the worst case, how many array accesses made by Las Vegas treasure
hunt on length- array? (Recall: samples with replacement.)

A. 1

B. 2

C.

D.

E. None of the above.

n

n/2

n

Randomness: quiz 4

30

Las Vegas Analysis

Treasure hunt. Length- array with a fraction of treasures, of duds.  

 
Proposition. Expected number of array accesses of Las Vegas algorithm is .
 
Pf. Call the expected number of accesses.

・With probability , first try succeeds total is .

・With probability , first try fails total is .
 
Therefore,
 
 
 
whose solution is . 

n p 1 − p

1/p

𝔼[A]
p ⟹ 1
1 − p p⟹ 𝔼[A] + 1

𝔼[A] = 1/p

31

geometric random variable
with success probability p

𝔼[A] = p ⋅ 1 + (1 − p) ⋅ (𝔼[A] + 1),

How many expected array accesses made by Las Vegas treasure hunt on
length- array with 99% duds?

A. 2

B. 99

C. 100

D.

E. None of the above.

n

n

Randomness: quiz 5

32

RANDOMNESS

‣what it is and what it isn’t
‣ Las Vegas and Monte Carlo
‣ rejection sampling
‣Karger’s algorithm

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Uniform distribution of closed cells

Goal. Generate a random with open[i,j] == false.  

Rejection sampling.

・Generate a random cell in -by- grid without replacement.

・If cell is closed, use it; otherwise, repeat.

(i, j)

n n

34

int i, j;
do {
 i = StdRandom.uniformInt(n);
 j = StdRandom.uniformInt(n);
} while (isOpen(i, j));

random (i, j) in grid

repeat until closed

à la Las Vegas!

Uniform distribution of closed cells

Goal. Generate a random with open[i,j] == false.  

Rejection sampling.

・Generate a random cell in -by- grid without replacement.

・If cell is closed, use it; otherwise, repeat.
 
 
 
 
 
 
 
 
 
Expected iterations. if fraction closed.

(i, j)

n n

1/α α

35

int i, j;
do {
 i = StdRandom.uniformInt(n);
 j = StdRandom.uniformInt(n);
} while (isOpen(i, j));

geometric random
variable with success α

Uniform distribution of bounded integers

Goal. Simulate roll of 6-sided die with uniform bits.  

Rejection sampling.

・Sample 3 independent bits.

・Repeat or output as follows:

– if TTT, output 1

– if TTH, output 2

– if THT, output 3

– if THH, output 4

– if HTT, output 5

– if HTH, output 6

– if HHT or HHH, repeat

36

Uniform distribution of bounded integers

Goal. Generate an integer using uniform bits.  

Rejection sampling.

・Sample independent bits, call the integer
with corresponding binary representation.

・If , use it; otherwise, repeat.

0 ≤ r < n

⌈log2 n⌉ r

r < n

37

random 0 ≤ r < 2⌈log2 n⌉

repeat until < n

int r;
do {
 r = 0;
 for (int p = 1; p < n; p *= 2)
 r += p * StdRandom.bernoulli();
} while (r >= n);

Uniform distribution in unit circle

Goal. Generate a random point in unit circle.  

Rejection sampling.

・Generate a random point in 2-by-2 square centered at origin.

・If point is inside circle, use it; otherwise, repeat.  
 
 
 
 
 
 
 

 
Remark. If out of samples in unit circle, .s t

s
t

≈ π
4

38

double x, y;
do {
 x = StdRandom.uniformDouble(-1.0, 1.0);
 y = StdRandom.uniformDouble(-1.0, 1.0);
} while (x*x + y*y > 1.0);

x

y

in

(0, 0)

(1, 1)

out

used in Fraud Detection!

random (x, y) in square

repeat until in the circle

RANDOMNESS

‣what it is and what it isn’t
‣ Las Vegas and Monte Carlo
‣ rejection sampling
‣Karger’s algorithm

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Goal. Find cut in undirected graph with fewest edges (for any source and sink).
 
Equivalent. Smallest min -cut among all pairs , antiparallel edges of capacity 1.st (s, t)

Global mincut problem

40

Goal. Find cut in undirected graph with fewest edges (for any source and sink).  
 
Deterministic algorithms.

・Brute-force: iterate over all cuts, return smallest. [cuts exponential time!]

・Ford-Fulkerson-based: pick any as source, try every as target. [runs of FF runtime]
2V−1 − 1 ⟹

s t V − 1 ⟹ Θ(V2E2)

Global mincut problem

41

Goal. Find cut in undirected graph with fewest edges (for any source and sink).  

Idea. Pick a random cut.

Global mincut problem

42

Uniformly? There may be 1 mincut but total cuts — takes a lot of luck to find it.  

Example.

2V−1 − 1

Mincut of dumbbell graph

43

V / 2 vertices on each side

Algorithm.

・Assign a random weight (uniform between 0 and 1) to each edge .

・Run Kruskal’s MST algorithm until 2 connected components left.

・Return cut defined by connected components.
 
Probability of finding a mincut . [no mincut edges in either connected component]  

Run algorithm many times and return best cut.

e

≥ 2
V2

Karger’s global mincut algorithm

44

or: shuffle edges, build MST in resulting order

Karger’s algorithm demo

・Assign random edge weights.

・Run Kruskal’s algorithm until 2 connected components left.

45

5

4

7

1
3

0

2

6

0-2

0-4

0-7

0-6

1-2

1-3

1-5

1-7

2-3

2-6

2-7

3-6

4-6

4-5

4-7

5-7

0.16

0.17
0.19

0.26

0.470.49

0.61

0.62

0.65
0.71

0.74

0.81

0.84

0.89

0.92

0.94

 0.89

 0.84

 0.16

 0.94

 0.74

 0.92

 0.61

 0.19

 0.17

 0.26

 0.65

 0.47

 0.62

 0.71

 0.81

 0.49

Karger’s algorithm demo

Consider edges in ascending order of weight.

・Add next edge to T unless doing so would create a cycle.

・Stop if contains edges.T V − 2

46

5

4

7

1
3

0

2

6

a cut: and {0,1,5,7} {2,3,4,6}

2-7 0.65

4-5 0.71

1-2 0.74

4-7 0.81

0-4 0.84

0-2 0.89

1-3 0.92

0-6 0.94

0-7 0.16

2-3 0.17

1-7 0.19

2-6 0.26

3-6 0.47

5-7 0.49

1-5 0.61

4-6 0.62

Karger succeeds if middle edge not in MST.

・with probability , its weight is the largest.

・each side has edges, so .
1/E

< (V/2)2 E ≤ V2/2

Karger on dumbbell graph

47

V / 2 vertices on each side

 success with probability!⟹ ≥ 2
V2

Algorithm.

・Assign a random weight (uniform between 0 and 1) to each edge .

・Run Kruskal’s MST algorithm until 2 connected components left.

・Return cut defined by connected components.
 
Probability of finding a mincut . [no mincut edges in each connected component]  

Run algorithm many times and return best cut.  
 
 
 
 
 

Remark 1. Finds global mincut in time — better than Ford–Fulkerson-based!
Remark 2. With clever idea, improved to time (still randomized).

e

≥ 2
V2

Θ(V2E log E)
Θ(E log3 V)

Karger’s global mincut algorithm

48

Smallest # of repetitions of Karger’s algorithm to get correct answer with 99% probability?

A.

B.

C.

D.

E. None of the above.

Θ(1)

Θ(V)

Θ(V2)

Θ(V3)

Randomness: quiz 6

49

(1 − 1
x)

kx

≤ e−k

(1 − 1
V2)

5V2

≤ e−5 ≈ 0.67 %

⇓

Bernoulli’s inequality

Beyond this course

・Approximation algorithms [intractability: stay tuned!]

・Machine learning [randomized MW]

・Optimization [stochastic gradient descent]

・Cryptography [average-case hardness]

・Complexity theory [derandomization]

・Quantum computation [Shor’s factoring algorithm]

・Networking [load balancing]

・Graphics [procedural generation]

・Physics [Monte Carlo simulation]

・Health sciences [randomized control trials]

・Mathematics [probabilistic method]

 
 
ORF 309. Probability and Stochastic Systems
COS 330. Great Ideas in Theoretical Computer Science  
COS 433. Cryptography

50

IBM Quantum System One

Lecture Slides © Copyright 2025 Marcel Dall'Agnol

Credits

51

image source license

Quarter Adobe Stock Education License

6-sided dice Adobe Stock Education License

20-sided die Adobe Stock Education License

Lava lamps Fast Company

Coin Toss clipground.com CC BY 4.0

IDQ Quantum Key Factory idquantique.com

SG100 protego.bytehost16.com

Las Vegas Adobe Stock Education License

Monte Carlo Adobe Stock Education License

Treasure chests Adobe Stock Education License

Random number generator XKCD CC BY-NC 2.5

https://stock.adobe.com/images/close-up-of-a-us-quarter-dollar-1994-png-isolated-on-transparent-background/531124379
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/playing-dice-white-dice-falling-3d-illustration-transparent-dices-two/522136779
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/one-brown-marbled-w20-or-20-sided-dice/563897479
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.fastcompany.com/90137157/the-hardest-working-office-design-in-america-encrypts-your-data-with-lava-lamps
https://clipground.com/images/toss-clipart-1.jpg%20%20CC%20BY%204.0
https://creativecommons.org/licenses/by/4.0/
https://www.idquantique.com/wp-content/uploads/Quantis-AIS-31-Validated-RNG-500-x-400-1.png
http://protego.byethost16.com/images/sg100_big.jpg
https://stock.adobe.com/images/aerial-las-vegas-at-night/274951182
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/the-monte-carlo-casino-gambling-and-entertainment-complex-located-in-monte-carlo-monaco-cote-de-azul-france-europe/400966373
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/cartoon-chest-treasure-box-with-gold-coins-and-gemstones-vector-pirate-treasure-open-wooden-chests-with-gold-jewel-crystals-or-empty-with-locks-pirate-treasure-game-asset/523663701
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://xkcd.com/221/
https://creativecommons.org/licenses/by-nc/2.5/

https://xkcd.com/221/

int getRandomNumber()
{
 return 4; // chosen by fair dice roll.
 // guaranteed to be random.
}

