A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

RANDOMNESS

> what it is and what it isn’t
> Las Vegas and Monte Carlo
> rejection sampling

» Karger’s algorithm

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

A brief recap: where we’ve already encountered randomness

Percolation. Monte Carlo simulation: open random blocked sites.

PERGOATION

Randomized queues. Remove item chosen uniformly at random.

R

[RERS

e
RANDOMZED
QUEUES

-
rmi

A brief recap: where we’ve already encountered randomness
P Y

Test 2: open random sites until the system percolates
Test 7: open random sites with large n
Test 12: call open(), 1sOpen(), and numberOfOpenSites()
in random order until just before system percolates
Test 13: call open() and percolates() i1n random order until just before system
percolates
Test 14: call open() and isFull() 1n random order until just before system percolates
Test 15: call all methods in random order until just before system percolates
Test 16: call all methods 1n random order until almost all sites are open
(with 1nputs not prone to backwash)
Test 20: call all methods 1n random order until all sites are open
(these 1nputs are prone to backwash)

A brief recap: where we’ve already encountered randomness

oo
e QUEUES

Tests 1-8 make random intermixed calls to addFirst(), addLast(),

removeFirst(), removeLast(), 1sEmpty(), and si1ze(), and i1terator().

Test 12: check iterator() after random calls to addFirst(), addLast(),
removeFirst(), and removelLast() with probabilities (pl, p2, p3, p4)

Tests 1-6 make random intermixed calls to enqueue(), dequeue(), sample(),

isEmpty(), size(), and iterator().

Test 16: check randomness of sample() by enqueueing n items, repeatedly calling
sample(), and counting the frequency of each i1tem

Test 17: check randomness of dequeue() by enqueueing n i1tems, dequeueing n items,
and seeing whether each of the n! permutations i1s equally likely

Test 18: check randomness of iterator() by enqueueing n items, iterating over those
n 1tems, and seeing whether each of the n! permutations i1s equally Tikely

A brief recap: where we’ve already encountered randomness

Quicksort is a randomized algorithm.

Shuffling is needed for performance guarantee.

before

P

1

lo

Hash tables.

p = p
o0
o0 °
o0 o0
o0 o0

after

RANDOMNESS

» what it is and what it isn’t

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Randomness: quiz 1

Which of these outcomes is most likely to occur in a sequence of 6 coin flips?

D. All of the above.

. Both B and C.

The uniform distribution

Coin flip. Terminology and notation.
“C lands heads” and “D is even” are events with
1 :
P[C lands heads] = P[C lands tails] = —. « “wormover probabilities P[C lands heads], P[D rolls even].
9) 2 outcomes
Roll of a die. D Distribution: all outcome-probability pairs.
. \
¥y « ” [uniform distribution: all probabilities equal]

V4

| : "
P[D rolls 11 =P[D rolls 2] = --- = P[D rolls 6] = —. — “g’f"”m over m probability
6 outcomes
1 1/6
2 1/6

. . heads 1/2
Independent coin flips. 3 1/6
tails 1/2
4 1/6
distribution of unbiased coin
5 1/6
6 1/6

uniform over
k i i i - -
2" outcomes distribution of 6-sided die

Pseudorandomness

Computers can’t generate randomness (without specialized hardware).

Pseudorandom functions.

a <

Class Random
java.lang.Object
java.util.Random

All Implemented Interfaces:

Serializable

Direct Known Subclasses:

SecureRandom, ThreadLocalRandom

10

Randomness: quiz 2

Flip a coin 6 times and count how often it lands heads. Which count is most likely?

A. 2
B. 3
C. 4

D. All of the above.

E. None of the above.

11

Binomial distribution

Experiment. Flip 5000 coins, count # of heads.

2,500

12

RANDOMNESS

> Las Vegas and Monte Carlo
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

A toy problem

Treasure hunt. Length-» array with 50% treasures, 50% duds.

il il il il il il il

ST TEEE,

Deterministic algorithms.

n D
* scan the array left-to-right; return once treasure found.) 5 L OO U VRO GO

A toy problem

Treasure hunt. Length-» array with 50% treasures, 50% duds.

FEEEEEE

Deterministic algorithms.

+ 1 accesses in worst case

* scan the array left-to-right; return once treasure found. <

» scan the array right-to-left; return once treasure found. « + 1 accesses in worst case

NS)] S

A toy problem

Treasure hunt. Length-» array with 50% treasures, 50% duds.

il

#

&

il

&

il

&

il

&

& |

Deterministic algorithms.

* scan the array left-to-right; return once treasure found.

* scan the array right-to-left; return once treasure found.

* look at even entries, then odd; return once treasure found.

<

NS]S | S

+ 1 accesses in worst case

+ 1 accesses in worst case

+ 1 accesses in worst case

16

A toy problem

Treasure hunt. Length-» array with 50% treasures, 50% duds.

i

a5

i

&

il

&

il

&

il

a5

y

y

Proposition. For every deterministic algorithm, there is a 50%-treasure array

. n
where it makes 5 + 1 accesses.

. n .
Pf. Consider the sequence ofE accesses it makes when all are duds.

n

The array with duds there and treasures elsewhere requires 5 + 1 accesses. =

17

A toy problem

Treasure hunt. Length-» array with 50% treasures, 50% duds.

!‘g
!

Randomized algorithms (Monte Carlo):

 look at a|StdRandom.uniformInt(n) |, return treasure (if found).

/|
Fails with probability g >
n

<

fails = 1 flip lands tails

18

A toy problem

Treasure hunt. Length-» array with 50% treasures, 50% duds.

%

Randomized algorithms (Monte Carlo):

 look at a| StdRandom.uniformInt(n) |, return treasure (if found). -

* look at two uniformly random entries, return 1st treasure found (if any).

1 1
Fails with probability 5 X >

fails = 1 flip lands tails

<

fails = 2 flips land tails

19

A toy problem

Treasure hunt. Length-» array with 50% treasures, 50% duds.

&

&

Randomized algorithms (Monte Carlo):

 look at a| StdRandom.uniformInt(n) |, return treasure (if found). -

fails = 1 flip lands tails

* look at two uniformly random entries, return 1st treasure found (if any). -

fails = 2 flips land tails

* look at three uniformly random entries, return 1st treasure found (if any). -«

1 1 1
Fails with probability — x — x —.
2 2 2

fails = 3 flips land tails

20

A toy problem

Treasure hunt. Length-»n array with 50% treasures, 50% duds.

=

=

& &

=

Randomized algorithms (Monte Carlo):

* ook at a[StdRandom.uniformInt(n) |, return treasure (if found). - fails = 1 flip lands tails

* |look at two uniformly random entries, return 1st treasure found (if any). - fails = 2 flips land tails
* look at three uniformly random entries, return 1st treasure found (if any). - fails = 3 flips land tails
* look at k£ uniformly random entries, return 1st treasure found (if any). < fails = k flips land tails

1
Fails with probability o

21

Randomness: quiz 3

Suppose 1% of the array contains treasure and 99% contain duds. Then

alStdRandom.uniformInt(n) | finds a treasure with probability

A. 1%

B. 10%
C. 50%
D. 99%

E. None of the above.

22

Rare treasures and biased coins

Treasure hunt. Length-»n array with 1% treasures, 99% duds.

Randomized algorithm (Monte Carlo):

* look at k£ uniformly random entries, return treasure (if found).

Failure probability = P[k biased coin flips land tails]
= (0.99)%.

Remark. For 0.99f < 1 %, setting k = 459 suffices.

heads 1/100

tails 99/100

distribution of 99%-1%
biased coin

23

Monte Carlo algorithms

Monte Carlo.
* Running time is deterministic.
[doesn’t depend on coin flips]

* Not guaranteed to be correct.

Error reduction. If P[A fails] =p but want < g, repeat

k> log,q times and return best solution:

P[A fails k times] = p* < p°%7 =g

T

independence

24

Las Vegas algorithms

Las Vegas.

Guaranteed to be correct.

 Running time depends on outcomes of coin flips.

Ex. Quicksort, quickselect.

IA
=
g~

IV
=

lo j hi

MMMlﬂ?

25

Las Vegas vs. Monte Carlo

Treasure hunt. Length-» array with 50% treasures, 50% duds.

i i)

a5

il

& | &

Randomized algorithm (Las Vegas):

» repeatedly look at uniformly random entry; return only when treasure found.

Returns in 1st try with probability 1/2.

Las Vegas vs. Monte Carlo

Treasure hunt. Length-» array with 50% treasures, 50% duds.

® | & | &

Randomized algorithm (Las Vegas):

» repeatedly look at uniformly random entry; return only when treasure found.

Returns in 1st try with probability 1/2.
Returns in 2nd try with probability 1/4.

27

Las Vegas vs. Monte Carlo

Treasure hunt. Length-» array with 50% treasures, 50% duds.

® | & | &

Randomized algorithm (Las Vegas):

» repeatedly look at uniformly random entry; return only when treasure found.

Returns in 1st try with probability 1/2.
Returns in 2nd try with probability 1/4.

Returns in kth try with probability 1/2~.

Expected # of array accesses: 1 x P[1 access] + 2 x P[2 accesses] + 3 x P[3 accesses] +

28

Monte Carlo and Las Vegas in Java

maximum tries

int findTreasureMonteCarlo(boolean|[] hasTreasure, int k) {
int n = a.length;
for (Aint1 =0; 1 <k; 1++) {
int sample = StdRandom.uniformInt(n);
1f (alsample])

<€
return sample;

¥

return -1;
} I

failure

lreasure

found

int findTreasurelLasVegas(boolean[] hasTreasure) {
int n = a.length;
while (true) {
int sample = StdRandom.uniformInt(n);
1f (alsample])

>

¥

return sample;

29

Randomness: quiz 4

In the worst case, how many array accesses made by Las Vegas treasure

hunt on length-7 array? (Recall: samples with replacement.)

A 1
B. 2
C. n/2
D. n

E. None of the above.

30

Las Vegas Analysis

Treasure hunt. Length-n array with a p fraction of treasures, 1 — p of duds.

Proposition. Expected number of array accesses of Las Vegas algorithm is 1/p.
Pf. Call E[A] the expected number of accesses.
« With probability p, first try succeeds = total is 1.

« With probability 1 — p, first try fails = total is E[A] + 1.

Therefore,

F[A] = p-1 + (1—p)- (E[A]+1),

whose solution is E[A] = 1/p. =

Randomness: quiz 5

How many expected array accesses made by Las Vegas treasure hunt on
length-7 array with 99% duds?

A. 2

B. 99
C. 100
D. n

E. None of the above.

32

RANDOMNESS

Algorithms > rejection sampling

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Uniform distribution of closed cells

Goal. Generate a random (i, /) with open[1,]] == false.

Rejection sampling.

* Generate a random cell in n-by-» grid without replacement.

 |f cell is closed, use it; otherwise, repeat. < a la Las Vegas!
int 1, J;

do {
1 = StdRandom.uniformInt(n):
j = StdRandom.uniformInt(n) ;

F while (isOpen(i, J)) ;< repeat until closed

< random (i, j) in grid

34

Uniform distribution of closed cells

Goal. Generate a random (i, j) with open[1,]] == false.

Rejection sampling.

* Generate a random cell in n-by-n grid without replacement.

 |If cell is closed, use it; otherwise, repeat.

int 1, J;
do {
1 = StdRandom.uniformInt(n):
j = StdRandom.uniformInt(n) ;
} while (isOpen(i, j));

geometric random

Expected iterations. 1/a if a fraction closed. - | |
variable with success o

35

Uniform distribution of bounded integers

Goal. Simulate roll of 6-sided die with uniform bits.

Rejection sampling.

Sample 3 independent bits.

Repeat or output as follows:

fTTT, output 1

f TTH, output 2

f THT, output 3

f THH, output 4

f HTT, output 5

f HTH, output 6

if HHT or HHH, repeat

4

/4
/4

36

Uniform distribution of bounded integers

Goal. Generate an integer 0 < r < n using uniform bits.

Rejection sampling.
« Sample [log,n] independent bits, call » the integer
with corresponding binary representation.

* |If r < n, use it; otherwise, repeat.

int r;
do {
r=0;
for (int p = 1; p <n; p *= 2)
r += p * StdRandom.bernoulli();
} while (r >= n):

37

Uniform distribution in unit circle

Goal. Generate a random point in unit circle. < used in Fraud Detection!

(1,1)

Y
Rejection sampling.
* Generate a random point in 2-by-2 square centered at origin. in,
* |f point is inside circle, use it; otherwise, repeat. X Y
(0,0)
out.
double x, vy;
do {

X = StdRandom.uniformDouble(-1.0, 1.0);
y = StdRandom.uniformDouble(-1.0, 1.0);
} while (x*x + y*y > 1.0);

. . i \)
Remark. If s out of r samples in unit circle, — ~

/A
r 4

RANDOMNESS

Algorithms
» Karger’s algorithm

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Global mincut problem

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Equivalent. Smallest min sr-cut among all pairs (s, 1), antiparallel edges of capacity 1.

40

Global mincut problem

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Deterministic algorithms.
 Brute-force: iterate over all cuts, return smallest.

 Ford-Fulkerson-based: pick any s as source, try every r as target.

O

41

Global mincut problem

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

ldea. Pick a random cut.

I\
NI

42

Mincut of dumbbell graph

Uniformly? There may be 1 mincut but 2"~' — 1 total cuts — takes a /ot of luck to find it.

Example.

\ V' /2 vertices on each side

43

Karger’s global mincut algorithm

Algorithm.
* Assign a random weight (uniform between 0 and 1) to each edge e.
* Run Kruskal’s MST algorithm until 2 connected components left.
« Return cut defined by connected components.
2

Probability of finding a mincut > 7

Run algorithm many times and return best cut.

44

Karger’s algorithm demo

« Assign random edge weights.

» Run Kruskal’s algorithm until 2 connected components left.

O

0.71

O

0.601

(T)_os2

0.19

0.49 @
0.65

0.81

0.16

0.84

0.74

@)

0.62

)

0.17
9

0.94

0.8

0.26

0.47

0-2
0-4
0-7
0-6
1-2
1-3
1-5
1-7
2-3
2-6
2-7
3-6
4-6
4-5
4-7
5-7

©O O O O O O O O O O O O O o o o

.89
. 84
.16
.94
.74
.92
.01
.19
.17
.20
.05
.47
.62
71
.81
.49

45

Karger’s algorithm demo

Consider edges in ascending order of weight.

« Add next edge to T unless doing so would create a cycle.

» Stop if T contains V -2 edges.

a cut: {0,1,5,7} and {2,3,4,6}

0-7
2-3
1-7
2-6

5-7

4-6

o O O O

.16
.17
.19
.26

.49

.02

46

Karger on dumbbell graph

Karger succeeds if middle edge not in MST.
« with probability 1/E, its weight is the largest.
 each side has < (V/2)? edges, so E < V?/2.

\ V' /2 vertices on each side

. 2 s
—> success with > v probability!

47

Karger’s global mincut algorithm

Algorithm.
* Assign a random weight (uniform between 0 and 1) to each edge e.
* Run Kruskal’s MST algorithm until 2 connected components left.
« Return cut defined by connected components.
2

Probability of finding a mincut > 7

Run algorithm many times and return best cut.

Remark 1. Finds global mincut in ®(V?E log E) time — better than Ford-Fulkerson-based!

Remark 2. With clever idea, improved to ®(E log’ V) time (still randomized).

48

Randomness: quiz 6

Smallest # of repetitions of Karger’s algorithm to get correct answer with 99% probability?

A. O(1)

B. O)
C. O(?
D. OV

E. None of the above.

49

Beyond this course

« Approximation algorithms [intractability: stay tuned!]

* Machine learning [randomized MW

* Optimization [stochastic gradient descent]

* Cryptography [average-case hardness]

 Complexity theory [derandomization]

* Quantum computation [Shor’s factoring algorithm]

* Networking [loac

* Graphics [procec

ba

ura

ancing]

generation]

* Physics [Monte Carlo simulation]

 Health sciences [randomized control trials]

 Mathematics [probabilistic method]

ORF 309. Probability and Stochastic Systems

COS 330. Great Ideas in Theoretical Computer Science
COS 433. Cryptography

IBM Quantum System One

50

Credits

image source license

Quarter Adobe Stock Education License
6-sided dice Adobe Stock Education License
20-sided die Adobe Stock Education License

Lava lamps
Coin Toss
IDQ Quantum Key Factory
SG100
Las Vegas
Monte Carlo
Treasure chests

Random number generator

Fast Company

clipground.com

idquantique.com

protego.bytehost16.com

Adobe Stock

Adobe Stock

Adobe Stock

XKCD

CCBY 4.0

Education License

Education [icense

Education [icense

CCBY-NC 2.5

Lecture Slides © Copyright 2025 Marcel Dall'Agnol

https://stock.adobe.com/images/close-up-of-a-us-quarter-dollar-1994-png-isolated-on-transparent-background/531124379
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/playing-dice-white-dice-falling-3d-illustration-transparent-dices-two/522136779
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/one-brown-marbled-w20-or-20-sided-dice/563897479
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.fastcompany.com/90137157/the-hardest-working-office-design-in-america-encrypts-your-data-with-lava-lamps
https://clipground.com/images/toss-clipart-1.jpg%20%20CC%20BY%204.0
https://creativecommons.org/licenses/by/4.0/
https://www.idquantique.com/wp-content/uploads/Quantis-AIS-31-Validated-RNG-500-x-400-1.png
http://protego.byethost16.com/images/sg100_big.jpg
https://stock.adobe.com/images/aerial-las-vegas-at-night/274951182
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/the-monte-carlo-casino-gambling-and-entertainment-complex-located-in-monte-carlo-monaco-cote-de-azul-france-europe/400966373
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/cartoon-chest-treasure-box-with-gold-coins-and-gemstones-vector-pirate-treasure-open-wooden-chests-with-gold-jewel-crystals-or-empty-with-locks-pirate-treasure-game-asset/523663701
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://xkcd.com/221/
https://creativecommons.org/licenses/by-nc/2.5/

int getRandomNumber()

1

retornY; // chosen by fair dice roll.
// guaranteed to be random.

https://xkcd.com/221/

