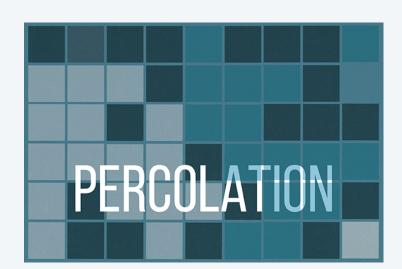
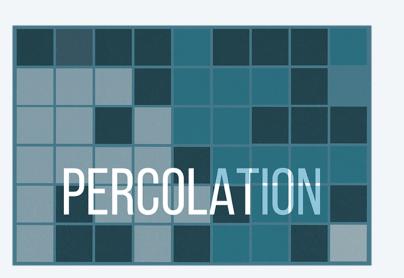
Algorithms

Percolation. Monte Carlo simulation: open random blocked sites.



Randomized queues. Remove item chosen uniformly at random.



```
Test 2: open random sites until the system percolates

Test 7: open random sites with large n

Test 12: call open(), isOpen(), and numberOfOpenSites()

in random order until just before system percolates

Test 13: call open() and percolates() in random order until just before system percolates

Test 14: call open() and isFull() in random order until just before system percolates

Test 15: call all methods in random order until just before system percolates

Test 16: call all methods in random order until almost all sites are open (with inputs not prone to backwash)

Test 20: call all methods in random order until all sites are open (these inputs are prone to backwash)
```

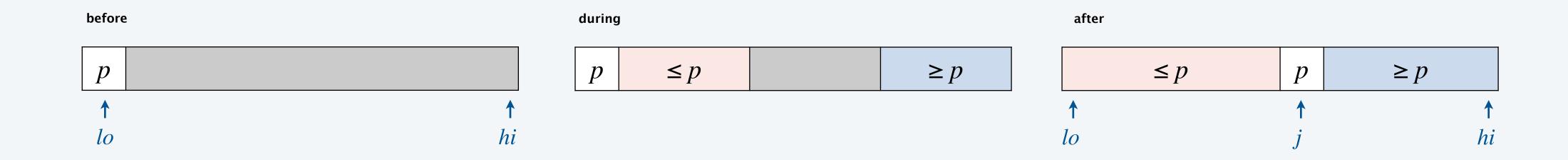

Test 16: check randomness of sample() by enqueueing n items, repeatedly calling sample(), and counting the frequency of each item

Test 17: check randomness of dequeue() by enqueueing n items, dequeueing n items, and seeing whether each of the n! permutations is equally likely

Test 18: check randomness of iterator() by enqueueing n items, iterating over those n items, and seeing whether each of the n! permutations is equally likely

Quicksort is a randomized algorithm.

Shuffling is needed for performance guarantee.



Hash tables.

Which of these outcomes is most likely to occur in a sequence of 6 coin flips?

- **D.** All of the above.
- E. Both B and C.

The uniform distribution

Coin flip.

$$\mathbb{P}[C \text{ lands heads}] = \mathbb{P}[C \text{ lands tails}] = \frac{1}{2} \leftarrow \frac{uniform \text{ over}}{2 \text{ outcomes}}$$

Roll of a die.

$$\mathbb{P}[D \text{ rolls } 1] = \mathbb{P}[D \text{ rolls } 2] = \dots = \mathbb{P}[D \text{ rolls } 6] = \frac{1}{6}. \leftarrow \frac{uniform \text{ over } 6 \text{ outcomes}}{6 \text{ outcomes}}$$

Independent coin flips.

$$\mathbb{P}[C_1 \text{ heads, } C_2 \text{ tails, } \dots C_k \text{ heads}] = \frac{1}{2} \times \frac{1}{2} \dots \times \frac{1}{2} = \frac{1}{2^k} \longleftarrow \frac{uniform \ over}{2^k \ outcomes}$$

Terminology and notation.

"C lands heads" and "D is even" are **events** with probabilities $\mathbb{P}[C \text{ lands heads}]$, $\mathbb{P}[D \text{ rolls even}]$.

Distribution: all outcome-probability pairs.

[uniform distribution: all probabilities equal]

outcome	probability
heads	1/2
tails	1/2

distribution of unbiased coin

outcome	probability
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

distribution of 6-sided die

Pseudorandomness

Computers can't generate randomness (without specialized hardware).

Pseudorandom functions.

Class Random

java.lang.Object java.util.Random

All Implemented Interfaces:

Serializable

Direct Known Subclasses:

SecureRandom, ThreadLocalRandom

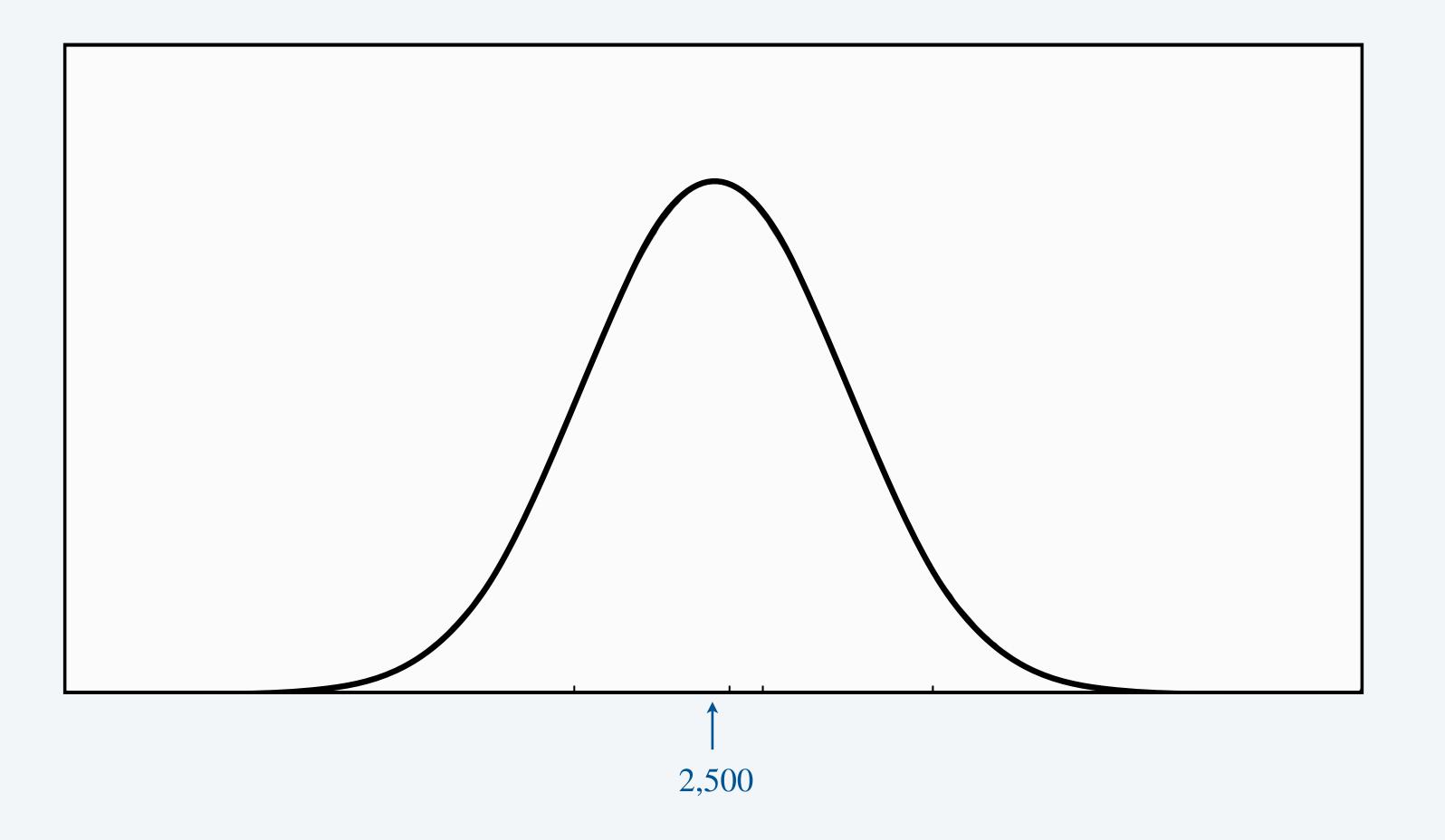
Randomness: quiz 2

Flip a coin 6 times and count how often it lands heads. Which count is most likely?

- **A**. 7
- B. 3
- **C.** 4
- D. All of the above.
- E. None of the above.

Binomial distribution

Experiment. Flip 5000 coins, count # of heads.



Treasure hunt. Length-n array with 50% treasures, 50% duds.

Deterministic algorithms.

• scan the array left-to-right; return once treasure found.

$$\leftarrow$$
 $\frac{n}{2} + 1$ accesses in worst case

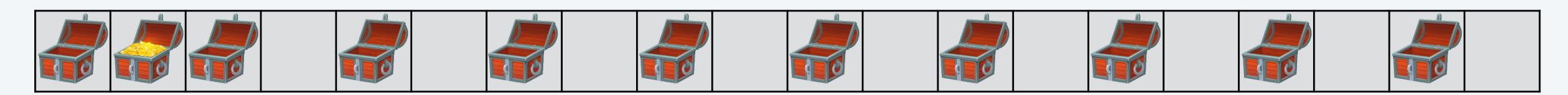
Treasure hunt. Length-n array with 50% treasures, 50% duds.

		_	_	 		_	_	_	_	_	_	 _	_

Deterministic algorithms.

- scan the array left-to-right; return once treasure found. $\leftarrow \frac{n}{2} + 1$ accesses in worst case
- scan the array right-to-left; return once treasure found. $\leftarrow \frac{n}{2} + 1$ accesses in worst case

Treasure hunt. Length-n array with 50% treasures, 50% duds.



Deterministic algorithms.

- scan the array left-to-right; return once treasure found. $\leftarrow \frac{n}{2} + 1$ accesses in worst case
- scan the array right-to-left; return once treasure found. $\leftarrow \frac{n}{2} + 1$ accesses in worst case
- look at even entries, then odd; return once treasure found. $\frac{n}{2} + 1$ accesses in worst case

Treasure hunt. Length-n array with 50% treasures, 50% duds.

Proposition. For every deterministic algorithm, there is a 50%-treasure array where it makes $\frac{n}{2} + 1$ accesses.

Pf. Consider the sequence of $\frac{n}{2}$ accesses it makes when all are duds.

The array with duds there and treasures elsewhere requires $\frac{n}{2} + 1$ accesses.

Treasure hunt. Length-n array with 50% treasures, 50% duds.

	_	_			_	_			_	
										1

Randomized algorithms (Monte Carlo):

• look at a [StdRandom.uniformInt(n)], return treasure (if found). \leftarrow fails = 1 flip lands tails

Fails with probability $\frac{n/2}{n} = \frac{1}{2}$.

Treasure hunt. Length-n array with 50% treasures, 50% duds.

|

Randomized algorithms (Monte Carlo):

- look at a [StdRandom_uniformInt(n)], return treasure (if found). \leftarrow fails \equiv 1 flip lands tails
- look at two uniformly random entries, return 1^{st} treasure found (if any). \leftarrow fails $\equiv 2$ flips land tails

Fails with probability $\frac{1}{2} \times \frac{1}{2}$.

Treasure hunt. Length-n array with 50% treasures, 50% duds.

Randomized algorithms (Monte Carlo):

- look at a [StdRandom uniformInt(n)], return treasure (if found). \leftarrow fails \equiv 1 flip lands tails
- look at two uniformly random entries, return 1^{st} treasure found (if any). \longleftarrow fails $\equiv 2$ flips land tails
- look at three uniformly random entries, return 1st treasure found (if any). \leftarrow fails \equiv 3 flips land tails

Fails with probability $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$.

Treasure hunt. Length-n array with 50% treasures, 50% duds.

Randomized algorithms (Monte Carlo):

- look at a [StdRandom uniformInt(n)], return treasure (if found). \leftarrow fails \equiv 1 flip lands tails
- look at two uniformly random entries, return 1^{st} treasure found (if any). \longleftarrow fails $\equiv 2$ flips land tails
- look at three uniformly random entries, return 1^{st} treasure found (if any). \leftarrow fails \equiv 3 flips land tails
- look at k uniformly random entries, return 1^{st} treasure found (if any). \longleftarrow fails $\equiv k$ flips land tails

Fails with probability $\frac{1}{2^k}$.



Randomness: quiz 3

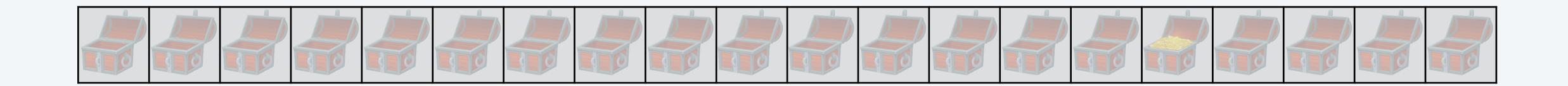
Suppose 1% of the array contains treasure and 99% contain duds. Then

a[StdRandom.uniformInt(n)] finds a treasure with probability

- A. 1%
- B. 10%
- **C.** 50%
- D. 99%
- E. None of the above.

Rare treasures and biased coins

Treasure hunt. Length-n array with 1% treasures, 99% duds.



Randomized algorithm (Monte Carlo):

look at k uniformly random entries, return treasure (if found).

Failure probability =
$$\mathbb{P}[k \text{ biased coin flips land tails}]$$

= $(0.99)^k$.

outcome	probability
heads	1/100
tails	99/100

distribution of 99%-1% biased coin

Remark. For $0.99^k < 1\%$, setting k = 459 suffices.

Monte Carlo algorithms

Monte Carlo.

- Running time is deterministic.
 [doesn't depend on coin flips]
- Not guaranteed to be correct.

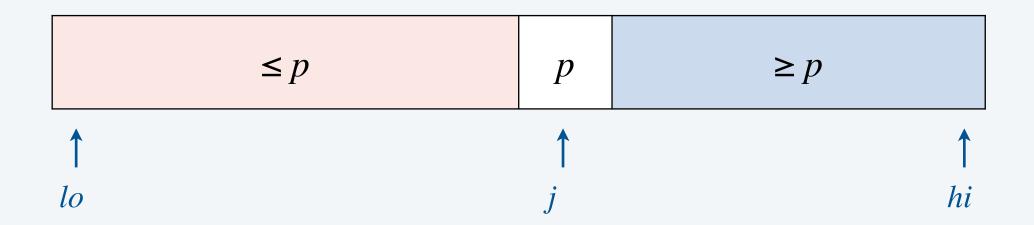
Error reduction. If $\mathbb{P}[A \text{ fails}] = p$ but want $\leq q$, repeat $k \geq \log_p q$ times and return best solution:

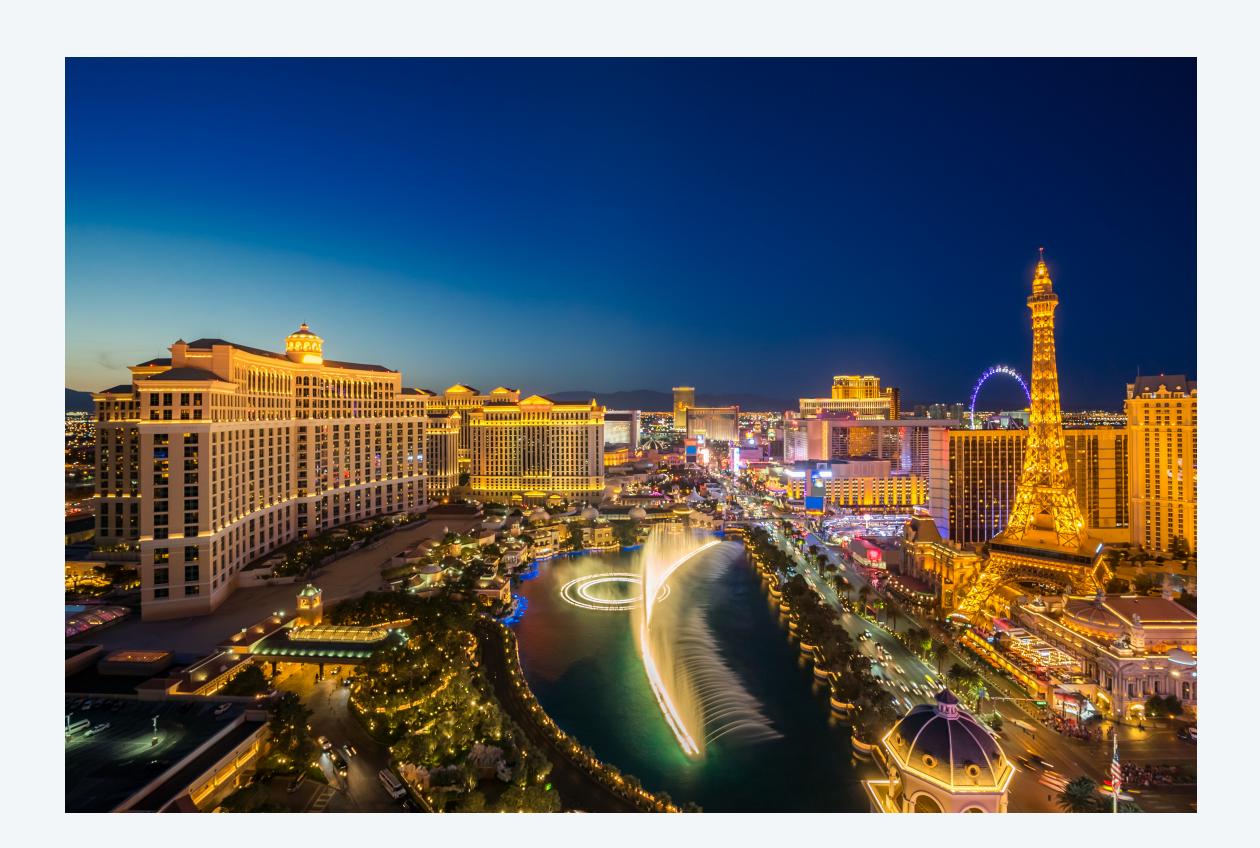
Las Vegas algorithms

Las Vegas.

- Guaranteed to be correct.
- Running time depends on outcomes of coin flips.

Ex. Quicksort, quickselect.





Las Vegas vs. Monte Carlo

Treasure hunt. Length-n array with 50% treasures, 50% duds.

J

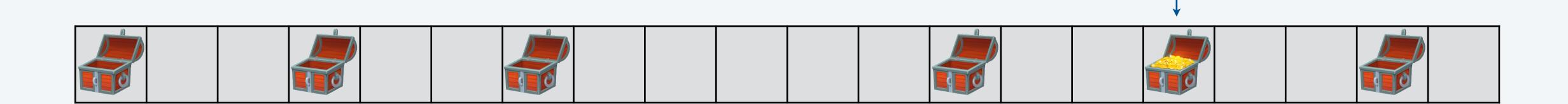
Randomized algorithm (Las Vegas):

• repeatedly look at uniformly random entry; return only when treasure found.

Returns in 1^{st} try with probability 1/2.

Las Vegas vs. Monte Carlo

Treasure hunt. Length-n array with 50% treasures, 50% duds.



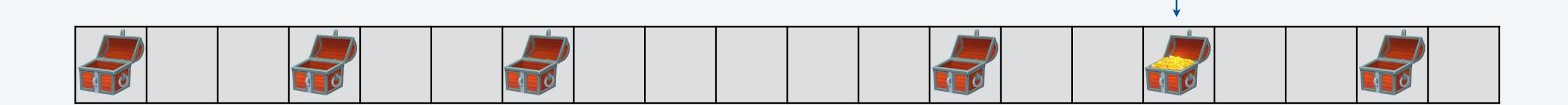
Randomized algorithm (Las Vegas):

• repeatedly look at uniformly random entry; return only when treasure found.

Returns in 1st try with probability 1/2. Returns in 2nd try with probability 1/4.

Las Vegas vs. Monte Carlo

Treasure hunt. Length-n array with 50% treasures, 50% duds.



Randomized algorithm (Las Vegas):

• repeatedly look at uniformly random entry; return only when treasure found.

Returns in 1^{st} try with probability 1/2.

Returns in 2nd try with probability 1/4.

•

Returns in k^{th} try with probability $1/2^k$.

Expected # of array accesses: $1 \times \mathbb{P}[1 \text{ access}] + 2 \times \mathbb{P}[2 \text{ accesses}] + 3 \times \mathbb{P}[3 \text{ accesses}] + \cdots$

Monte Carlo and Las Vegas in Java

```
maximum tries
int findTreasureMonteCarlo(boolean[] hasTreasure, int k) {
                                                                         int findTreasureLasVegas(boolean[] hasTreasure) {
                                                                           int n = a.length;
  int n = a.length;
  for (int i = 0; i < k; i++) {
                                                                           while (true) {
    int sample = StdRandom.uniformInt(n);
                                                                             int sample = StdRandom.uniformInt(n);
    if (a[sample])
                                                                             if (a[sample])
                                                              treasure
      return sample;
                                                                               return sample;
                                                              found
  return -1;
        failure
```

Randomness: quiz 4

In the worst case, how many array accesses made by Las Vegas treasure hunt on length-n array? (Recall: samples with replacement.)

- A. 1
- B. 2
- C. n/2
- **D.** *n*
- E. None of the above.

Las Vegas Analysis

Treasure hunt. Length-n array with a p fraction of treasures, 1-p of duds.

geometric random variable
with success probability p

Proposition. Expected number of array accesses of Las Vegas algorithm is 1/p.

Pf. Call $\mathbb{E}[A]$ the expected number of accesses.

- With probability p, first try succeeds \Longrightarrow total is 1.
- With probability 1-p, first try fails \implies total is $\mathbb{E}[A]+1$.

Therefore,

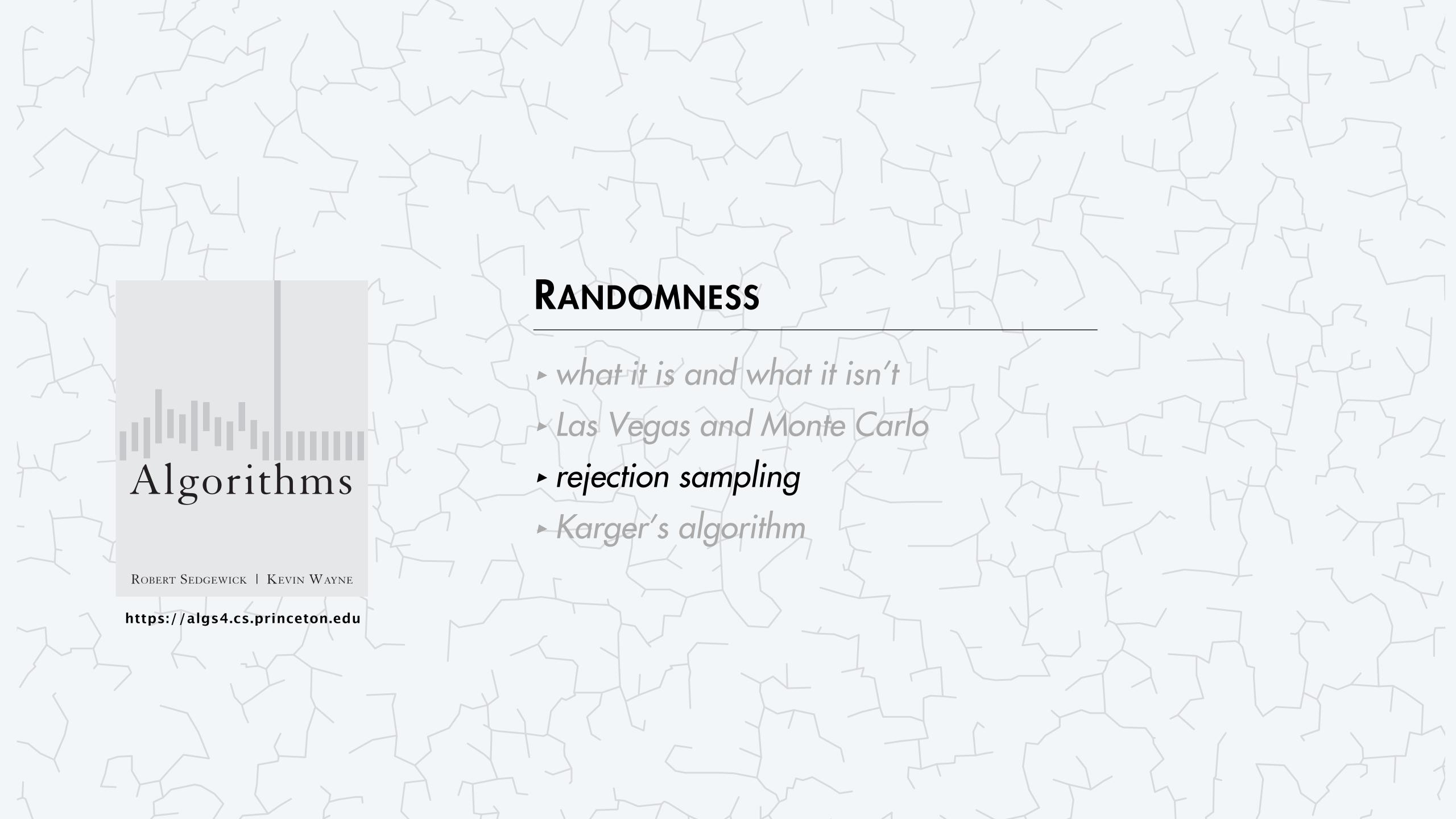
$$\mathbb{E}[A] = p \cdot 1 + (1-p) \cdot (\mathbb{E}[A] + 1),$$

whose solution is $\mathbb{E}[A] = 1/p$.

Randomness: quiz 5

How many expected array accesses made by Las Vegas treasure hunt on length-n array with 99% duds?

- **A**. 2
- B. 99
- **C.** 100
- **D.** *n*
- E. None of the above.

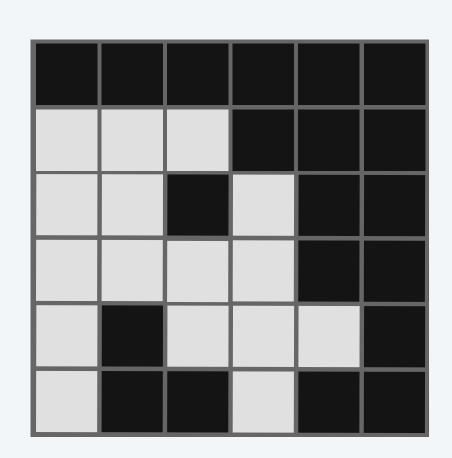


Uniform distribution of closed cells

Goal. Generate a random (i, j) with open [i, j] == false.

Rejection sampling.

- Generate a random cell in n-by-n grid without replacement.
- If cell is closed, use it; otherwise, repeat. ← à la Las Vegas!



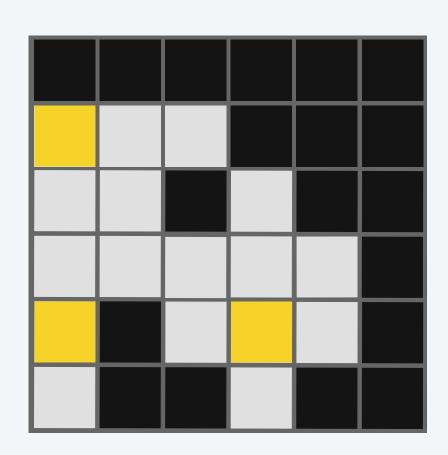
Uniform distribution of closed cells

Goal. Generate a random (i,j) with open[i,j] == false.

Rejection sampling.

- Generate a random cell in n-by-n grid without replacement.
- If cell is closed, use it; otherwise, repeat.

```
int i, j;
do {
   i = StdRandom.uniformInt(n);
   j = StdRandom.uniformInt(n);
} while (isOpen(i, j));
```



Uniform distribution of bounded integers

Goal. Simulate roll of 6-sided die with uniform bits.

Rejection sampling.

- Sample 3 independent bits.
- Repeat or output as follows:
 - if TTT, output 1

- if TTH, output 2

- if THT, output 3

- if THH, output 4

- if HTT, output 5

- if HTH, output 6

- if HHT or HHH, repeat

Uniform distribution of bounded integers

Goal. Generate an integer $0 \le r < n$ using uniform bits.

Rejection sampling.

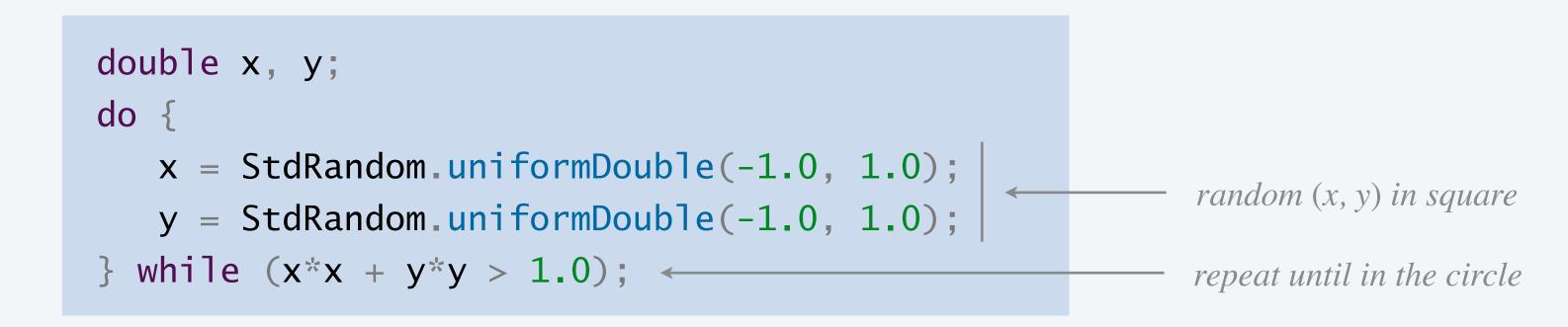
- Sample $\lceil \log_2 n \rceil$ independent bits, call r the integer with corresponding binary representation.
- If r < n, use it; otherwise, repeat.

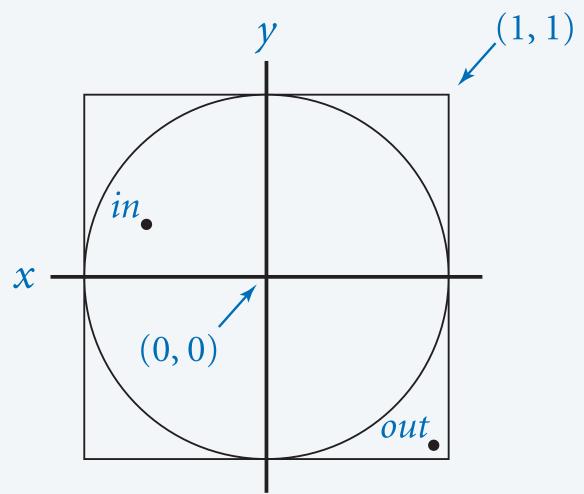
Uniform distribution in unit circle

Goal. Generate a random point in unit circle. ← used in Fraud Detection!

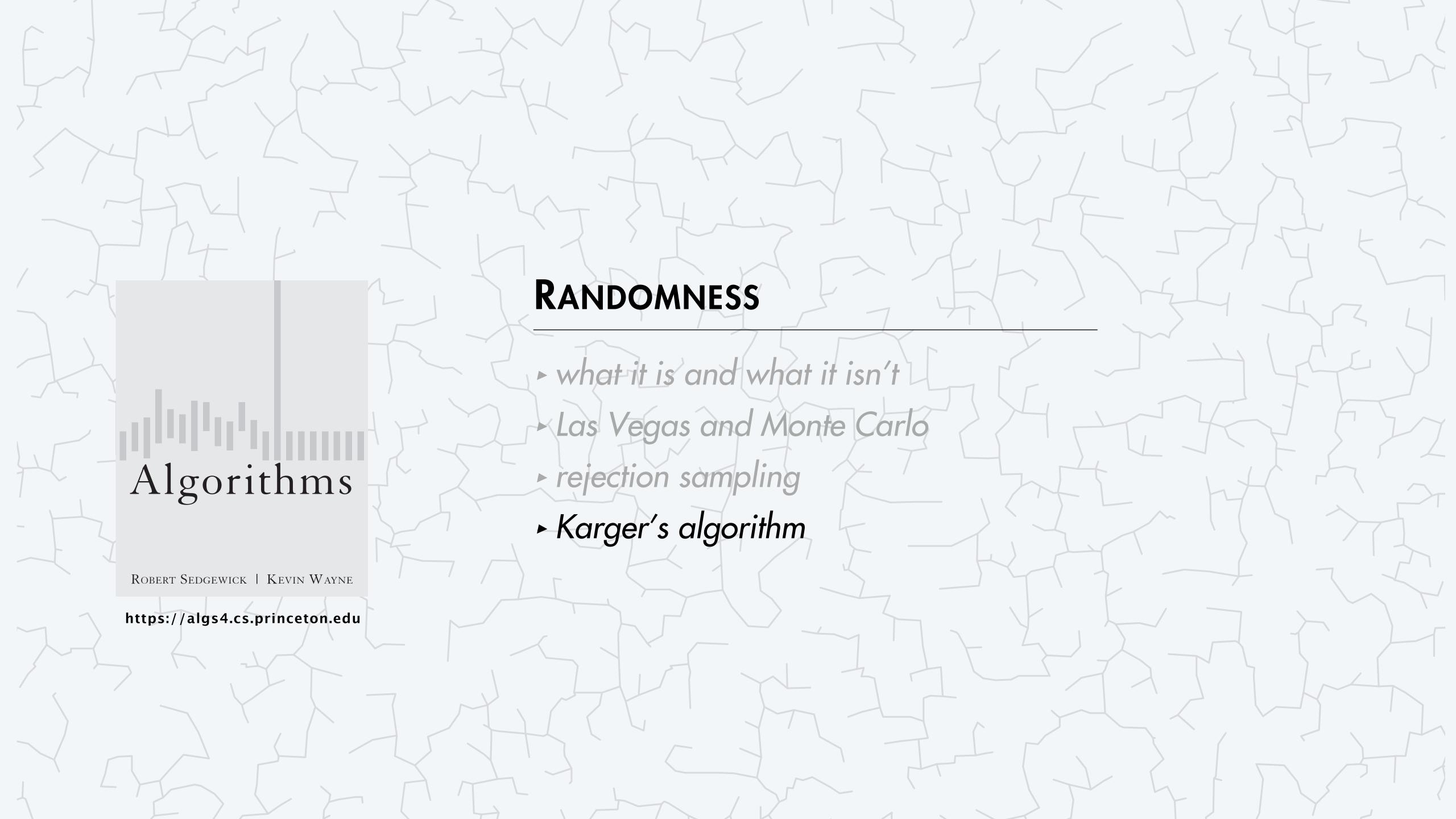
Rejection sampling.

- Generate a random point in 2-by-2 square centered at origin.
- If point is inside circle, use it; otherwise, repeat.





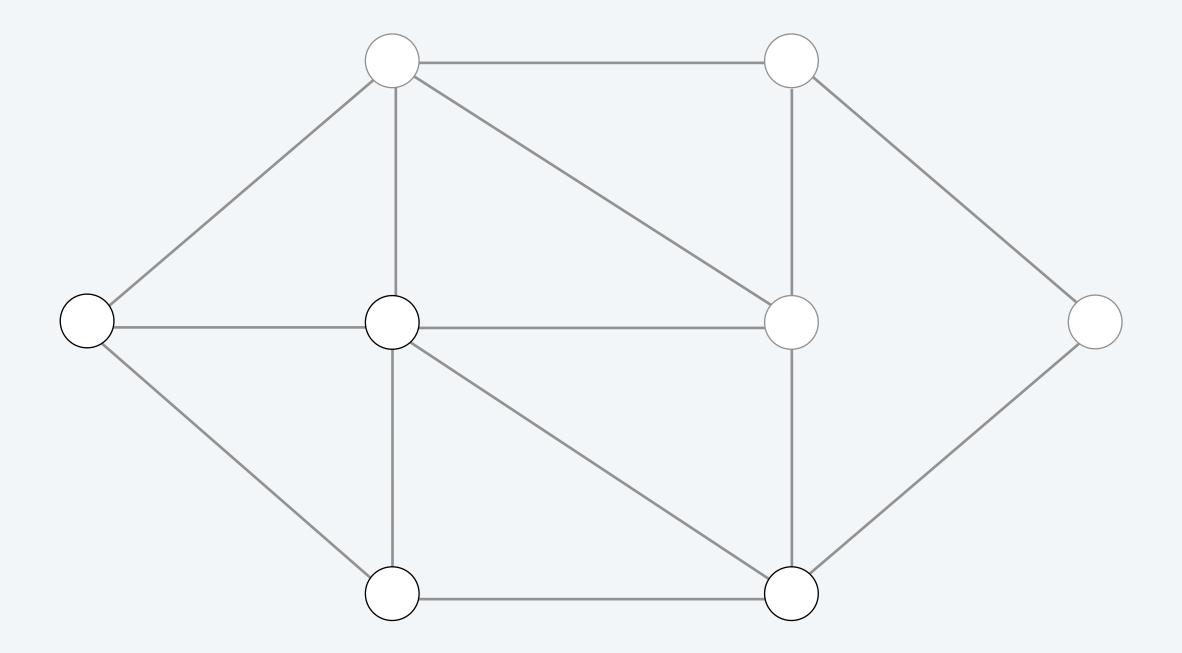
Remark. If s out of t samples in unit circle, $\frac{s}{t} \approx \frac{\pi}{4}$.



Global mincut problem

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Equivalent. Smallest min st-cut among all pairs (s,t), antiparallel edges of capacity 1.

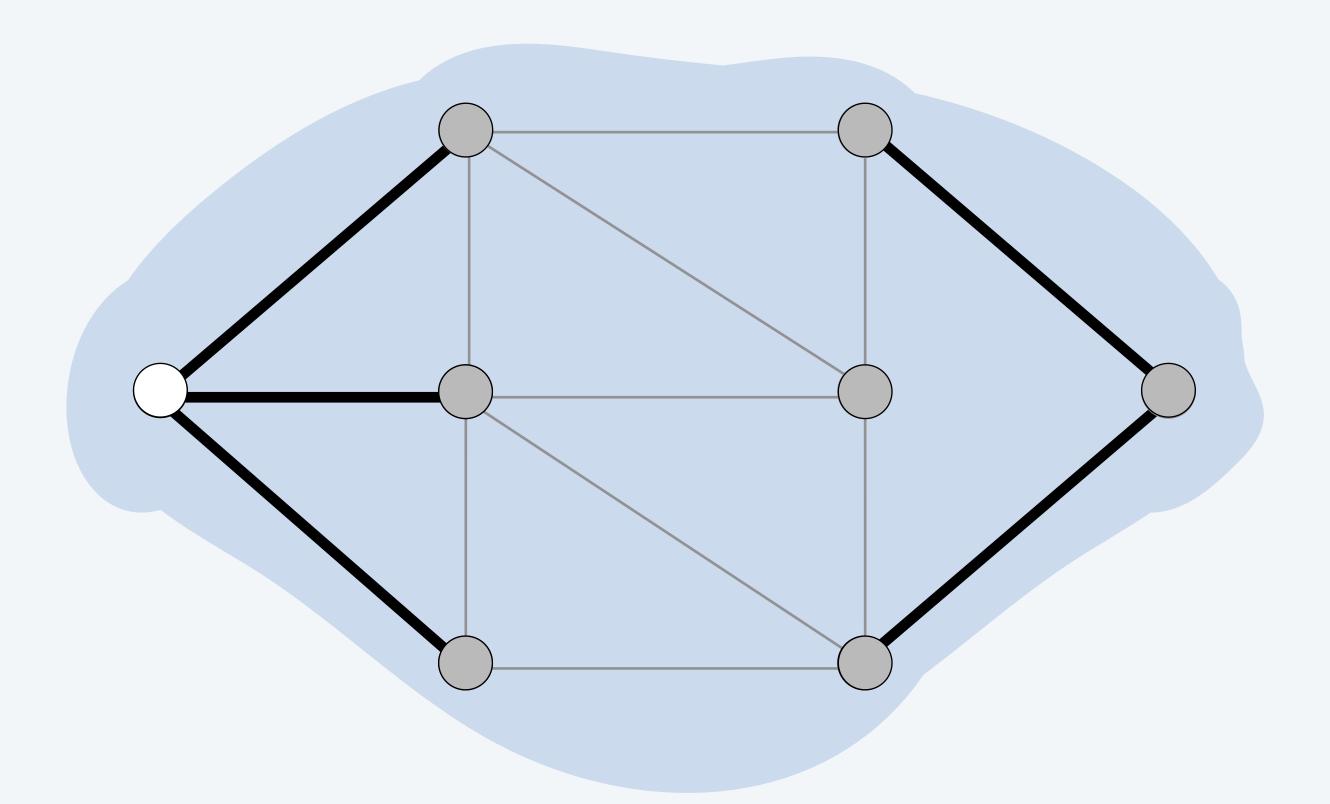


Global mincut problem

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Deterministic algorithms.

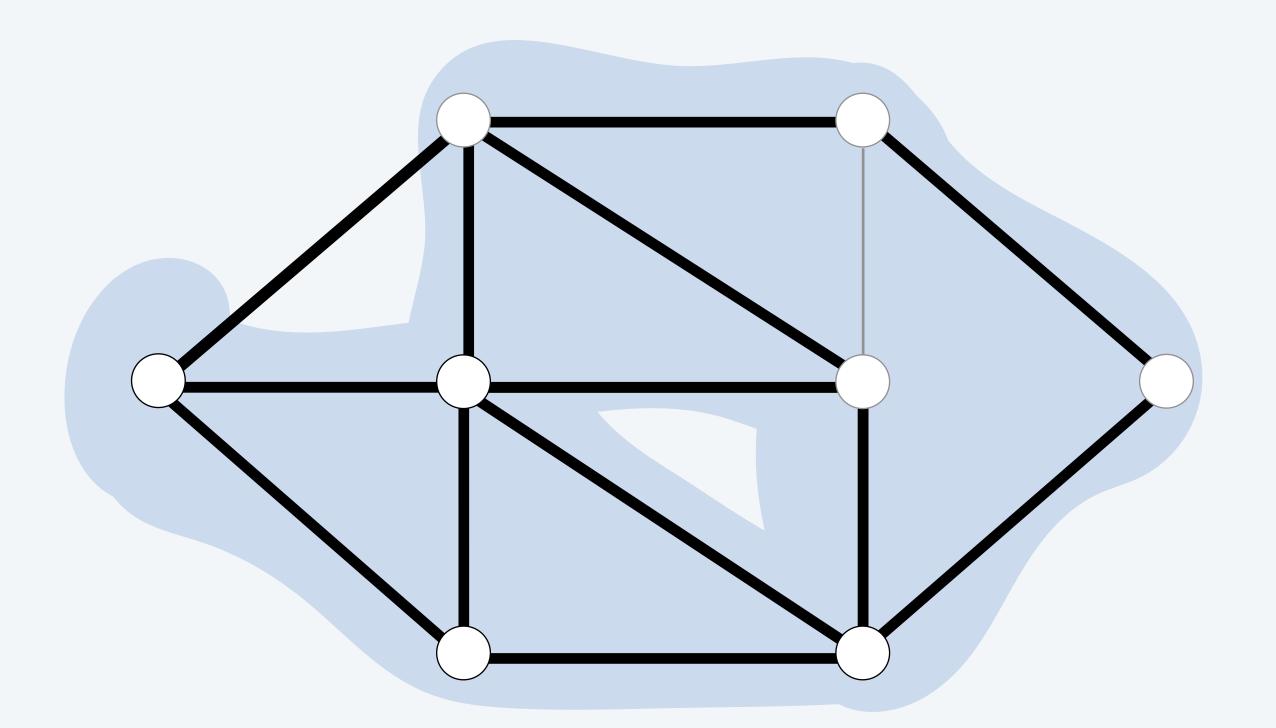
- Brute-force: iterate over all cuts, return smallest. $[2^{V-1}-1 \text{ cuts} \implies \text{exponential time!}]$
- Ford-Fulkerson-based: pick any s as source, try every t as target. $[V-1 \text{ runs of FF} \Longrightarrow \Theta(V^2E^2) \text{ runtime}]$



Global mincut problem

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

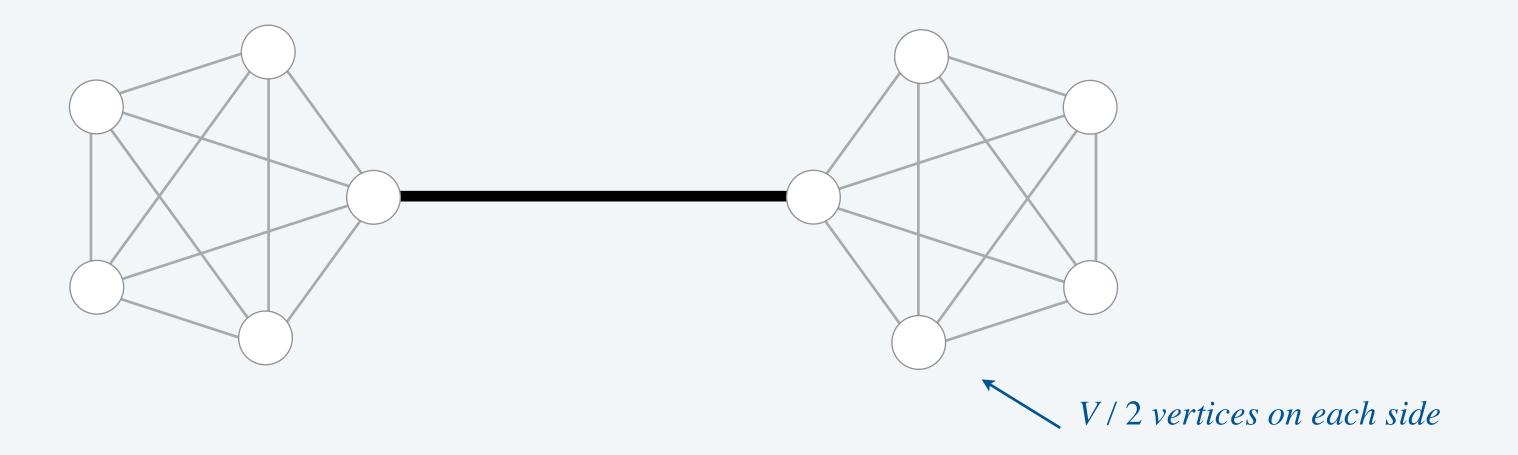
Idea. Pick a random cut.



Mincut of dumbbell graph

Uniformly? There may be 1 mincut but $2^{V-1} - 1$ total cuts — takes a *lot* of luck to find it.

Example.



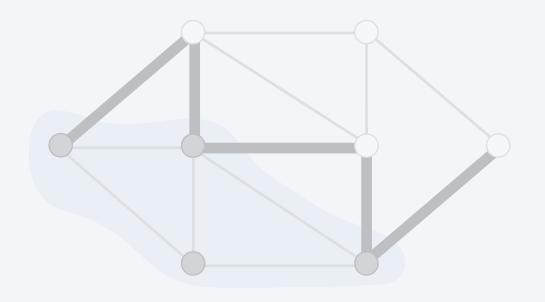
Karger's global mincut algorithm

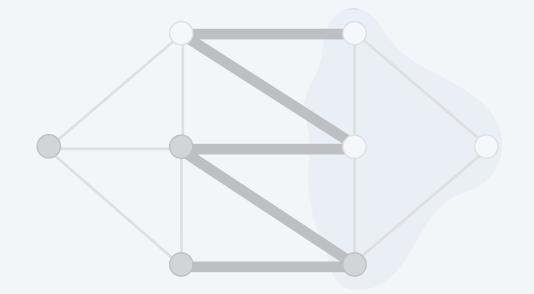
Algorithm.

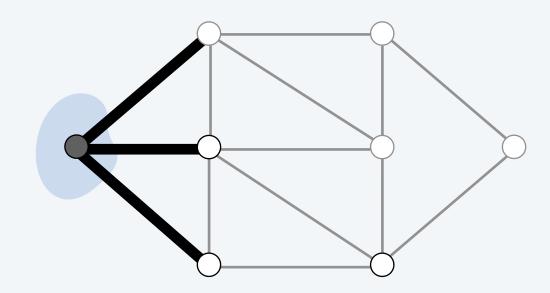
- Assign a random weight (uniform between 0 and 1) to each edge e. \leftarrow or: shuffle edges, build MST in resulting order
- Run Kruskal's MST algorithm until 2 connected components left.
- Return cut defined by connected components.

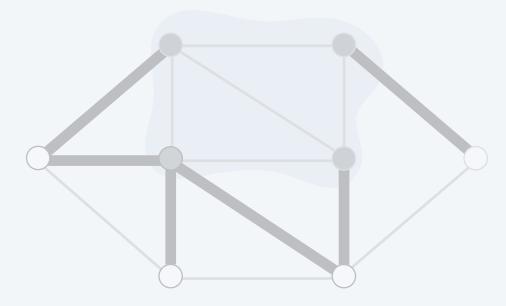
Probability of finding a mincut $\geq \frac{2}{V^2}$. [no mincut edges in either connected component]

Run algorithm many times and return best cut.



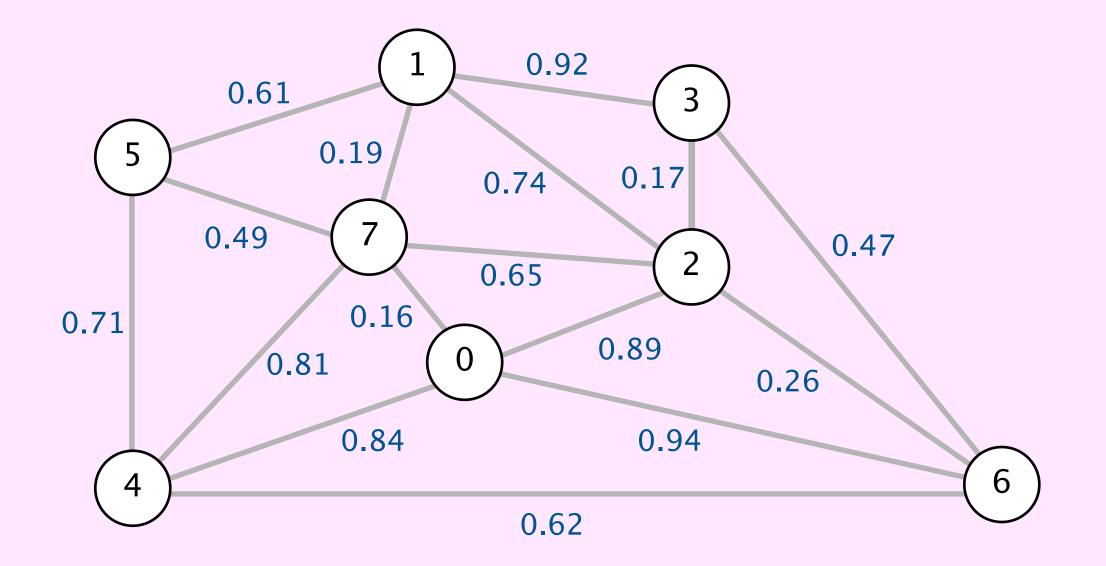






Karger's algorithm demo

- Assign random edge weights.
- Run Kruskal's algorithm until 2 connected components left.

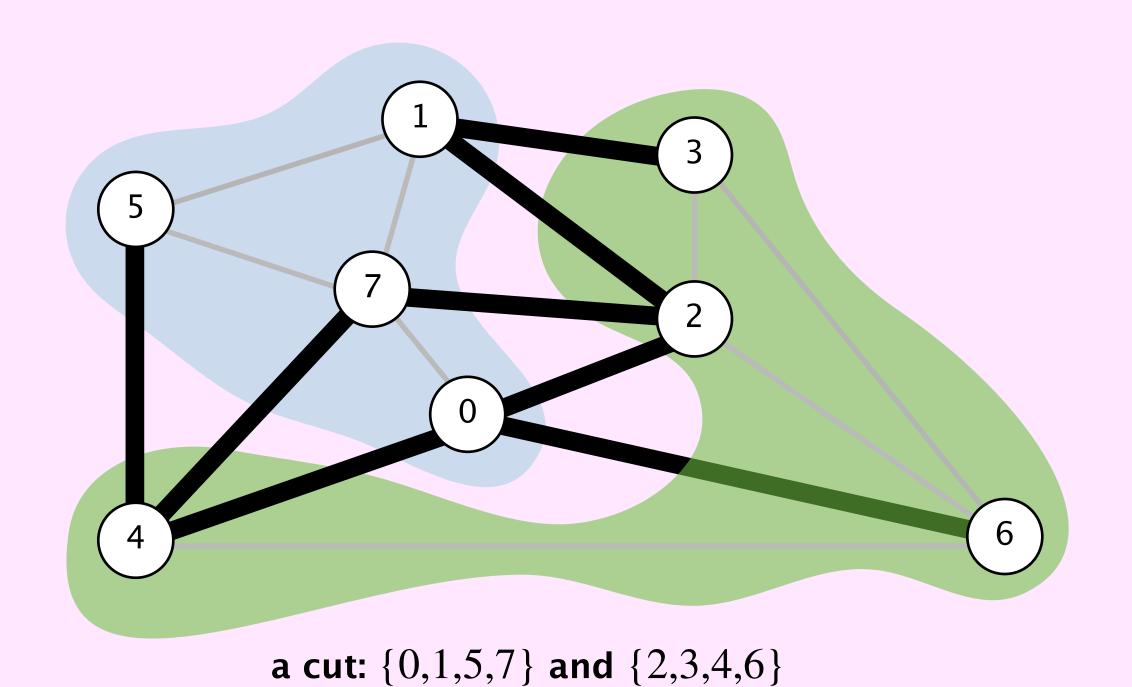


0-2	0.89
0-4	0.84
0-7	0.16
0-6	0.94
1-2	0.74
1-3	0.92
1-5	0.61
1-7	0.19
2-3	0.17
2-6	0.26
2-7	0.65
3-6	0.47
4-6	0.62
4-5	0.71
4-7	0.81
5-7	0.49

Karger's algorithm demo

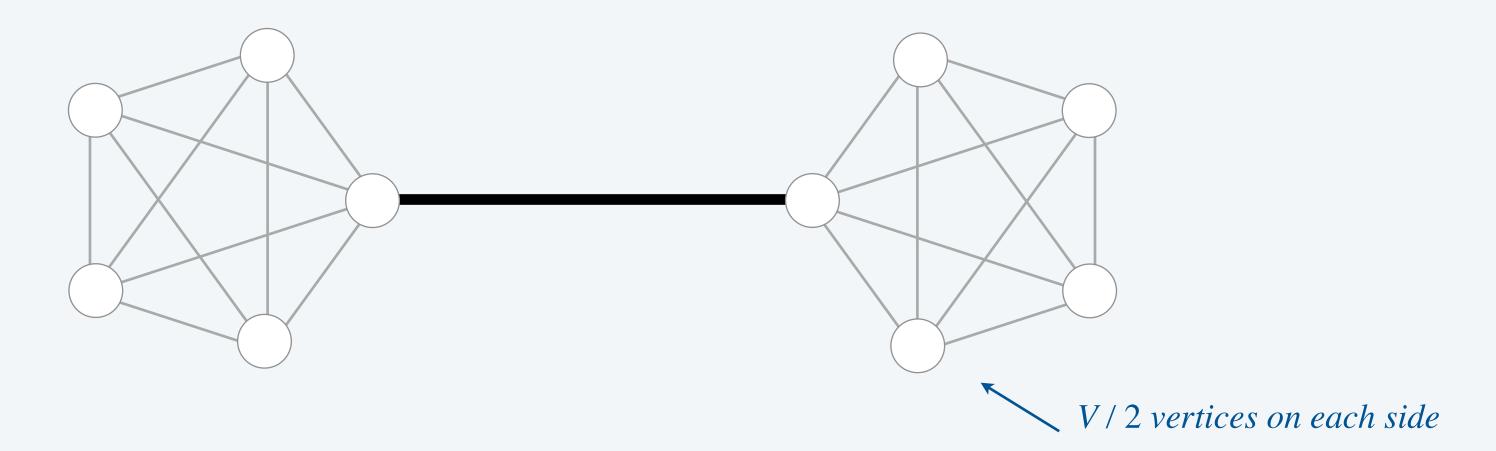
Consider edges in ascending order of weight.

- Add next edge to T unless doing so would create a cycle.
- Stop if T contains V-2 edges.



0-7	0.16
2-3	0.17
1-7	0.19
2-6	0.26
3-6	0.47
5-7	0.49
1-5	0.61
4-6	0.62
2 7	
2-7	0.65
2-7 4-5	0.65
4-5	0.71
4-5 1-2	0.71
4-5 1-2 4-7	0.71 0.74 0.81
4-5 1-2 4-7 0-4	0.71 0.74 0.81 0.84

Karger on dumbbell graph



Karger succeeds if middle edge not in MST.

- with probability 1/E, its weight is the largest. \implies success with $\geq \frac{2}{V^2}$ probability!
- each side has $<(V/2)^2$ edges, so $E \le V^2/2$.

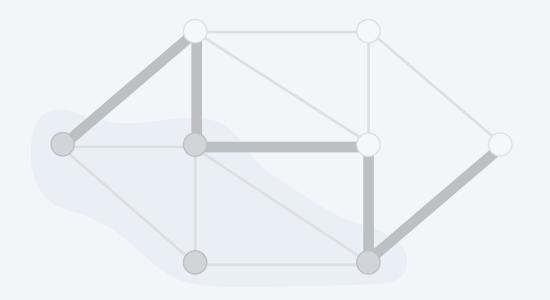
Karger's global mincut algorithm

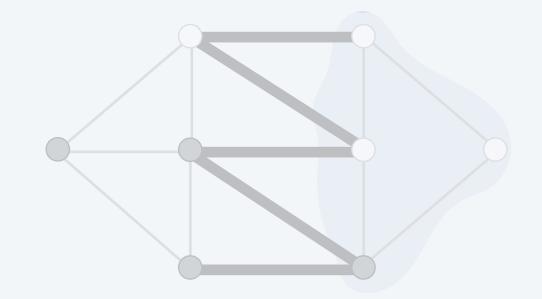
Algorithm.

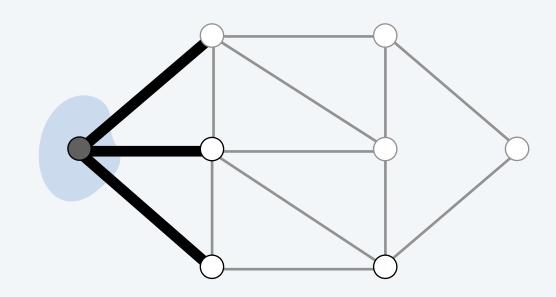
- Assign a random weight (uniform between 0 and 1) to each edge e.
- Run Kruskal's MST algorithm until 2 connected components left.
- Return cut defined by connected components.

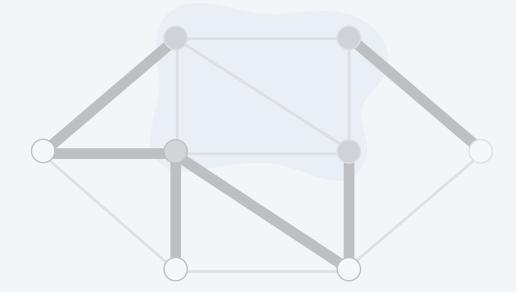
Probability of finding a mincut $\geq \frac{2}{V^2}$. [no mincut edges in each connected component]

Run algorithm many times and return best cut.









- Remark 1. Finds global mincut in $\Theta(V^2E \log E)$ time better than Ford-Fulkerson-based!
- Remark 2. With clever idea, improved to $\Theta(E \log^3 V)$ time (still randomized).

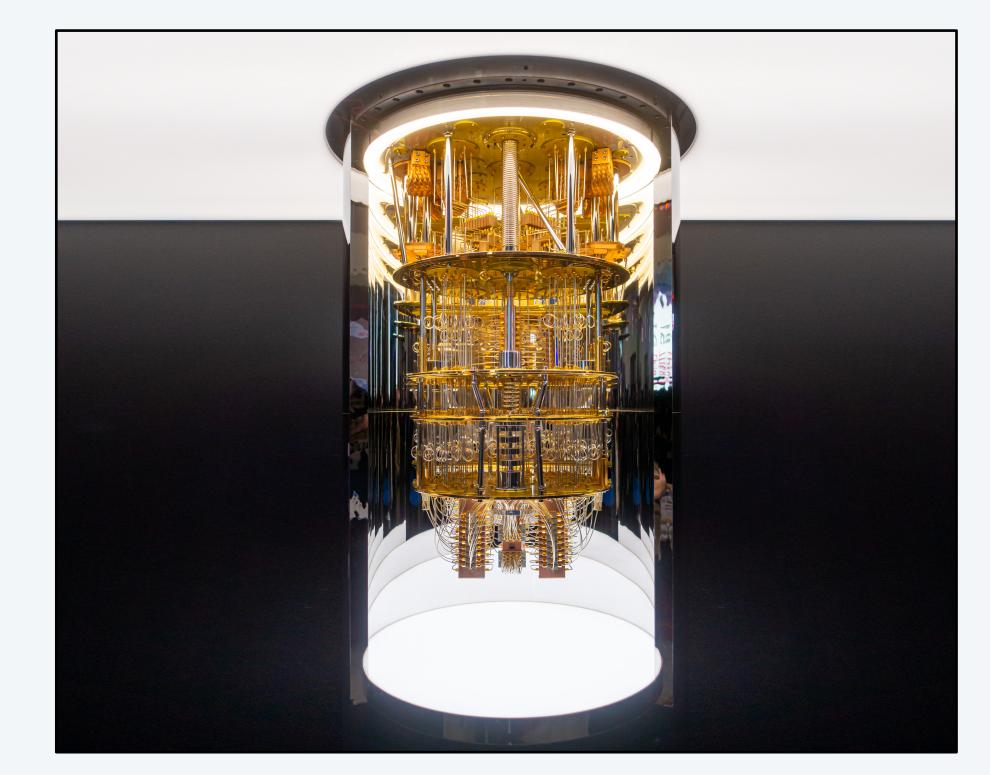
Randomness: quiz 6

Smallest # of repetitions of Karger's algorithm to get correct answer with 99% probability?

- A. $\Theta(1)$
- B. $\Theta(V)$
- C. $\Theta(V^2)$
- D. $\Theta(V^3)$
- E. None of the above.

Beyond this course

- Approximation algorithms [intractability: stay tuned!]
- Machine learning [randomized MW]
- Optimization [stochastic gradient descent]
- Cryptography [average-case hardness]
- Complexity theory [derandomization]
- Quantum computation [Shor's factoring algorithm]
- Networking [load balancing]
- Graphics [procedural generation]
- Physics [Monte Carlo simulation]
- Health sciences [randomized control trials]
- Mathematics [probabilistic method]



IBM Quantum System One

ORF 309. Probability and Stochastic Systems

COS 330. Great Ideas in Theoretical Computer Science

COS 433. Cryptography

Credits

image	source	license
Quarter	Adobe Stock	Education License
6-sided dice	Adobe Stock	Education License
20-sided die	Adobe Stock	Education License
Lava lamps	Fast Company	
Coin Toss	clipground.com	<u>CC BY 4.0</u>
IDQ Quantum Key Factory	idquantique.com	
SG100	protego.bytehost16.com	
Las Vegas	Adobe Stock	Education License
Monte Carlo	Adobe Stock	Education License
Treasure chests	Adobe Stock	Education License
Random number generator	XKCD	CC BY-NC 2.5

```
int getRandomNumber()
{
   return 4; // chosen by fair dice roll.
   // guaranteed to be random.
}
```