A 1 g Or 1 [ h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

MULTIPLICATIVE WEIGHTS

> experts problem
> elimination method
» multiplicative weights update

> algorithms in machine learning

ROBERT SEDGEWICK | KEVIN WAYNE »> fraUd defeCh.On

https://algs4.cs.princeton.edu


https://algs4.cs.princeton.edu

MULTIPLICATIVE WEIGHTS

> experts problem

Algorithms

https://algs4.cs.princeton.edu


https://algs4.cs.princeton.edu

Experts problem

Expert. An entity that makes binary predictions. <—— person, agent, sensor, algorithm. ..

Binary prediction. Forecast on a binary outcome. < e.g., will it rain in Princeton tomorrow?
Will the S&P 500 go up tomorrow?

Experts problem. A collection of n experts make predictions over T days.

« Onday 0 <7< T, each expert makes a prediction for the next day.
After observing them, you make your own.

* On dayr+ 1 you see the actual outcome.

Goal. Minimize the number of incorrect predictions.

(Under some assumption on experts.)

Remark. We use 0 and 1 (not booleans) as labels.
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Experts problem

Experts problem. A collection of n experts make predictions over T days.
« Onday 0 <r< T, each expert makes a prediction for the next day.
After observing them, you make your own.

* On day r+ 1 you see the actual outcome.

Goal. Minimize the number of incorrect predictions.

(Under some assumption on experts.)
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Example. n = 4 experts, T =3 days. day2 1 1 )02 000 )0 1) 1

day3 £ 1 00 1 000 ) O ) 1



Context

Machine learning paradigm. Make predictions based on data/observations. [more on this later]

N

e.g., predictions from domain experts

Critical technology present in virtually all modern computing systems.
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The pertfect expert

Initial assumption. There is a perfect expert, who always predicts the actual outcome.

Elimination algorithm

On day :

- remove all experts that predicted incorrectly on day 7 — 1.

- make the remaining experts’ majority prediction, tie-breaking for O.

Remarks.
 No assumption on the remaining n — 1 experts.
« No information about which experts are perfect.

e There may be more than one perfect expert.



The pertfect expert

Initial assumption. There is a perfect expert, who always predicts the actual outcome.

Elimination algorithm

On day :

- remove all experts that predicted incorrectly on day 7 — 1.

- make the remaining experts’ majority prediction, tie-breaking for O.

Proposition. The elimination algorithm makes <log,n mistakes.
Pf.
« Suppose algorithm makes a mistake on a certain day.
« Majority predicted incorrectly = at least half of remaining experts removed on next day.

» Halving log, n times yields a single (perfect) expert left. =

\ in general, <10g,(n/p) mistakes with p perfect experts.
Same analysis as binary search!



Multiplicative Weights: quiz 1

Which of the following examples causes the elimination method to make the most mistakes?
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Lower bound on the number of mistakes

Proposition. The elimination algorithm makes log, » mistakes in the worst case.

Pf sketch. Generalize solution to quiz. Assume n = 2* for some %, then

n/2 predict 0 n/2 predict 1

(1001 001 )001)001)
n/4 predict 0 n/4 predict 1

(10010012001

n/8 predict 0 n/8 predict 1

t1)0(1)
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Elimination Algorithm Game

You be the expert now. Let’s play a game!
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A more realistic scenario

Issue. Unrealistic to expect a perfect expert; initial assumption is too strong.

Weaker assumption. The best expert makes at most M mistakes.

Modified elimination algorithm

On day :

- remove all experts that predicted incorrectly on day 7 — 1.
- make the remaining experts’ majority prediction, tie-breaking for 0.

- if no experts left, add all n of them back.

Proposition. The modified elimination algorithm makes at most (M + 1)(1 + log, n) ~ M log, n mistakes.

Pf sketch. Same as original proof, but repeat / + 1 times.
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The Multiplicative Weights method

Weaker assumption. The best expert makes at most M mistakes.

Intuition. Throwing away an expert is too harsh.

Instead, assign “confidence” to each expert and lower it after a mistake.

Multiplicative Weights algorithm

Initialize a wei1ghts array of doubles with ones.
On day

- halve the weight of experts that predicted incorrectly on day r — 1.
- let zeroWeight be the sum of weights of experts predicting 0 and

oneWeight be the sum of weights of experts predicting 1.

- predict O if zeroWeight > oneWeight and 1 otherwise.
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AMultiplicativeWeights class

public class MultiplicativeWeights {
private int n;
private double[] weights;

public MultiplicativeWeights(int n) {
this.n = n;
weights = new double[n];

for (int 1 =0; 1 <n; 1++) weights[1] = 1.0; <«

}

public 1nt predict(int[] expertPredictions) {
double zeroWeight = 0, oneWeight = O;
for (Aint 1 =0; 1 <n; 1++) {

initialize weights with ones

— calculate weights of experts

else oneWeight += weights[1]; «
¥
1t (zeroWeight >= oneWeight) return O;
else return 1;
}

public void seeOutcome(int actualOutcome, 1nt[] expertPredictions) {
for (int 1 = 0; 1 < n; 1++)

predicting 0 and 1

1if (expertPredictions[i] != actualOutcome) weights[i] /= 2; <

halve weights of wrong experts
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Multiplicative Weights: quiz 2

What is the wei1ghts array, under multiplicative weights, after the following predictions and observations?

o 0

11, 1/2, 1/2, 1/4]
1, 1/4, 1/4, 1/2]
[1, 2, 4, 1]

[1/2, 1/2, 1/2, 1/4]

1, 1/2, 1/4, 1/2]

10 )

10 )
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| |

1

1
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Multiplicative Weights analysis

Proposition. The multiplicative weights method makes at most 2.41(M + log, n) mistakes.
Pf.

« Let W, be the sum of all weights at start of day r.
In particular, W, = n.

. . 3
. If MW algorithm makes a mistake on day 7, then W, < —W.
4
- A mistake requires > W./2 weight making incorrect prediction.

. . . . 3
_ Since this weight is halved, W_, < W, — W,/4 = ZW”

« Calling m total number of mistakes (after day 7),

W, < 3mW 3\
— = — n.
'=1\4 ¥ 4

. Since best expert makes < M mistakes, its weight is > 1/2¥.

In particular, W, > 1/2",

(3) =w=(3)

" 1
—] <M.y = m< - (M +log,n) =
log,(4/3)
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How good is this guarantee?

M
Rate of mistakes. Ratio — when T goes to infinity (but » is fixed).

T
Example. Best expert makes a mistake on 10 % of the days: M = TS

Then multiplicative weights has rate

T
2.41 <1—O + log2n> log, 1
0.241 +
T T

2% 241%.

Remark. Best possible bound on number of mistakes is 2M.
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Algorithmic framework

Historical context. The multiplicative weights method was rediscovered in multiple areas of

computer science to solve many seemingly different problems. <«— first known version proposed in
the 50s to solve zero-sum games

Applications.
« Machine Learning: boosting algorithms
« Optimization: solving linear and semi-definite programs
« Maximum flow: efficient algorithms

« Game theory: solving zero-sum games

20



Experts problem for K-ary predictions &3

Expert. Entity that makes a k-ary prediction.

e.g. will maximum temperature tomorrow be < 40,
or 40 to 45, or 45 to 50, or > 50 degrees?

k-ary prediction. Forecast on a k-ary outcome (an integer < k). <

k—-ary elimination algorithm

On day :

- remove all experts that predicted incorrectly on day 7 — 1.

- make the remaining experts’ most popular prediction.

21



Multiplicative Weights: quiz 3

Which is the best upper bound on the number of mistakes of the k-ary elimination algorithm?

A. klog,n
B. log,n
C. log,n

D. k+log,n

22
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(Binary) Classification problem

Input. A training data set of items with a binary label for each.

Goal. Predict labels of new items.

<

* Phase 1: Create a model based on the training data. -«

« Phase 2: Apply the model to new item to predict its label.

Accuracy. Fraction of correct predictions on a particular data set.

Classifier

Model

9

e.g., medical images labeled healthy or ill;
emails labeled spam or not spam

algorithm that makes predictions

24



(Binary) Classification problem

Assumption. Items are points in D dimensions.

Example. Data set with 12 points and D = 2 dimensions.

training set >

test set <

accuracy 5/6

X

25



Decision stump

Def. A decision stump is a simple classifier model that predicts from a single dimension.
Isx <57
Points with coordinate < value predictor receive a label;
points with coordinate > value predictor receive the other. @

yes/ \no

Training. Finding decision stump that maximizes accuracy on training data.

NAVAVAVANANANEN

RO

Remark. Decision stumps are examples of weak learners, models that perform marginally better than random.
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Multiplicative weights and boosting: AdaBoost

Def. A boosting algorithm is any that combines weak learners into strong ones.

AdaBoost. Use input points as experts and train decision stumps to find “expert”

predictions.

Yoav Freund Robert Schapire

T

Training: former COS 226

Simplified AdaBoost algorithm

: . instructor!
Initialize a length-n weights array of doubles with 1/n.

Repeat 1 times: < parameter we can tune

- train decision stump on input points weighted by weights.
- double weight of points labeled incorrectly.

- normalize weights. - prevents overflow

Prediction: output majority prediction over all stumps.

Remark. AdaBoost multiplies weights by a factor that depends on weak learner’s

error and gives preference to better decision stumps.

27



Simplified AdaBoost demo

=0 e=1
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Assignment 7: Fraud detection

Assignment will be released today.

Start early!

Read Ed post carefully and watch helper video before your precept.

30
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Yoav Freund

Robert Schapire
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