A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

4. GRAPHS AND DIGRAPHS I

> breadth-first search (in directed graphs)
> breadth-first search (in undirected graphs)
> topological sort

» challenges

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Graph search overview

Tree traversal. Many ways to systematically explore nodes in a binary tree.
 |norder: ACEHMRSX
* Preorder: S EACRHMX | stacklrecursion
 Postorder: CAMHRENXS
* Level-order: S EX AR CHM

queue

Graph traversal. Many ways to systematically explore vertices in a graph or digraph.

 DFS preorder: vertices in order of calls to dfs(G, v).
stack/recursion

* DFS postorder: vertices in order of returns from dfs(G, v).

* BFS order: vertices in increasing order of distance from s.

queue

4. GRAPHS AND DIGRAPHS I

> breadth-first search (in directed graphs)

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Shortest paths in a digraph

Problem. Find directed path from s to each other vertex that uses the fewest edges.

1 (3

4 0 6
directed paths from 0 to 6 shortest path from 0 to 6 (length = 4)
0—-2—>7—-54—>55—>1-3—>56 0—-2—>7—>3—>6

0—-4—->5—>1—>3—>6
0—-2—>7—>53—>6
0—-2—->7—-0—>2—>7—>53—>6

AN

shortest path must be simple
(no repeated vertices)

Shortest paths in a digraph

Problem. Find directed path from s to each other vertex that uses the fewest edges.

Key idea. Visit vertices in increasing order of distance from s.

o @
@
((

dist =0 dist=1 dist = 2 dist = 3 dist = 4 dist =5

Q. How to implement?

A. Store vertices to visit in a queue.

Breadth-first search (in a digraph) demo

Repeat until queue is empty:

« Remove vertex v from queue.

<« VISit vertex v

« Add to queue all unmarked vertices adjacent from v and mark them.

tinyDG2. txt

@ .@ V\‘g/E

5

O W Hh O FL WN
NN U1 W R NN O

T

graph G

Breadth-first search (in a digraph) demo

Repeat until queue is empty:

« Remove vertex v from queue.

<« VIsit vertex v

« Add to queue all unmarked vertices adjacent from v and mark them.

ol A W N = O
w N DD O O

4 4 4 4 4 -+
AN N W R = O

<O>) v edgeTo[] marked[] distTol]

vertices reachable from 0
(and shortest directed paths)

Breadth-first search

Repeat until queue is empty:
« Remove vertex v from queue.

« Add to queue all unmarked vertices adjacent from v and mark them.

BFS (from source vertex s)

Add vertex s to FIFO queue and mark s.
Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex w adjacent from v:

add w to queue and mark w

—

VIiSit vertex v

Breadth-first search: Java implementation

public class BreadthFirstDirectedPaths {
private boolean[]| marked;
private int[]| edgeTo;
private int[] distTo;

private void bfs(Digraph G, 1nt s) {
Queue<Integer> queue = new Queue<>();

queue.enqueue(s);
<

marked|[s]| = true;
distTo[s] = O;

while (!queue.isEmpty()) {

int v = queue.dequeue(); <
for (int w : G.adj(v)) {
if (!marked|[w]) {
queue.enqueue (w) ;

marked|w]| = true; .
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;

initialize queue of vertices to explore

also safe to stop as soon as all vertices marked

found new vertex w via edge v—w

https://algs4.cs.princeton.edu/41undirected/BreadthFirstPaths.java.html

Breadth-first search properties

Proposition. In the worst case, BFS takes O(E + V) time.

Pf. Each vertex reachable from s is visited once.

Proposition. BFS computes shortest paths from s.

Pf idea. BFS examines vertices in increasing order of distance (number of edges) from s.

digraph G dist =0 dist = 1 dist = 2 dist = 3

dist = 4

10

Graphs and digraphs Il: poll 1

What could happen if we mark a vertex when it is dequeued (instead of enqueued)?

A. Doesn’t find a shortest path.
B. Takes exponential time.
C. Both A and B.

D. Neither A nor B.

while (!'queue.isEmpty()) {

int v = queue.dequeue():;

(marked[v] = true;)

for (int w : G.adj(v)) {
1f (!marked|[w]) {

a0 -4 K S=mik § 8 8 wns L]

queue.enqueue(w) ;

edgeTo[w]
distTo[w]

Vv,
distTo[v] + 1;

11

Single-target shortest paths

Given a digraph and a target vertex ¢, find shortest path from every vertex to r.

Ex. t=0
« Shortest path from 7 is 7-6-0.
« Shortest path from 5 is 5->4->2-0.
+ Shortest path from 12 is 1259 11>4-2-0. (6)

CRG
5@
oo

Q. How to implement single-target shortest paths algorithm?

12

Multiple-source shortest paths

Given a digraph and a set of source vertices, find shortest path from any vertex in the set
to every other vertex.

Ex. $={1,7,10}.
* Shortest path to 4 is 7>6—4.
* Shortest path to 5is 7-6—>0-5.
* Shortest path to 12 is 10—~12. @

iz

CRG
5@
BAG

needed for WordNet assignment

/

Q. How to implement multi-source shortest paths algorithm?

13

Graphs and digraphs II: poll 2

Suppose that you want to design a web crawler. Which core algorithm should you use?

A. Depth-first search.

B. Breadth-first search.

C. Either A or B.

D. Neither A nor B.

15

Web crawler output

BFS crawl DFS crawl

://www.princeton.edu ://www.princeton.edu
://www.w3.0rg ://deimos.apple.com

://0Qgp.me ://www.youtube.com
://g1ving.princeton.edu : //www.google.com
://www.princetonartmuseum.org : //news.google.com
://www.goprincetontigers.com ://csi1.gstatic.com
://11brary.princeton.edu : //googlenewsblog.blogspot.com
://helpdesk.princeton.edu ://1abs.google.com
://tigernet.princeton.edu ://groups.google.com
://alumni.princeton.edu ://1mgl.blogblog.com
://gradschool.princeton.edu : //Teeds.feedburner.com
://vimeo.com : //buttons.googlesyndication.com

://princetonusg.com ://fusion.google.com
://artmuseum.princeton.edu ://1nsidesearch.blogspot.com
://Jjobs.princeton.edu : //agoogleaday.com

: //odoc.princeton.edu ://static.googleusercontent.com
://blogs.princeton.edu ://searchresearchl.blogspot.com
: //www . facebook.com : //feedburner.google.com

://twitter.com ://www.dot.ca.gov
://www.youtube.com : //www . TahoeRoads.com
://deimos.apple.com ://www.LakeTahoeTransit.com
://qeprize.org - //www. laketahoe.com
://en.wikipedia.org ://ethel.tahoeguide.com

Application: web crawler

Goal. Crawl web, starting from some root web page, say https://www.princeton.edu.

Solution.

 Choose root web page as source s.

 Maintain a queue of websites to explore.

« Maintain a set of marked websites.

 Dequeue the next website and enqueue

any unmarked websites to which it links.

Caveat. Industrial-strength web crawlers use same

core idea, but more sophisticated techniques.

17

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<>();
SET<String> marked = new SET<>();

String root = "https://www.princeton.edu"”;

queue.enqueue(root) ;
marked.add(root) ;

while (!queue.isEmpty()) {

String v = queue.dequeue();
StdOut.printin(v);
In 1n = new In(v);
String 1nput = in.readAll();

String regexp = "https://(O\\w+\\.)+(\\w+)";

Pattern pattern = Pattern.compile(regexp); <

Matcher matcher = pattern.matcher(input):

while (matcher.find()) {
String w = matcher.group();

it (!'marked.contains(w)) {
marked.add(w) ;

queue.enqueue(w) ;

if unmarked,
mark and enqueue

queue of websites to crawl

set of marked websites

start crawling from root website

read in raw HTML from next
website in queue

use regular expression to find all URLs
in website of form https://xXxx.yyy.zzz

[crude pattern misses relative URLs]

18

4. GRAPHS AND DIGRAPHS I

> breadth-first search (in undirected graphs)
Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Application: routing in a communication network

Fewest number of hops in a communication network.

NCOLN
MIT=IPC

MOF’F;T “LBL

AMES BBN BBN
ap v DNCC

. HARVARD
i o (RUTGERS
STANFORD| AY"’TYMSHARE = ABERDEEN
FNWC
- RUCSE O
S NORSAR
ucsD KIRTLAND % JNBS
RAND | | (D) LONDON
\
usc-IS)

ARPANET 1970s

Breadth-first search in undirected graphs

Problem. Find path between s and each other vertex that uses fewest edges.

Solution. Use BFS. «—— pus now, for each undirected edge v—w:
v is adjacent to w, and w is adjacent to v

BFS (from source vertex s)

Add vertex s to FIFO queue and mark s.
Repeat until the queue is empty:
- remove the least recently added vertex v
- for each unmarked vertex w adjacent to v:

add w to queue and mark w

Proposition. BFS finds shortest paths between s and every other vertex in ©(£

V) time.

21

Application: Kevin Bacon numbers

£

THE ORACLE

OF BACON

=

Endless Games board game
Welcome
. Bernard Chazelle has a Bacon number of 3.
CredltS Find a different link
How it Works
7:30 = =m
Contact Us Bernard Chazelle | Con
Other stuff » Wag/n
Guy and Madeline on a Park Bench (2009) | BEstpALen
with
Anna Chazelle | F €
was in 1 \"\:‘
La La Land (2016/1) | '
with

was in
Reynolds. All rights reserved.

Ryan Gosling | |
© 1999-2016 by Patrick

Crazy, Stupid, Love. (2011) |

with

Kevin Bacon |

https://oracleofbacon.org

Different Challenge

SixDegrees of Hollywood

http://oracleofbacon.org

Kevin Bacon graph

* |Include one vertex for each performer and one for each movie.
 Connect a movie to all performers that appear in that movie.

« Compute shortest paths between s = Kevin Bacon and every other performer.

|
Dial M Grace
for Murder Kelly

_1To Catch | — z;g:
a Thief
/ N

/\
The Eagle
Has Landed
/ A} Teller
/

—1 Caligula

Patrick
Allen

\ /

Glenn The Stepford
Close Wives

Portrait
of a Lady

;o

John
Gielguld

—| Murder on the |— Footloose Whiplash
Orient Express cold Donald // \\
/ \ Mounta-in Sutherland
7\

Ray \\
McKinnon Joe Versus

\ // the Volcano

An American John Animal
Hamlet [__ Haunting Belushi House \ /// | \\
// | — Apollo 13

Vernon / \ \ , s
Dobtcheff Wild

Things

Black
Mass

a3
Herbert

\ | \ /
—1 Enigma __| Imitation Benedict
V4 Game Cumberbatch

Yves
|\ | / /] /,\ \ <Shane)
Kate ; . . — /Zaza
Winslet U

Eternal Sunshine
/1 \

Knightley

The Da
Vinci Code

Serretta
Wilson

of the Spotless
Mind
77 T |

/

4. GRAPHS AND DIGRAPHS I

Algorithms > topological sort

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Directed acyclic graphs

Directed acyclic graph (DAG). A digraph with no directed cycles.

DAG digraph
(no directed cycles) (but not a DAG)

Remark. DAGs are an important subclass of digraphs that arise in many applications.

25

Family-tree- DAG

Vertex = person; edge = biological child.

Manuel |
of Portugal

John Il
of Portugal

Mary

Ferdinand Elizabeth Maximilian | Mary of
of Aragon of Castile Holy Roman Burgundy <
i& Empe)ror/

Mary of Joanna | Philip |

Aragon of Castile of Castile
Isabella of ~ therine Charles | Ferdinand I Anna of Isabella of Christian II

Portugal [Charles V Holy Roman Bohemia Burgundy of Denmark

Holy Roman Emperor and Hungary
Emperor]
Albert V
Philip |l Mana Maximilian Il Charles I Anne of Duke of Christina Francis |

of Portugal of Spain Holy Roman of Austria Habsburg Bavaria of Denmark Duke of
i/ i Emperor ¢\¢ l Loraine

Don Carlos
[Charles]

Anne of Maria Anna WililamV Renata of
Austria of Bavaria Duke of Lorraine
/ 7 Bava‘rV
v A/v
Ph||| Margarita Ferdinand Il Maria Anna
of Austrla Holy Roman of Bavaria
Phl|l Marla Anna Ferdmand Il

of Spain Holy Roman

i Emperor

Mariana
of Austria

| =

Charles 1l

pedigree of King Charles Il of Spain

no directed cycles
(a person can’t be their own ancestor)

26

WordNet DAG

Vertex = synset; edge = hypernym relationship.

event <€

T~

' <
happening t
occurrence act
occurrent human_action
natural_event /human_activity
change \ forfeit I \
alteration miracle forfeiture action group_action
modification

e T 1N

sacrifice /

resistance

harm transition increase change transgression

impairment T I

leap
hump
saltation

jump
leap

opposition T

motion
demotion movement variation
move

T

locomotion
descent
travel

T T

run jump
running parachuting

f

dash
sprint

a subgraph of the WordNet DAG

no directed cycles
(a synset can’t be more general than itself)

27

https://wordnet.princeton.edu

Bayesian networks

Vertex = variable; edge = conditional dependency.

Qnic group @
Family history of CVD
O\
TC: HDL Ratio CvD
Cre (&0 Cstainuse
Antihype@

Systolic BP

Using DAGs for Investigating Causal Paths for Cardiovascular Disease

no directed cycles
(a variable can’t depend upon itself)

28

https://api.semanticscholar.org/CorpusID:44213386

Combinational circuits

Digital logical circuit. Vertex = logic gate; edge = wire.

>

B
J

)
L/

no directed cycles =—> combinational circuit

29

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

no directed cycles

0. Math for CS /

1. Complexity Theory i \

2. Machine Learning @4—@

3. Intro to CS / 9
4. Cryptography E—»@

5. Scientific Computing Q/

6. Algorithms °

tasks precedence constraint graph

Applications. Project management, compilers, parallel computing, ...

15001040

feasible schedule

30

Topological sort

Topological sort. Given a DAG, find a linear ordering of the vertices so that

for every edge v—w, v comes before w in the ordering.

T

edges in DAG define a “partial order” for vertices
no directed cycles é
0—>5 0—>2 /
0>1 3-6 \\\\ @
a5 3o OSONO \
552 64 /
60 32 %—*@ \

directed edges DAG

topological ordering: 3605214

Graphs and digraphs Il: poll 3

Suppose that you want to topologically sort the vertices in a DAG.

Which graph-search algorithm should you use?

A. Depth-first search.
B. Breadth-first search.
C. Either A or B.

D. Neither A nor B.

(2)

FN
e

P
—(4)

(D) O+

topological ordering: 3505214

32

Topological sort demo

 Run depth-first search.

« Return vertices in reverse DFS postorder.

|

order in which dfs () calls finish tinyDAG7.txt

7
11

0 5

0 2

oG 0
3 6

3 5

3 4

5 2

> @ 6 4

6 0

3 2

a directed acyclic graph

Topological sort demo

 Run depth-first search.

« Return vertices in reverse DFS postorder.

|

order in which dfs () calls finish

DFS postorder

4 1 2 5 0 6 3

@4 @ topological ordering

(reverse DFS postorder)

3 6 05 2 1 4

done

Depth-first search: reverse postorder

public class DepthFirstOrder {

private Stack<Integer> reversePostorder;

reversePostorder = new Stack<>():

for (Aintv=20; v <GVQO; v++)

it (!marked|v]) <
dfs(G, v);

reversePostorder.push(v) ;

public Iterable<Integer> reversePostorder()
return reversePostorder;

¥

run DES from all vertices

return vertices in
reverse DFES postorder

35

Topological sort in a DAG: intuition

Why is the reverse DFS postorder of a DAG a topological order?

* First vertex in DFS postorder has outdegree 0.

* Second vertex in DFS postorder can point only to first vertex.

N

(2)—(s)
Q}@

DFS postorder

4 1 2 5 0 6 3

topological ordering
(reverse DFS postorder)

3 6 05 2 1 4

36

Topological sort in a DAG: proof of correctness

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w. When dfs(v) is called:

dfs(0)
dfs (1)
dfs(4)
 Case 1: dfs(w) has already been called and returned. 4 done
1 done
- thus, w appears before v in DFS postorder dfs(2)
2 done
dfs(5)
* Case 2: dfs(w) has not yet been called. 5 done
- dfs(w) will get called directly or indirectly by dfs(v) 0 done
- so, dfs(w) will return before dfs(v) returns
v=273 > de(B)
- thus, w appears before v in DFS postorder o]
(w=2,4,5) g
dfs(6)
« Case 3: dfs(w) has already been called, (008862) <
W =
but has not yet returned.

6 done

- = . 3 d
- function-call stack contains directed path from w to v one

- appending edge v—w to this path yields a directed cycle
- contradiction (it’s a DAG) done

37

Topological sort in a DAG: running time

Proposition. For any DAG, the DFS-based algorithm computes a topological order in ®(E + V) time.

Pf. For every vertex v, there is exactly one call to dfs(v).

|

critical that vertices are marked
(and never unmarked)

Q. What if we run the algorithm on a digraph that is not a DAG?
A. Reverse DFS postorder is still well defined, but it won’t be a topological order.

38

Directed cycle detection

Proposition. A digraph has a topological order if and only if contains no directed cycle.
Pf.
* Directed cycle —> no topologic order possible (consider vertices in the cycle).

 No directed cycle — reverse DFS postorder is a topological order.

0/9

A

a digraph with a directed cycle

(6=(® (7

Goal. Given a digraph, find a directed cycle (if one exists).

Solution. DFS. What else? See textbook/precept.

39

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

FAGE 3

DEPARTMENT COURSE DESCRIPTION PREREQS

INTERMEDIATE. COMPILER
DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

Remark. A directed cycle implies scheduling problem is infeasible.

40

https://xkcd.com/754

Directed cycle detection application: cyclic inheritance

The Java compiler does directed cycle detection.

public class A extends B { ~/cos226/graph> javac A.java
A.java:l: cyclic inheritance involving A

} public class A extends B { }
A

1 error

public class B extends C {

public class C extends A {

41

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does directed cycle detection.

@ O O Workbook1
< A B C D
1 "=B1 + 1" "=C1l + 1" "=A1 + 1"
2
3
4
5 '
6 Microsoft Excel cannot calculate a formula.
7 u Cell references in the formula refer to the formula's
e result, creating a circular reference. Try one of the
o following:
9 « |If you accidentally created the circular reference, click
10 OK. This will display the Circular Reference toolbar and
help for using it to correct your formula.
11 » To continue leaving the formula as it is, click Cancel.
12 (Cancel) (oK)
13
14
15
16
17
18

« <« » » | Sheetl _ Sheet2 _Sheet3

42

4. GRAPHS AND DIGRAPHS I

Algorithms

» challenges

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Graph-processing challenge 1

Problem. lIdentify connected components.

How difficult?

A. Diligent algorithms student could do it.
B. Hire an expert.
C. Intractable.

D. No one knows.

I |
SO b WO LI =

A NN N O O
I

v id]]

S v A W N R O
_ O =)k = = O O

44

Graph-processing challenge 1

Problem. lIdentify connected components.

Particle detection. Given grayscale image of particles, identify “blobs.”
* Vertex: pixel.
 Edge: between two adjacent pixels with grayscale value = 70.

* Blob: connected component of 20-30 pixels.

45

Graph-processing challenge 2

Problem. Is a graph bipartite?

How difficult?

A. Diligent algorithms student could do it.
B. Hire an expert.
C. Intractable.

D. No one knows.

A DN NP O O O O
I
SO U1 A W W O VI N

46

Graph-processing challenge 3

Problem. Is there a (non-simple) cycle that uses every edge exactly once?

How difficult?

A. Diligent algorithms student could do it.
B. Hire an expert.

0-1-2-3-4-2-0-6-4-5-0
C. Intractable.

D. No one knows.

[I I [I I
O U1l A DN W NO ULIIN

>~ B W NDNPRERE O OO O
I

47

Graph-processing challenge 4

Problem. Is there a cycle that uses every vertex exactly once?

How difficult?

A. Diligent algorithms student could do it.
B. Hire an expert.

0-5-3-4-6-2-1-0
C. Intractable.

D. No one knows.

[I I [I I
SO Ul U1 N OYN O ULT DN B

>~ W W DNRERE OOO O
I

48

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?

A. Diligent algorithms student could do it.
B. Hire an expert.

C. Intractable.

D. No one knows.

f0)=0
f()=5
f@)=7
f3)=2
fey=4
f&)=1
f(6)=3
fD=6

49

Graph-processing challenge 6

Problem. Can you draw a graph in the plane with no crossing edges?

\

try it yourself at
https://www.jasondavies.com/planarity

How difficult?

A. Diligent algorithms student could do it.

B. Hire an expert.

C. Intractable.

D. No one knows

yes (a planar embedding)

R =R =R O O O
|
N o A OY U1 =

w W w NN DN
|
N O ol NI O B

50

https://www.jasondavies.com/planarity
http://planarity.net

Graph processing summary

BFS and DFS enables efficient solution of many (but not all) graph and digraph problems.

s-t path

& shortest s-t path 4 E+V
&) shortest directed cycle \'4 EV
< Euler cycle v E+V
E Hamilton cycle 9 1.657V
< bipartiteness (odd cycle) \'4 4 E+V
& connected components v v E+V
= strong components v E+V
@ planarity v E+V
"@’ graph isomorphism 9 cln®V

Graph-processing summary: algorithms of the week

single-source
reachability

shortest paths

topological sort 0@\00000 OJOIDROE®

FREERRE

DFS/BFS

BFS

DFS

Credits

media source license
ARPANET Wikimedia CCBY-SA4.0
Oracle of Bacon oracleofbacon.org
Kevin Bacon Game Endless Games
Six Degrees of Hollywood Paradox Apps
Pedigree of King Charles 11 Waterford Treasures

Habsburg Coat of Arms Wikimedia CCBY-SA3.0

Bayesian Network Thornley et. al
Dependencies xked CCBY-NC2.5

Brownian Motion William Ryu permission by author

BFS Graph Visualization

Gerry Jenkins

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://commons.wikimedia.org/wiki/File:Arpanet_in_the_1970s.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://oracleofbacon.org
https://www.amazon.com/Six-Degrees-Kevin-Bacon-Game/dp/B00000JIKJ
https://apps.apple.com/us/app/six-degrees-of-hollywood/id1262835314
https://www.waterfordtreasures.com/its-about-time-the-man-who-accidentally-became-a-clock-maker-to-the-king-of-spain/
https://commons.wikimedia.org/wiki/File:Arms_of_Counts_of_Habsbourg.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://www.semanticscholar.org/paper/Using-Directed-Acyclic-Graphs-for-Investigating-for-Thornley-Marshall/5c4e1666532aeeca10b2312358c53565a7285121
https://xkcd.com/754
https://creativecommons.org/licenses/by-nc/2.5/
https://www.youtube.com/watch?v=x-VTfcmrLEQ

BFS visualization (by Gerry Jenkins)

https://www.youtube.com/watch?v=x-VTfcmrLEQ

https://algs4.cs.princeton.edu/41undirected/Graph.java.html

