
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK  |  KEVIN WAYNE

Last updated on 3/20/25 9:21  AM

3.4  HASH TABLES

‣ hash functions 

‣ separate chaining 

‣ linear probing 

‣ context

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Symbol table implementations:  summary

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q.  Can we do better? 
A.  Yes, but only with different access to the symbol table keys.

2

†  subject to certain technical assumptions

implementation

worst case typical case
ordered

ops?
key

interface
search insert delete search insert delete

sequential search 
(unordered list) n n n n n n equals()

binary search 
(ordered array) log n n n log n n n ✔ compareTo()

BST n n n log n log n √ n ✔ compareTo()

red–black BST log n log n log n log n log n log n ✔ compareTo()

hashing n n n 1 † 1 † 1 †
equals() 

hashCode()



Hashing:  basic plan

Save key–value pairs in an array, using a hash function to determine index of each key. 
 
Hash function:  Mathematical function that maps (hashes) a key to an array (table) index. 
 
Collision:  Two distinct keys that hash to the same index. 
 
 
Issue.  Collisions are typically unavoidable. 

・How to limit collisions? 
[good hash functions] 

・How to accommodate collisions? 
[novel algorithms and data structures]

3

hash(🦄) = 3

0

1

2

3

4

5

⋮

99

hash(🦋) = 3

hash(🐅) = 1

🦋

🐅

hash(🐷) = 99

🐷



3.4  HASH TABLES

‣ hash functions 

‣ separate chaining 

‣ linear probing 

‣ context
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Designing a hash function

Required properties.  [for correctness] 

・Valid indices:  each key hashes to a table index between  and . 

・Deterministic:  hashing the same key twice yields the same index. 
 
Desirable properties.  [for performance] 

・Very fast to compute. 

・Distributes the keys uniformly:  for any subset of  keys to be hashed,  
each table index gets approximately  keys.

0 m − 1

n
n / m

5

leads to good hash-table performance
(m = 10, n = 20)

0 1 2 3 4 5 6 7 8 9

leads to poor hash-table performance
(m = 10, n = 20)

0 1 2 3 4 5 6 7 8 9

hash 
function

key

table index

m = table size



Designing a hash function

Required properties.  [for correctness] 

・Valid indices:  each key hashes to a table index between  and . 

・Deterministic:  hashing the same key twice yields the same index. 
 
Desirable properties.  [for performance] 

・Very fast to compute. 

・Distributes the keys uniformly:  for any subset of  keys to be hashed,  
each table index gets approximately  keys. 

 
Ex 1.  [m = 10,000]  Last 4 digits of U.S. Social Security number. 
Ex 2.  [m = 10,000]  Last 4 digits of phone number.

0 m − 1

n
n / m

6

hash 
function

key

table index

(609) 876-5309



Hash tables:  poll 1

Which is the last digit of your day of birth?  

A.  0 or 1 

B.  2 or 3 

C.  4 or 5 

D.  6 or 7 

E.  8 or 9

7



Hash tables:  poll 2

Which is the last digit of your year of birth?  

A.  0 or 1 

B.  2 or 3 

C.  4 or 5 

D.  6 or 7 

E.  8 or 9

8



Java’s hashCode() conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int. 
 
 
Required.          [for correctness]   If  x.equals(y),  then  x.hashCode() == y.hashCode(). 
Highly desirable.  [for efficiency]   If !x.equals(y),  then  x.hashCode() != y.hashCode(). 
 
 
 
 
 
 
 
Customized implementations.  Integer, Double, String, java.net.URL, … 
Legal (but highly undesirable) implementation.  Always return 17. 
User-defined types.  Requires some care to design.

9

hash
code

x.hashCode()

x

hash
code

y.hashCode()

y



Implementing hashCode():  integers and doubles

10

public final class Integer { 
   private final int value;   
   ... 
 
 
 

}

public final class Double { 
   private final double value; 
   ... 
   
 
 
 
 

}

Java library implementations

public int hashCode() { 
   return value; 
}

public int hashCode() {   
   long bits = doubleToLongBits(value); 
   return (int) (bits ^ (bits >>> 32)); 
}

convert to IEEE 64-bit representation; 
xor most significant 32-bits 
with least significant 32-bits

if used only least significant 32 bits,
all integers between −221 and 221

would have same hash code (0)



Implementing hashCode():  user-defined types

 rule. 

・Initialize hash to . 

・Repeatedly multiply hash by  and add hash of each significant field.

31x + y
1

31

11

public final class Transaction { 
   private final String who; 
   private final Date when; 
   private final double amount; 
 

   ... 
 

 
 
 
 
 
 
 
 
 
}

public int hashCode() {   
   int hash = 1; 
   hash = 31*hash + who.hashCode(); 
   hash = 31*hash + when.hashCode(); 
   hash = 31*hash + ((Double) amount).hashCode(); 
   return hash; 
} for primitive types, 

use hashCode() of wrapper type

for reference types,
use hashCode()

origin of rule remains a mystery, 
but works well in practice



Implementing hashCode():  user-defined types

 rule. 

・Initialize hash to . 

・Repeatedly multiply hash by  and add hash of each significant field. 
 
 
 
 
 
 
 
 
 
 
 
 
Practice.  This approach works reasonably well; used in Java libraries.

31x + y
1

31

12

public final class Transaction { 
   private final String who; 
   private final Date when; 
   private final double amount; 
 

   ... 
 

 
 
 
 
 
 
}

public int hashCode() {   
   return Objects.hash(who, when, amount); 
}

a varargs method that applies
31x + y rule to its arguments



Hash tables:  poll 3

Which Java function maps hashable keys to integers between  and  ?  
 
 

A.    

 

B.    

 

C.   Both A and B.  

D.   Neither A nor B.

0 m − 1

13

 private int hash(Key key) { 
   return Math.abs(key.hashCode()) % m; 
}

 private int hash(Key key) { 
    return key.hashCode() % m; 
}

hash
code

key.hashCode()

key

hash
function

hash(key)

key



Modular hashing

Hash code.  An int between  and . 
Hash function.  An int between  and  (for use as a table index).

−231 231 − 1
0 m − 1

14

m typically a prime or a power of 2

1-in-a-billion bug hashCode() of "polygenelubricants" and new Double(-0.0) is −231

bug the remainder operator can evaluate to a negative integer

correct

 private int hash(Key key) { 
    return Math.abs(key.hashCode() % m); 
}

hash
code

key.hashCode()

key

hash
function

hash(key)

key

 private int hash(Key key) { 
    return key.hashCode() % m; 
}

 private int hash(Key key) { 
   return Math.abs(key.hashCode()) % m; 
}



Uniform hashing assumption

Uniform hashing assumption.  Each key is equally likely to hash to any of  possible indices. 
 
Balls-into-bins model.  Toss  balls uniformly at random into  bins. 
 
 
 
 
 
 
Bad news.  [birthday problem]  

・In a random group of  people, more likely than not 
that two (or more) share the same birthday ( ). 

・Expect two balls in the same bin after   tosses.

m

n m

n = 23

m = 365

∼ π m / 2

15

23.9 when m = 365

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m = 16 bins, n = 11 balls

and independently of other keys



Uniform hashing assumption

Uniform hashing assumption.  Each key is equally likely to hash to any of  possible indices. 
 
Balls-into-bins model.  Toss  balls uniformly at random into  bins. 
 
 
 
 
 
Good news.  [load balancing] 

・When , expect most bins to have approximately  balls.  

・When , expect most loaded bin has  balls.

m

n m

n ≫ m n / m
n = m ∼ ln n / ln ln n

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m = 16 bins, n = 11 balls

Hash value frequencies for words in Tale of Two Cities (M = 97)hash value frequencies for words in Tale of Two Cities (m = 97)

n / m

Binomial(n, 1 / m)

and independently of other keys



3.4  HASH TABLES

‣ hash functions 

‣ separate chaining 

‣ linear probing 

‣ context
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Collisions

Collision.  Two distinct keys that hash to the same index.  

・Birthday problem	   can’t avoid collisions.  

・Load balancing	   no index gets too many collisions. 
	 	 	   ok to scan through all colliding keys.

⟹

⟹
⟹

18

 unless you have a ridiculous
(quadratic) amount of memory

hash(🦄) = 3

0

1

2

3

4

5

⋮

99

hash(🦋) = 3
🦋

🐅

🐷



L 11

Separate-chaining hash table

Use an array of  linked lists. 

・Hash:  map key to table index  between  and . 

・Insert:  add key–value pair at front of chain  (if not already in chain). 

m
i 0 m − 1

i

F C B5 12 null

19

I D

K J E A

H G

0

1

2

3

st[]

8

10

7

3

9

6

4 0

put(L, 11)
hash(L) = 3

separate-chaining hash table (m = 4)

null

null

null



Separate-chaining hash table

Use an array of  linked lists. 

・Hash:  map key to table index  between  and . 

・Insert:  add key–value pair at front of chain  (if not already in chain).  

・Search:  perform sequential search in chain .

m
i 0 m − 1

i
i

20

I D

K J E A

H G

L F C

0

1

2

3

st[]

8

10

7

11

3

9

6

4

2

0

get(E)
hash(E) = 1

5 B 1

null

null

null

null

separate-chaining hash table (m = 4)



public class SeparateChainingHashST<Key, Value> { 
   private int m = 128;               // number of chains 
   private Node[] st = new Node[m];   // array of chains 
 
   private static class Node { 
      private Object key; 
      private Object val; 
      private Node next; 
      ... 
   } 

   private int hash(Key key) 
   {  /* as before */  } 
 
 
 
 
 
 
 

 
}

public Value get(Key key) { 
   int i = hash(key); 
   for (Node x = st[i]; x != null; x = x.next) 
      if (key.equals(x.key)) return (Value) x.val; 
   return null; 
}

Separate-chaining hash table:  Java implementation

21

no generic array creation
(declare key and value of type Object)

array resizing
code omitted



Separate-chaining hash table:  Java implementation

22

public class SeparateChainingHashST<Key, Value> { 
   private int m = 128;               // number of chains 
   private Node[] st = new Node[m];   // array of chains 

   private static class Node { 
      private Object key; 
      private Object val; 
      private Node next; 
      ... 
   } 

   private int hash(Key key) 
   {  /* as before */  } 
 
 
 
 
 
 
 
 

}

public void put(Key key, Value val) { 
   int i = hash(key); 
   for (Node x = st[i]; x != null; x = x.next) 
      if (key.equals(x.key)) { x.val = val; return; } 
   st[i] = new Node(key, val, st[i]); 
}



Analysis of separate chaining

Recall load balancing:  Under the uniform hashing assumption,  
the length of each chain is tightly concentrated around mean . 
 
 
 
 
 
 
 
 
 
Consequence.  Expected number of probes for search/insert is . 

・  too small	   chains too long. 

・  too large	   too many empty chains. 

・Typical choice:   time for search/insert.

= n / m

Θ(n / m)
m ⟹
m ⟹

m ∼ 1
4 n ⟹ Θ(1)

23

m times faster than 
sequential search

calls to either
equals() or hashCode()

Hash value frequencies for words in Tale of Two Cities (M = 97)hash value frequencies for words in Tale of Two Cities (m = 97)

n / m



Resizing in a separate-chaining hash table

Goal.  Average length of chain   is . 

・Double length  of array when . 

・Halve   length  of array when . 

・Note:  must rehash all keys when resizing.

n / m Θ(1)
m n / m ≥ 8
m n / m ≤ 2

24

A B C D E F G H I J

K L M N O P

0

1

K I

P N L E
0

1

2

3

before resizing (n/m = 8)

after resizing (n/m = 4)

J F C B

O M H G D

A

x.hashCode() does not change;
 but hash(x) typically does

st[]

st[]



Deletion in a separate-chaining hash table

Q.  How to delete a key (and its associated value)? 
A.  Easy: need to consider only linked list containing key.

25

before deleting C 

K I

P N L

J F B

O M

after deleting C 

0

1

2

3

st[]

P N L

K I

0

1

2

3
J F C B

O M

st[]



Symbol table implementations:  summary

26

†  under uniform hashing assumption

implementation

worst case typical case
ordered

ops?
key

interface
search insert delete search insert delete

sequential search 
(unordered list) n n n n n n equals()

binary search 
(ordered array) log n n n log n n n ✔ compareTo()

BST n n n log n log n √ n ✔ compareTo()

red–black BST log n log n log n log n log n log n ✔ compareTo()

separate chaining n n n 1 † 1 † 1 †
equals() 

hashCode()

can achieve Θ(1) probabilistic, amortized guarantee
by choosing a hash function at random

(see “universal hashing”)



3.4  HASH TABLES

‣ hash functions 

‣ separate chaining 

‣ linear probing 

‣ context
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Linear-probing hash table:  insert

・Maintain key–value pairs in two parallel arrays, with one key per cell. 

・Resolve collisions by linear probing:  
search successive cells until either finding the key or an unused cell. 

 
 
Inserting into a linear-probing hash table.

28

linear-probing hash table

0 1 2 3 4 5 6 7 8 9

keys[]

10 11 12 13 14 15

EA C H R XMP L

vals[] 139 5 6 4 81011 12

put(K, 14)
hash(K) = 7

K

14



Linear-probing hash table:  search

・Maintain key–value pairs in two parallel arrays, with one key per cell. 

・Resolve collisions by linear probing:  
search successive cells until either finding the key or an unused cell. 

 
 
Searching in a linear-probing hash table.

K

29

0 1 2 3 4 5 6 7 8 9

keys[]

10 11 12 13 14 15

EA C H R XMP L

vals[] 139 5 6 4 81011 12

get(K)
hash(K) = 7

K

14

get(Z)
hash(Z) = 8

Z

linear-probing hash table



Linear-probing hash table demo

Hash.  Map key to integer  between  and . 
Insert.  Put at table index  if free; if not, try 
Search.  Search table index ; if occupied but no match, try  

Note.  Array length  must be greater than number of key–value pairs .

i 0 m − 1
i i + 1, i + 2, …

i i + 1, i + 2, …

m n

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S EA C H R XMP Lkeys[]



public class LinearProbingHashST<Key, Value> { 
   private int m = 32768; 
   private Value[] vals = (Value[]) new Object[m]; 
   private Key[]   keys = (Key[])   new Object[m]; 

   private int hash(Key key) 
   {  /* as before */  } 

   private void put(Key key, Value val) { /* next slide */  } 
 
 
 
 
 
 
 

 
}

public Value get(Key key) { 
   for (int i = hash(key); keys[i] != null; i = (i+1) % m) { 
      if (key.equals(keys[i])) 
         return vals[i]; 
   } 
   return null; 
}

Linear-probing symbol table:  Java implementation

31

array resizing
code omitted



public class LinearProbingHashST<Key, Value> { 
   private int m = 32768; 
   private Value[] vals = (Value[]) new Object[m]; 
   private Key[]   keys = (Key[])   new Object[m]; 

   private int hash(Key key) 
   {  /* as before */  } 

   public Value get(Key key) { /* previous slide */  } 
 

 
 
 
 
 
 
 
 
 
 
}

public void put(Key key, Value val) { 
   int i; 
   for (i = hash(key); keys[i] != null; i = (i+1) % m) { 
      if (keys[i].equals(key)) 
          break; 
   } 
   keys[i] = key; 
   vals[i] = val; 
}

Linear-probing symbol table:  Java implementation

32



Hash tables:  poll 5

Under the uniform hashing assumption, where is the next key most likely to be added 
in this linear-probing hash table (no resizing)?  
 
 
 
 

A. Index . 

B. Index . 

C. Either index  or . 

D. All open indices are equally likely.

4

17

4 17

33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

H I M N A D K A B E F G J C L

main cause of “primary clustering” =  merging of long runs

probability = 7 / 20



Analysis of linear probing

Proposition.  Under uniform hashing assumption, the average # of probes in a  
linear-probing hash table of size  that contains  keys is at most 
 
 

Pf.  [beyond course scope] 
 
 
 
 
 
 
Parameters. 

・m too large	   wastes space (empty array entries). 

・m too small	   search time blows up.  

・Typical choice:   .

m n = α ⋅ m

⟹
⟹

α = n / m ∼ 1
2

34

∼ 1
2

(
1 +

1
1− α

)

search hit

∼ 1
2

(
1 +

1
(1− α)2

)

search miss / insert

# probes for search hit is about 3 / 2
# probes for search miss is about 5 / 2



Deletion in a linear-probing hash table

Q.  How to delete a key–value pair from a linear-probing hash table? 
A.  Requires some care:  can’t simply remove array entries.

35

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C S H L E R X

10 9 8 4 0 5 11 12 3 7vals[]

before deleting S

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C H L E R X

10 9 8 4 5 11 12 3 7vals[]

after deleting S ?

search no longer works
(e.g., if hash(H) = 4)

“tombstone”
(skip for search; reuse for insert)



ST implementations:  summary

36
†  under uniform hashing assumption

implementation

worst case typical case
ordered

ops?
key

interface
search insert delete search insert delete

sequential search 
(unordered list) n n n n n n equals()

binary search 
(ordered array) log n n n log n n n ✔ compareTo()

BST n n n log n log n √ n ✔ compareTo()

red–black BST log n log n log n log n log n log n ✔ compareTo()

separate chaining n n n 1 † 1 † 1 †
equals() 

hashCode()

linear probing n n n 1 † 1 † 1 †
equals() 

hashCode()



Separate chaining vs. linear probing

Separate chaining. 

・Performance degrades gracefully. 

・Clustering less sensitive to poorly-designed hash function. 
 
 
Linear probing. 

・Unrivaled data locality. 

・More probes because of clustering.

37

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C S H L E R X

10 9 8 4 0 5 11 12 3 7vals[]

C B 127F

I D

K J E A

H G

0

1

2

3

st[]

8

1

7

3

9

6

4 0



3-Sum (revisited)

3-SUM.  Given  distinct integers, find three such that . 
Goal.   expected time;   extra space. 
 
 
Hashing-based solution to 3-SUM. 

・Insert each integer into a hash table. 

・For each pair of integers  and , search hash table for .

n a + b + c = 0
Θ(n2) Θ(n)

a b c = − (a + b)

38

but not a triple
if c = a or c = b



3.4  HASH TABLES

‣ hash functions 

‣ separate chaining 

‣ linear probing 

‣ context
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Hashing: variations on the theme

Many many improved versions have been studied. 
 
Use different probe sequence, i.e., not   
[ quadratic probing, double hashing, pseudo-random probing, … ] 
 
 
During insertion, relocate some of the keys already in the table.  
[ Cuckoo hashing, Robin Hood hashing, Hopscotch hashing, … ] 
 
Insert tombstones prophylactically, to avoid primary clustering.  
[ graveyard hashing ]

h(k), h(k) + 1, h(k) + 2, …

40

eliminates primary clustering,
which enables higher load factor / less memory
(but sacrifices data locality)

reduces worst-case time for search

Facebook F14Google Swiss Table Python 3

eliminates primary clustering;
maintains data locality



Hash tables vs. balanced search trees

Hash tables. 

・Simpler to code. 

・Typically faster in practice. 

・No effective alternative for unordered keys. 

Balanced search trees. 

・Stronger performance guarantees. 

・Support for ordered ST operations. 

・Easier to implement compareTo() than hashCode(). 

Java collections library includes both. 

・BSTs:  java.util.TreeMap. 

・Hash tables:  java.util.HashMap, java.util.IdentityHashMap.

41

separate chaining
(Java 8:  if chain gets too long, 
use red–black BST for chain)

red–black BST

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

linear probing



Algorithmic complexity attacks

Q.  Is the uniform hashing assumption important in practice? 
A1.  Yes:  aircraft control, nuclear reactor, pacemaker, HFT, missile-defense system, … 
A2.  Yes:  denial-of-service (DoS) attacks. 
 
 
 
 
 
 
 
 
 
Real-world exploits.  [Crosby–Wallach 2003]  

・Linux 2.4.20 kernel:  save files with carefully chosen names. 

・Bro server:  send carefully chosen packets to DoS the server,  
using less bandwidth than a dial-up modem.

42

malicious adversary learns your hash function 
(e.g., by reading Java API) and causes a big pile-up 

in single slot that grinds performance to a halt

0

1

2

3

st[]

4

5

6

7



Hashing:  beyond symbol tables

File verification.  When downloading a file from the web: 

・Vendor publishes hash of file. 

・Client checks whether hash of downloaded file matches. 

・If mismatch, file corrupted.

43

~/cos226/hash> sha256sum ideaIC-2024.2.dmg 
c62ed2df891ccbb40d890e8a0074781801f086a3091a4a2a592a96afaba31270

c62ed2df891ccbb40d890e8a0074781801f086a3091a4a2a592a96afaba31270

(e.g., error in transmission or infected by virus)



Hashing:  cryptographic applications

One-way hash function.  “Hard” to find a key that will hash to a target value  
(or two keys that hash to same value). 
 
Ex.  MD5, SHA-1, SHA-256, SHA-512, SHA3-512, Whirlpool, BLAKE3, … 
 
 
 
 
 
 
 
 
 
 
Applications.  File verification, digital signatures, cryptocurrencies, password authentication, 
blockchain, non-fungible tokens, Git commit identifiers, …

44

known to be insecure

de758e98d49123c3af91f5226221641d

fixed-length hash



Lecture Slides  © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

media source license

Collision Icon Adobe Stock Education License

Sound Effects Mixkit Mixkit free license

Social Security Card Adobe Stock Education License

Cell Phone Number Adobe Stock Education License

Birth Announcement postable.com

Recipe Pixabay Pixabay Content License

People Standing in Line Adobe Stock Education License

Tombstone Icon Adobe Stock Education License

Meat Grinder flaticon.com Flaticon license

Document Icon stockio.com free with attribution

Donald Knuth Hector Garcia-Molina

https://stock.adobe.com/images/vector-illustration-of-the-shape-of-an-explosive-collision/459443876
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://mixkit.co/free-sound-effects/game/
https://mixkit.co/license/#sfxFree
https://stock.adobe.com/images/generic-american-social-security-card/27922613
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/flat-design-concept-message-and-chat-present-by-icon-text-message-vector-illustrate/206595690
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.postable.com/card/pine-branch-birth-announcement
https://pixabay.com/vectors/recipe-label-icon-symbol-spoon-575434/
https://pixabay.com/service/license-summary/
https://stock.adobe.com/images/diverse-community-of-people-standing-in-line-isolated-cartoon-men-and-women/316212153
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/flat-rip-icon/676112179
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.flaticon.com/free-icon/meat-grinder_180476
https://www.freepikcompany.com/legal#nav-flaticon
https://www.stockio.com/free-icon/documents
https://www.stockio.com/free-icon/documents
https://www.cs.cmu.edu/news/2010/carnegie-mellon-announces-knuth-and-kleinberg-will-receive-katayanagi-prizes-computer-science


A final thought

46

 “  Programmers waste enormous amounts of time thinking about,
     or worrying about, the speed of noncritical parts of their programs,
     and these attempts at efficiency actually have a strong negative
     impact when debugging and maintenance are considered.

     We should forget about small efficiencies, say about 97% of the time: 
      premature optimization is the root of all evil.

     Yet we should not pass up our opportunities in that critical 3%.  ”

                          — Donald Knuth


