
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/25/25 6:58  AM

3.1 SYMBOL TABLES

‣API
‣ elementary implementations
‣ ordered operations

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

3.1 SYMBOL TABLES

‣API
‣ elementary implementations
‣ ordered operations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Why are telephone books (and their cousins) obsolete?

Unsupported phone book operations.

・Add a new name and associated number.

・Remove a given name and associated number.

・Change the number associated with a given name.

 key = word
value = definition

 key = time and channel
value = TV show

 key = math function and input
value = function output

 key = name
value = phone number

 key = term
value = article

4

Symbol tables

Key–value pair abstraction.

・Insert a value with specified key.

・Given a key, search for the corresponding value.

Ex. DNS lookup.

・Insert domain name with specified IP address.

・Given domain name, find corresponding IP address.

key

domain name IP address

www.cs.princeton.edu 128.112.136.61

goprincetontigers.com 67.192.28.17

wikipedia.com 208.80.153.232

google.com 172.217.11.46

value
5

Symbol table applications

application purpose of search key value

dictionary find definition word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

financial account process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find properties of variables variable name type and value

routing table route Internet packets destination best route

DNS find IP address domain name IP address

reverse DNS find domain name IP address domain name

genomics find markers DNA string known positions

file system find file on disk filename location on disk

6

Symbol tables: context

Also known as: maps, dictionaries, associative arrays.
 
Generalizes arrays. Keys need not be integers between and .
 
Language support.

・External libraries: C, VisualBasic, Standard ML, bash, …

・Built-in libraries: Java, C#, C++, Scala, Rust, …

・Built-in to language: Python, Go, JavaScript, Swift, Ruby, Awk, Perl, PHP, Tcl, …

0 n − 1

has_nice_syntax_for_dictionaries['Python'] = True

has_nice_syntax_for_dictionaries['Java'] = False

Python code

7

Basic symbol table API

Associative array abstraction. Associate key–value pairs.

a[key] = val;

a[key]

two generic type parameters

8

 public class ST<Key extends Comparable<Key>, Value>

ST() create an empty symbol table

void put(Key key, Value val) insert key–value pair

Value get(Key key) value paired with key

Iterable<Key> keys() all the keys in the symbol table

boolean contains(Key key) is there a value paired with key?

void delete(Key key) remove key (and associated value)

boolean isEmpty() is the symbol table empty?

int size() number of key–value pairs

Conventions

・Method put() overwrites old value with new value.

・Method get() returns null if key not present.

・Values are not null. java.util.Map allows null values

https://code.google.com/p/guava-libraries/wiki/UsingAndAvoidingNullExplained

 “ Careless use of null can cause a staggering variety of bugs.
 Studying the Google code base, we found that something like
 95% of collections weren’t supposed to have any null values
 in them, and having those fail fast rather than silently accept
 null would have been helpful to developers. ”

9

https://code.google.com/p/guava-libraries/wiki/UsingAndAvoidingNullExplained

Key and value types

Value type. Any generic type.
 
Key type. Different assumptions.

・This lecture: keys are Comparable; use compareTo().

・Hashing lecture: keys are any generic type;  
use equals() to test equality and hashCode() to scramble key.

 
Best practices. Use immutable types for symbol-table keys.

specify Comparable in API

“ Classes should be immutable unless there’s a very good reason

 to make them mutable.… If a class cannot be made immutable,

 you should still limit its mutability as much as possible. ”

 — Joshua Bloch (Java Collections architect)

10

immutable mutable

String StringBuilder

Integer Stack

Double ArrayList

Color int[]

⋮ ⋮

Frequency counter. Read a sequence of strings from standard input;  
print one that occurs most often.

~/cos226/st> more tinyTale.txt

it was the best of times

it was the worst of times

it was the age of wisdom

it was the age of foolishness

it was the epoch of belief

it was the epoch of incredulity

it was the season of light

it was the season of darkness

it was the spring of hope

it was the winter of despair

~/cos226/st> java FrequencyCounter 3 < tinyTale.txt

the 10

~/cos226/st> java FrequencyCounter 8 < tale.txt

business 10

~/cos226/st> java FrequencyCounter 10 < leipzig1M.txt

government 24763

ST test client for analysis

tiny example
(60 words, 20 distinct)

real example
(135,635 words, 10,769 distinct)

real example
(21,191,455 words, 534,580 distinct)

11

public class FrequencyCounter {

 public static void main(String[] args) {

 int minLength = Integer.parseInt(args[0]);

 ST<String, Integer> st = new ST<>();

 while (!StdIn.isEmpty()) {

 String word = StdIn.readString();

 if (word.length() < minLength) continue;

 if (!st.contains(word)) st.put(word, 1);

 else st.put(word, st.get(word) + 1);

 }

 String champ = "";

 st.put(champ, 0);

 for (String word : st.keys()) {

 if (st.get(word) > st.get(champ))

 champ = word;

 }

 StdOut.println(champ + " " + st.get(champ));

 }

}

Frequency counter implementation

identify and print a string with max frequency

compute frequencies

12

overwrites old value
with new value

(no need to remove)

iterates over all
keys in symbol table

3.1 SYMBOL TABLES

‣API
‣ elementary implementations
‣ ordered operations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

Data structure. Maintain an (unordered) linked list of key–value pairs.
 
Search. Scan through all keys until finding a match.
Insert. Scan through all keys until finding a match; if no match add to front.
 
 
 
 
 
 
 
 
 
 
 
Proposition. In the worst case, search and insert each take time.Θ(n)

Sequential search in a linked list

get("A")

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

put("M", 9)

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

14

Elementary symbol tables: poll 1

Data structure. Maintain parallel arrays for keys and values, sorted by key.

 
 
 
 
 
What are the worst-case running times for search and insert, respectively?

A. and

B. and

C. and

D. and

Θ(log n) Θ(log n)

Θ(n) Θ(log n)

Θ(log n) Θ(n)

Θ(n) Θ(n)

8 4 2 5 11 9 10 3 0 7

vals[]

0 1 2 3 4 5 6 7 8 9

A C E H L M P R S Z

keys[]

0 1 2 3 4 5 6 7 8 9

15

Data structure. Maintain parallel arrays for keys and values, sorted by key.
 
Search. Use binary search to find key.
Insert. Use binary search to find place to insert; shift all larger keys over.

Binary search in a sorted array

8 4 2 5 11 9 10 3 0 7

vals[]

0 1 2 3 4 5 6 7 8 9

A C E H L M P R S Z

keys[]

0 1 2 3 4 5 6 7 8 9

get("P")

10P 8 4 6 5 9A C E H M

vals[]

0 1 2 3 4 5 6 7 8 9

keys[]

0 1 2 3 4 5 6 7 8 9

put("P", 10)

R S X - - 3 0 7 - -

16

Elementary symbol tables: poll 2

When I first submitted BinarySearchDeluxe.java to TigerFile, the autograder identified a …

A. Correctness bug (false positive or false negative).

B. Performance bug (or infinite loop).

C. Both A and B.

D. Neither A nor B.

17

Elementary ST implementations: summary

Challenge. Efficient implementations of both search and insert.

implementation

worst case
operations

on keys
search insert

sequential search
(unordered list) n n equals()

binary search
(sorted array) log n n † compareTo()

† can do with Θ(log n) compares, but still requires Θ(n) array accesses

18

3.1 SYMBOL TABLES

‣API
‣ elementary implementations
‣ ordered operations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Examples of ordered symbol table API

keys values

9:00:00 Chicago

9:00:03 Phoenix

9:00:13 Houston

9:00:59 Chicago

9:01:10 Houston

9:03:13 Chicago

9:10:11 Seattle

9:10:25 Seattle

9:14:25 Phoenix

9:19:32 Chicago

9:19:46 Chicago

9:21:05 Chicago

9:22:43 Seattle

9:22:54 Seattle

9:25:52 Chicago

9:35:21 Chicago

9:36:14 Seattle

9:37:44 Phoenix

min()

max()

select(7)

get(9:00:13)

floor(9:05:00)

ceiling(9:30:00)

rank(9:10:25) = 7

20

Ordered symbol table API

Symbol table API. Add these ordered operations when keys are Comparable.

21

 public class ST<Key extends Comparable<Key>, Value>

 ⋮

Key min() smallest key

Key max() largest key

Key floor(Key key) largest key less than or equal to key

Key ceiling(Key key) smallest key greater than or equal to key

int rank(Key key) number of keys less than key

Key select(int k) key of rank k

Rank in a sorted array

Problem. Given a sorted array of distinct keys,  
find the number of keys strictly less than a given query key.
 
 
 
 
 
 
 
 
 
 
 
 
 
Q. What if duplicate keys are allowed?

n

 public Value get(Key key) {

 int lo = 0, hi = n-1;

 while (lo <= hi) {

 int mid = lo + (hi - lo) / 2;

 int cmp = key.compareTo(keys[mid]);

 if (cmp < 0) hi = mid - 1;

 else if (cmp > 0) lo = mid + 1;

 else return vals[mid];

 }

 return null;

 }

public int rank(Key key)

mid

lo

easy modification to binary search

22

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Challenge. Efficient implementations of all operations, including insertion/deletion.

sequential  
search

binary 
search

goal

search Θ(n) Θ(log n) Θ(log n)

insert / delete Θ(n) Θ(n) Θ(log n)

min / max Θ(n) Θ(1) Θ(log n)

floor / ceiling Θ(n) Θ(log n) Θ(log n)

rank Θ(n) Θ(log n) Θ(log n)

select Θ(n) Θ(1) Θ(log n)

Ordered symbol table operations: performance summary

worst-case running time for ordered symbol table operations

23

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

image source license

Encyclopedias Encyclopædia Britannica

Stack of Phone Books James Joyner

CRC Standard Mathematical Tables CRC Press

Oxford English Dictionary Oxford University Press

TV Guide TV Guide Magazine

Effective Java Addison-Wesley Professional

Binary Search The Reinvigorated Programmer

https://www.britannica.com/
https://www.outsidethebeltway.com/paper_phone_books_are_obsolete/
https://www.amazon.com/Standard-Mathematical-Formulae-Mathematics-Applications/dp/0849306299
https://www.britannica.com/topic/The-Oxford-English-Dictionary
https://www.tvguidemagazine.com/archive/suboffer/1970s/1974/19740706_c1.jpg.html
https://www.amazon.com/Effective-Java-Joshua-Bloch-ebook/dp/B078H61SCH
https://reprog.wordpress.com/2010/04/19/are-you-one-of-the-10-percent/

