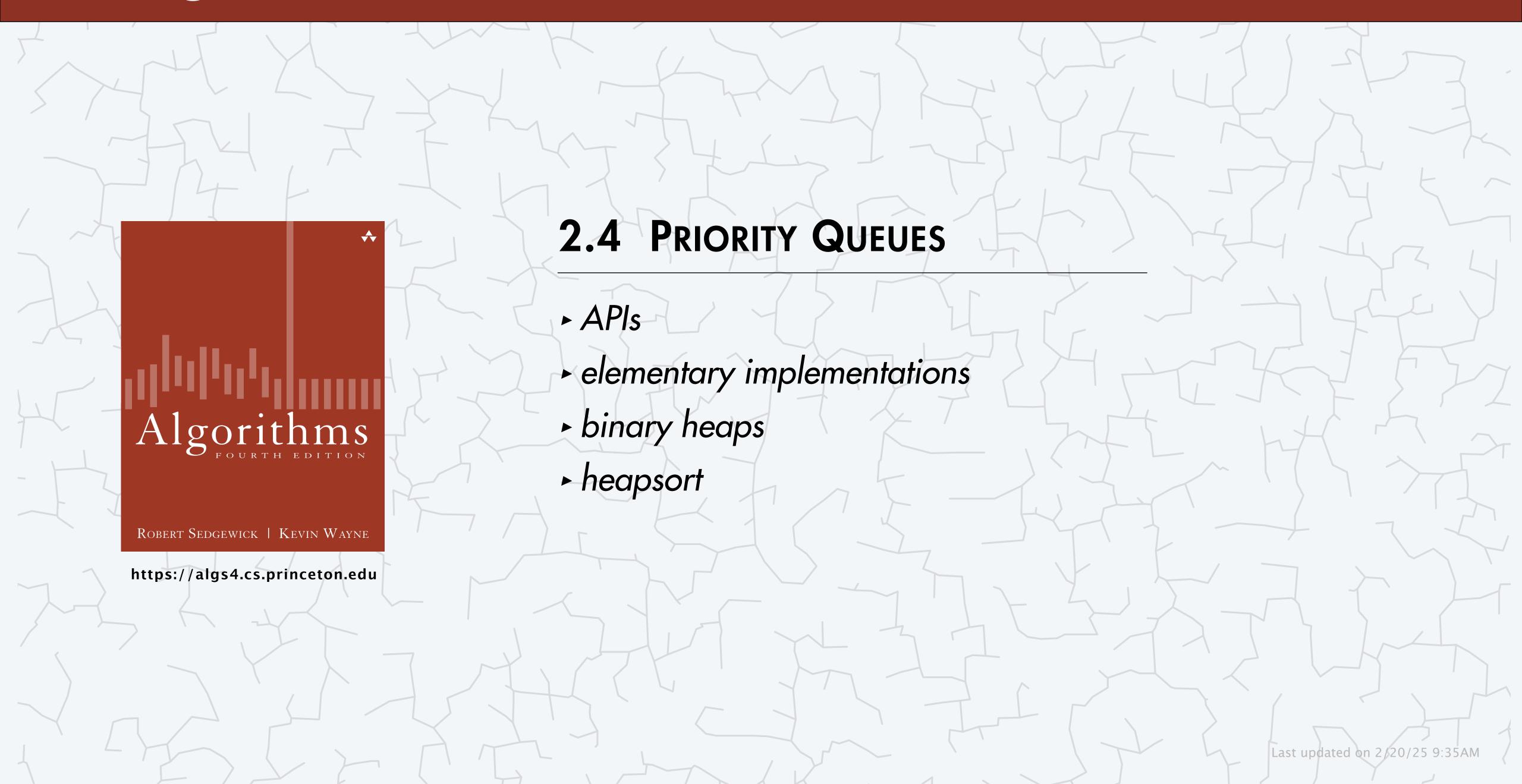
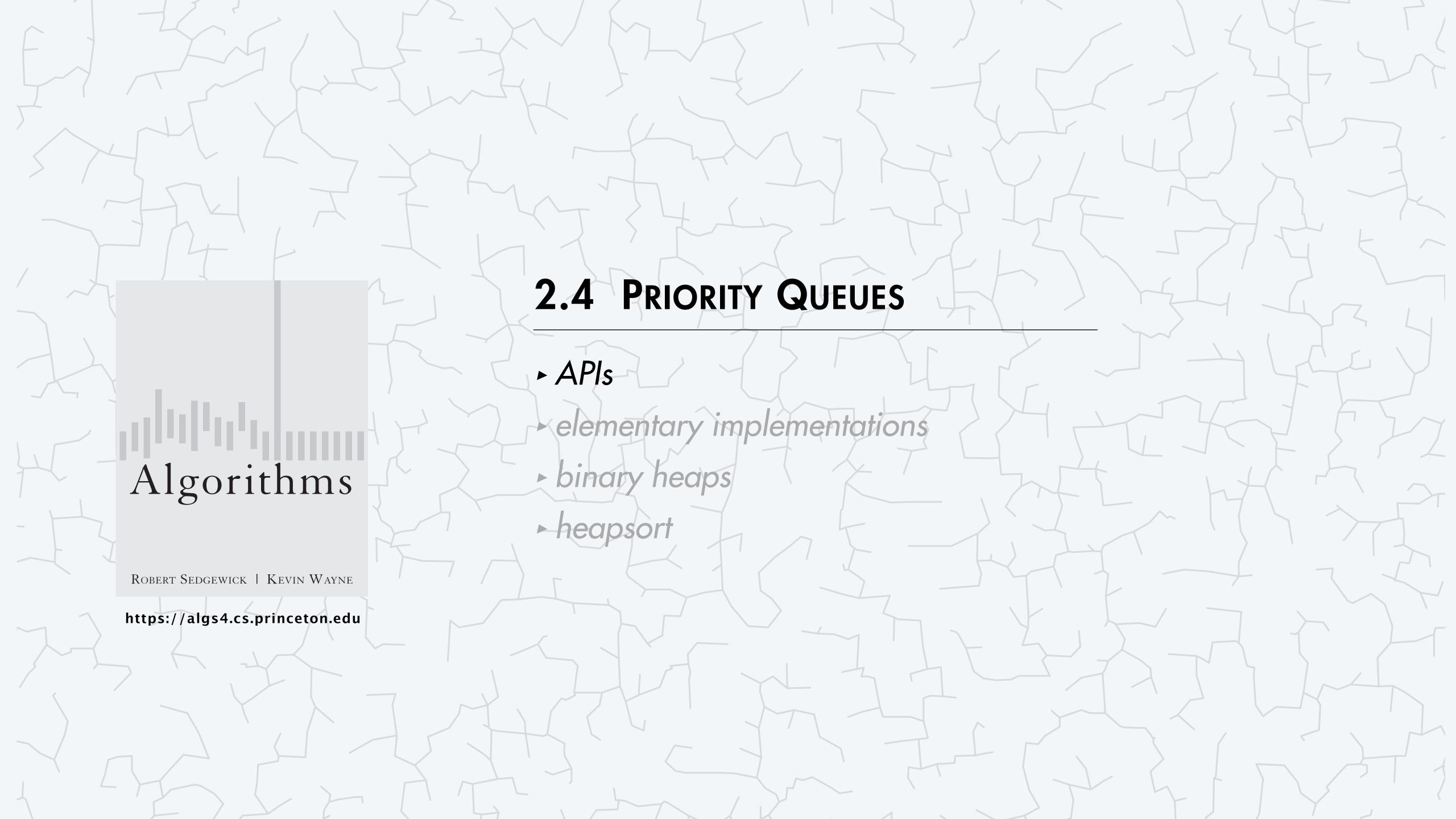
Algorithms





Collections

A collection is a data type that stores a group of items.

data type	core operations	data structure
stack	Push, Pop	singly linked list
queue	Enqueue, Dequeue	resizable array
deque	ADD-FIRST, REMOVE-FIRST, ADD-LAST, REMOVE-LAST	doubly linked list resizable array
priority queue	INSERT, DELETE-MAX	binary heap
symbol table	PUT, GET, DELETE	binary search tree
set	Add, Contains, Delete	hash table

Priority queue

Collections. Insert and remove items. Which item to remove?

Stack. Remove the item most recently added.

Queue. Remove the item least recently added.

Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

triage in an emergency room (priority = urgency of wound/illness)

operation	argument	return value
insert	Р	
insert	Q	
insert	Ε	
remove max	C	Q
insert	X	
insert	Α	
insert	M	
remove max	C	X
insert	Р	
insert	L	
insert	Ε	
remove max	C	Р

Max-oriented priority queue API

	"bounded type parameter"					
<pre>public class MaxPQ<key comparable<key="" extends="">></key></pre>						
	MaxPQ()	create an empty priority queue				
void	insert(Key key)	insert a key				
Key	delMax()	return and remove a largest key				
Key	max()	return a largest key				
boolean	isEmpty()	is the priority queue empty?				
int	size()	number of keys in the priority queue				

- Note 1. Keys are generic, but must be Comparable.
- Note 2. Duplicate keys allowed; delMax() removes and returns any largest key.

Min-oriented priority queue API

Analogous to MaxPQ.

<pre>public class MinPQ<key comparable<key="" extends="">></key></pre>					
	MinPQ()	create an empty priority queue			
void	insert(Key key)	insert a key			
Key	delMin()	return and remove a smallest key			
Key	min()	return a smallest key			
boolean	isEmpty()	is the priority queue empty?			
int	size()	number of keys in the priority queue			

Warmup client. Sort a stream of integers from standard input.

Priority queue: applications

- Statistics.
- Spam filtering.
- Graph searching.
- Operating systems.
- Data compression.
- Computer networks.
- Artificial intelligence.
- Discrete optimization.
- Event-driven simulation.

offilite filediali ili data streati	n in data strear	tream	1
-------------------------------------	------------------	-------	---

[Bayesian spam filter]

[Dijkstra's algorithm, Prim's algorithm]

[load balancing, interrupt handling]

[Huffman codes]

[web cache]

[A* search]

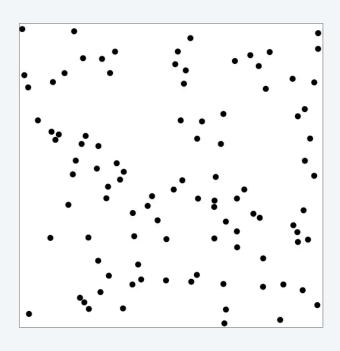
[bin packing, scheduling]

[customers in a line, colliding particles]

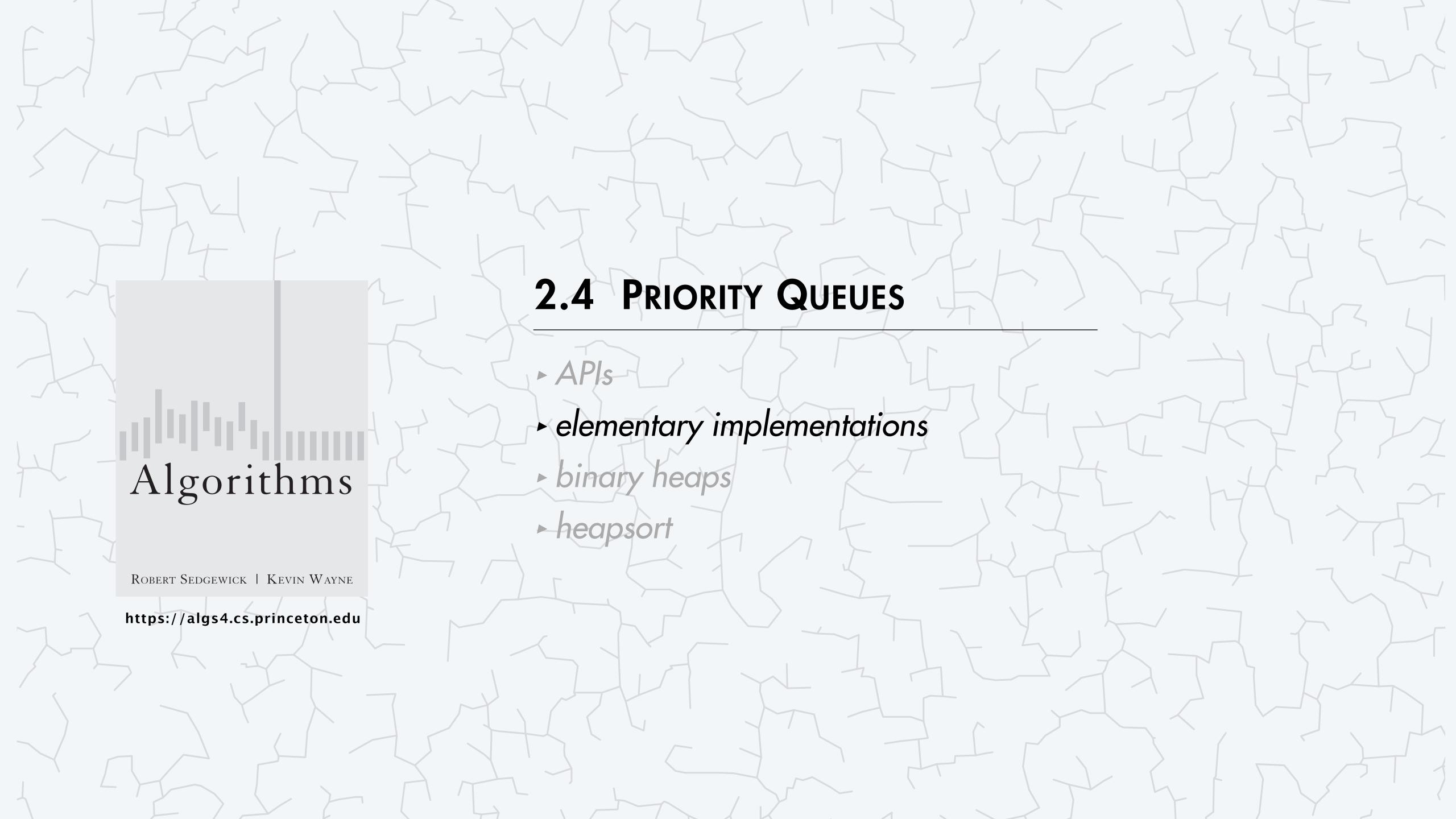
priority = length of
 best known path

8	4	7
1	5	6
3	2	
	"d:-	

priority = "distance"
to goal board

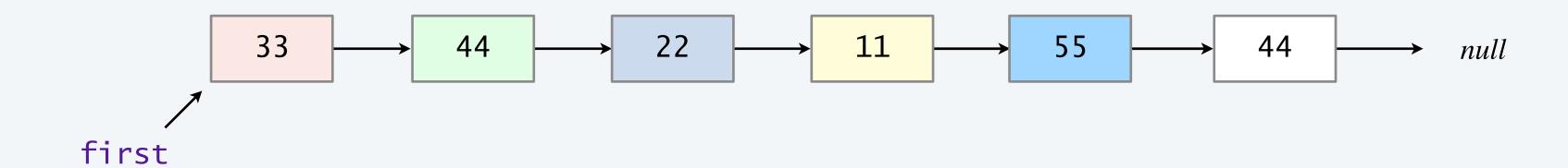


priority = event time



Priority queue: elementary implementations

Unordered list. Store keys in a singly linked list.



Performance. Insert takes $\Theta(1)$ time; Delete-Max takes $\Theta(n)$ time.

Priority queue: elementary implementations

Ordered array. Store keys in an array in ascending (or descending) order.

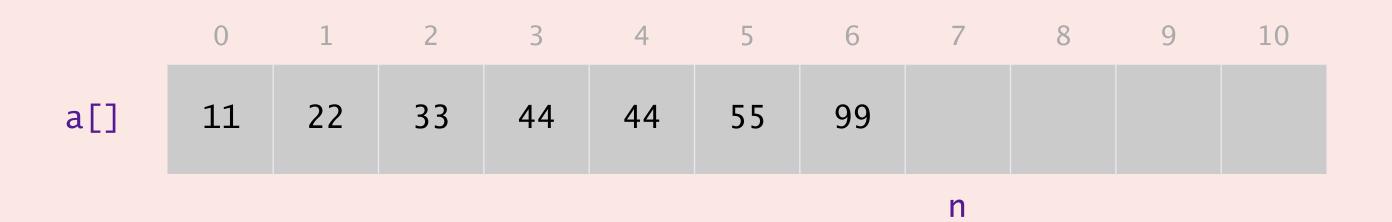
ordered array implementation of a MaxPQ

Priority queues: poll 1

What are the worst-case running times for INSERT and DELETE-MAX, respectively, in a MAXPQ implemented with an ordered array?

ignore array resizing

- **A.** $\Theta(1)$ and $\Theta(n)$
- **B.** $\Theta(1)$ and $\Theta(\log n)$
- C. $\Theta(\log n)$ and $\Theta(1)$
- **D.** $\Theta(n)$ and $\Theta(1)$



ordered array implementation of a MaxPQ

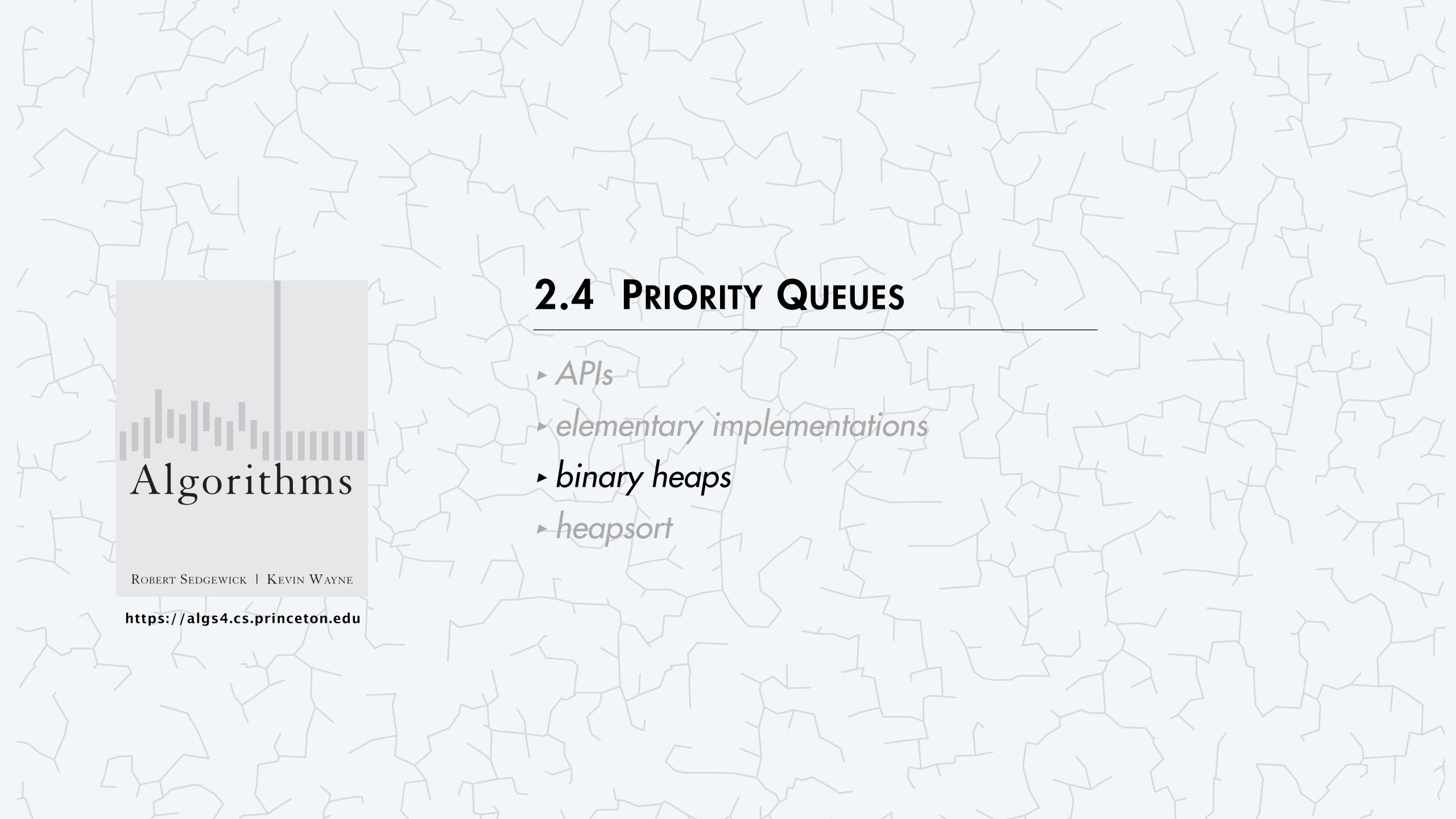
Priority queue: implementations cost summary

Elementary implementations. Either Insert or Delete-Max takes $\Theta(n)$ time.

implementation	INSERT	DELETE-MAX
unordered list	$\Theta(1)$	$\Theta(n)$
ordered array	$\Theta(n)$	$\Theta(1)$
goal	$\Theta(\log n)$	$\Theta(\log n)$

worst-case running time for MaxPQ with n items

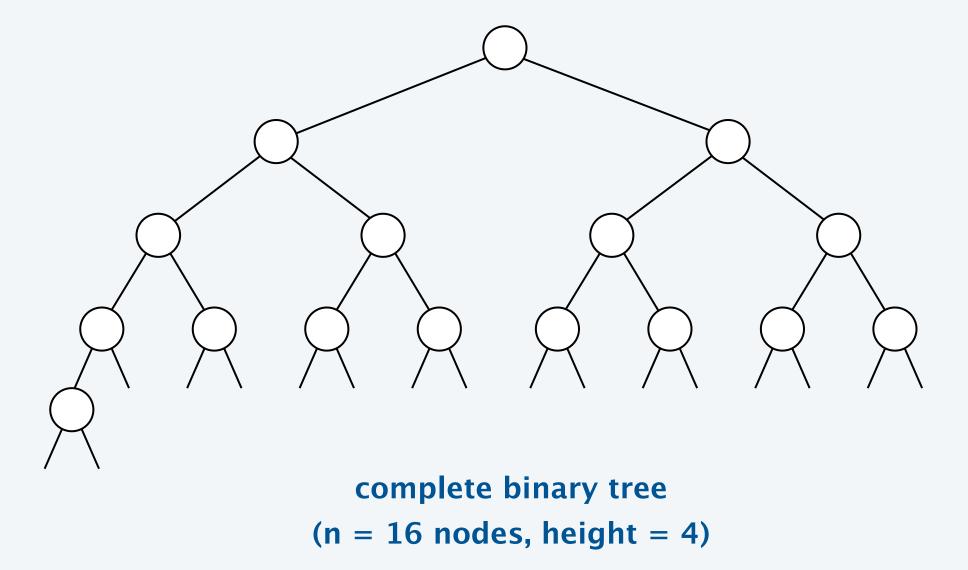
Challenge. Implement both INSERT and DELETE-MAX efficiently. Solution. "Somewhat-ordered" array.



Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees (left and right subtrees).

Complete tree. Every level (except possibly the last) is completely filled; the last level is filled from left to right.



Property. Height of complete binary tree with n nodes is $\lfloor \log_2 n \rfloor$.

Pf. As you successively add nodes, height increases (by 1) only when n is a power of 2.

Which is your favorite tree?

A.

Joshua

Sycamore

B.

East African doum palm

D.

Weirwood

A complete binary tree in nature (of height 4)

Binary heap: representation

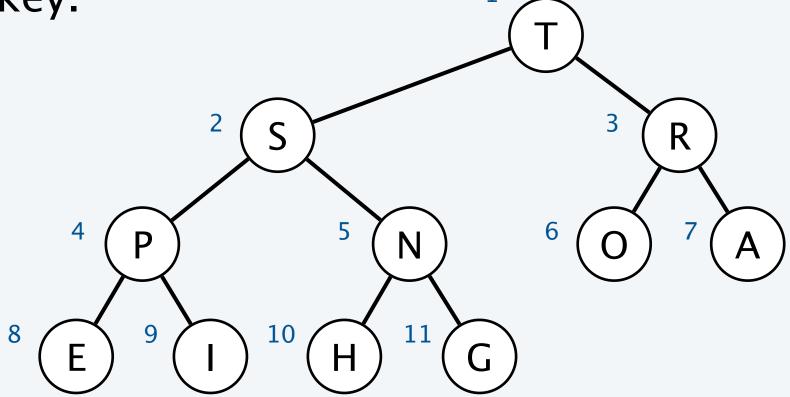
Binary heap. Array representation of a heap-ordered complete binary tree.

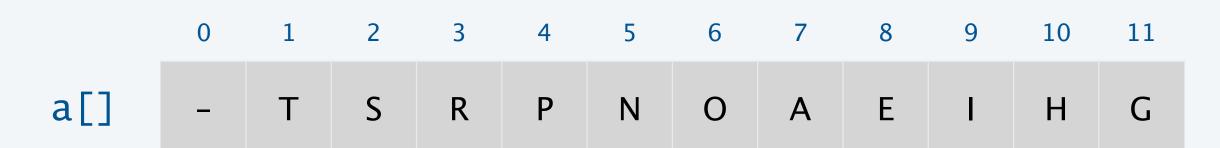
Heap-ordered tree.

- Keys in nodes.
- Child's key no larger than parent's key.

Array representation.

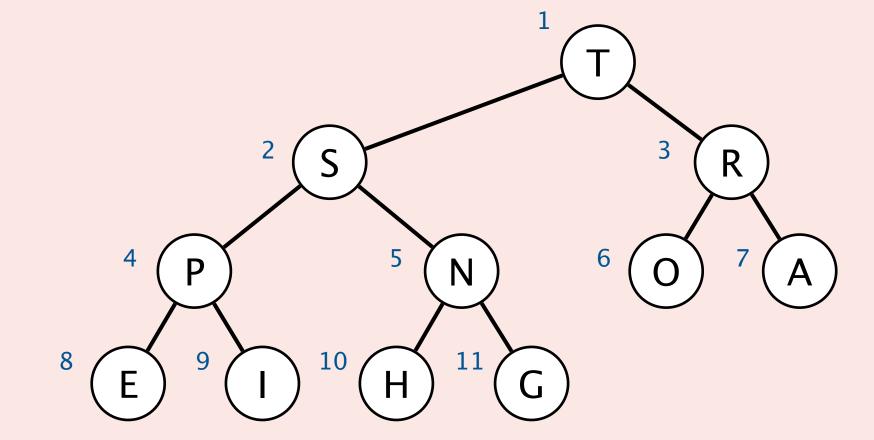
- Indices start at 1.
- Take nodes in level order.
- No explicit links!





Consider the node at index k in a binary heap. Which Java expression produces the index of its parent?

- **A.** (k 1) / 2
- **B.** k / 2
- C. (k + 1) / 2
- **D.** 2 * k

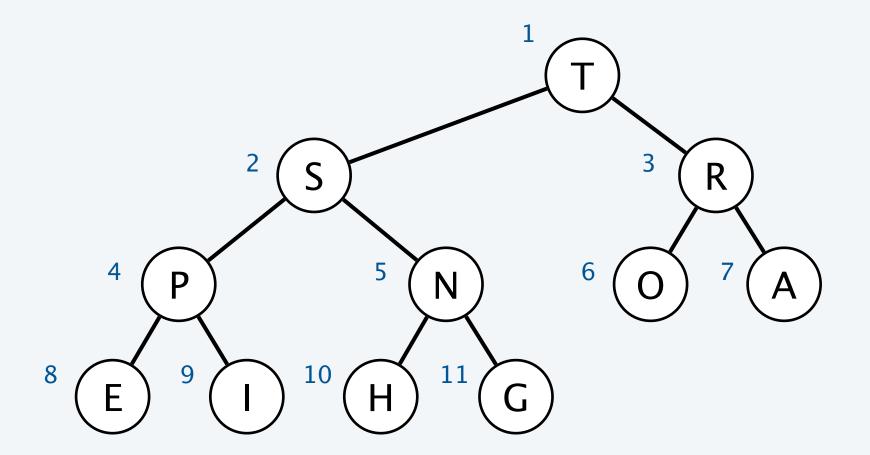


Binary heap: properties

Proposition. Largest key is at index 1, which is root of binary tree.

Proposition. Can use array indices to move up or down tree.

- Parent of key at index k is at index k / 2.
- Children of key at index k are at indices 2*k and 2*k + 1.



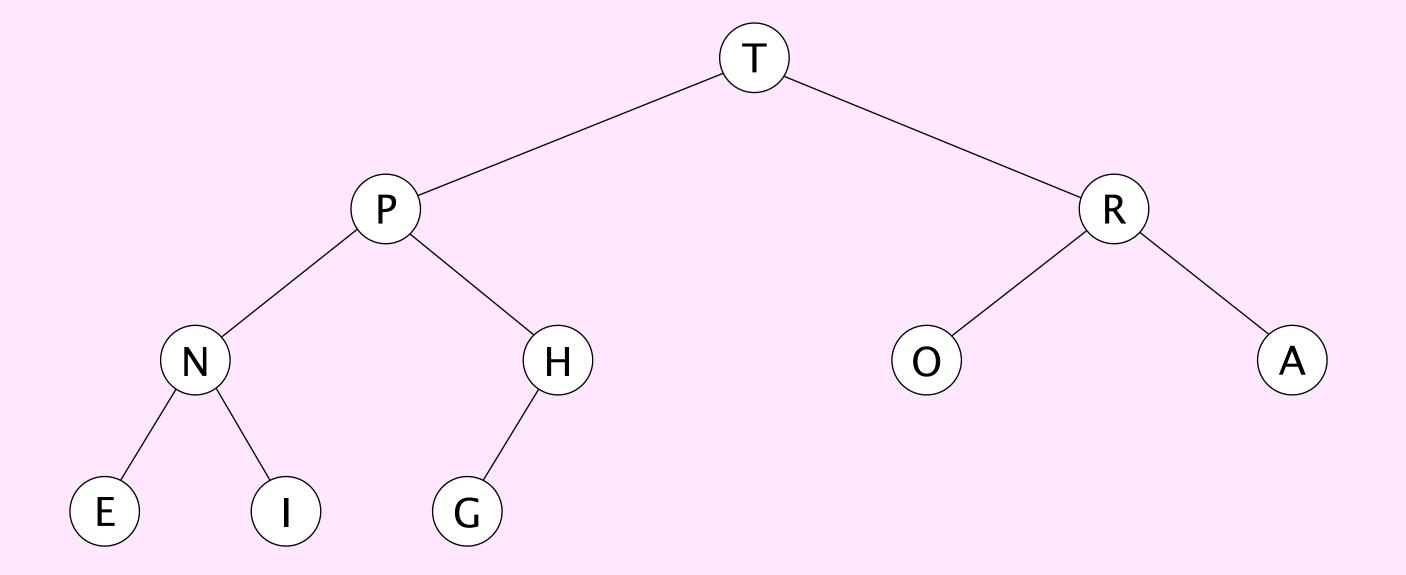
	0	1	2	3	4	5	6	7	8	9	10	11
a[]	_	Т	S	R	Р	N	O	Α	E	1	Н	G

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered



T P R N H O A E I G

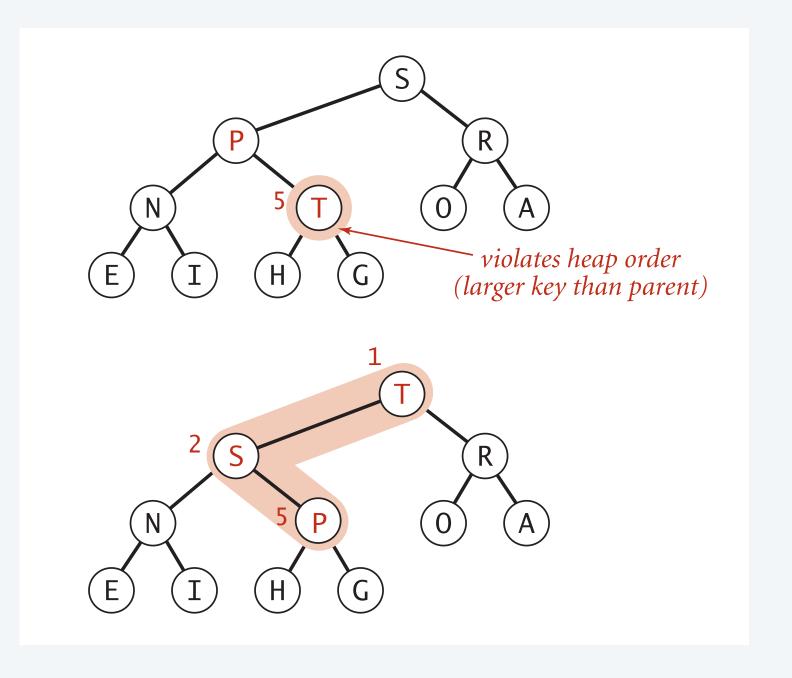
Binary heap: promotion

Scenario. Key in node becomes larger than key in parent's node.

To eliminate the violation:

- Exchange key in child node with key in parent node.
- Repeat until heap order restored.

```
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
    }
    parent of node at k is at k/2
```

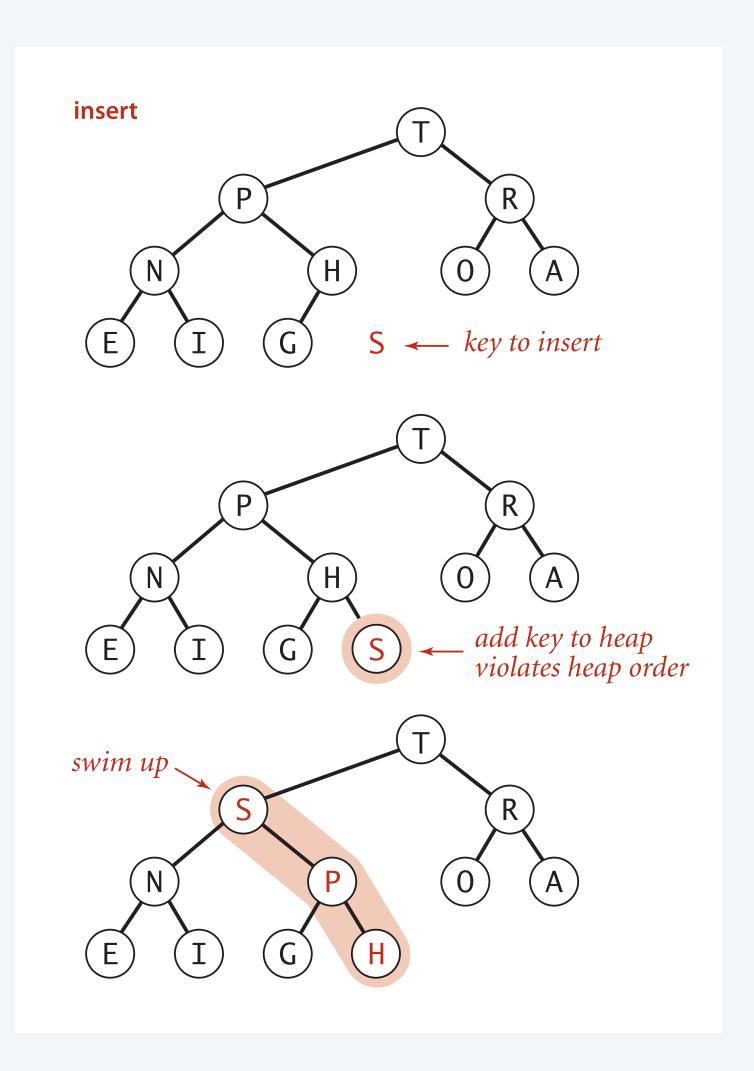


Binary heap: insertion

Insert. Add node at end in bottom level; then, swim it up.

Cost. At most $1 + \log_2 n$ compares.

```
public void insert(Key x) {
   pq[++n] = x;
   swim(n);
}
```

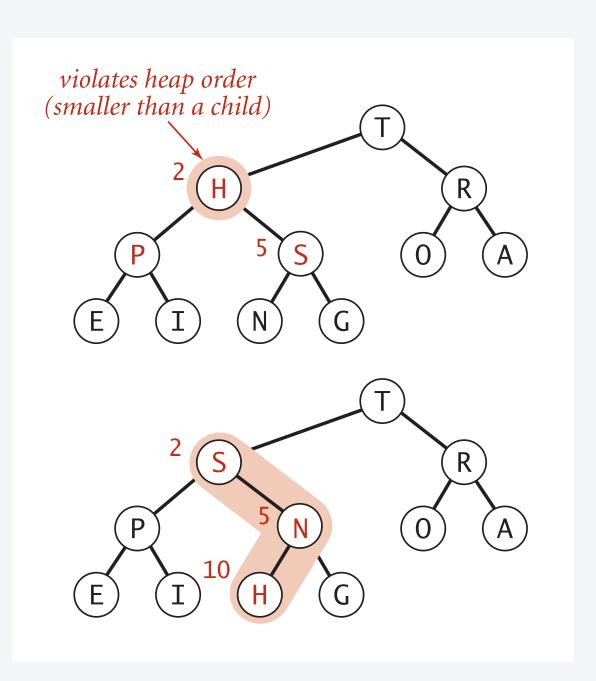


Binary heap: demotion

Scenario. Key in node becomes smaller than one (or both) of keys in childrens' nodes.

To eliminate the violation:

- Exchange key in parent node with key in larger child's node.
- Repeat until heap order restored.

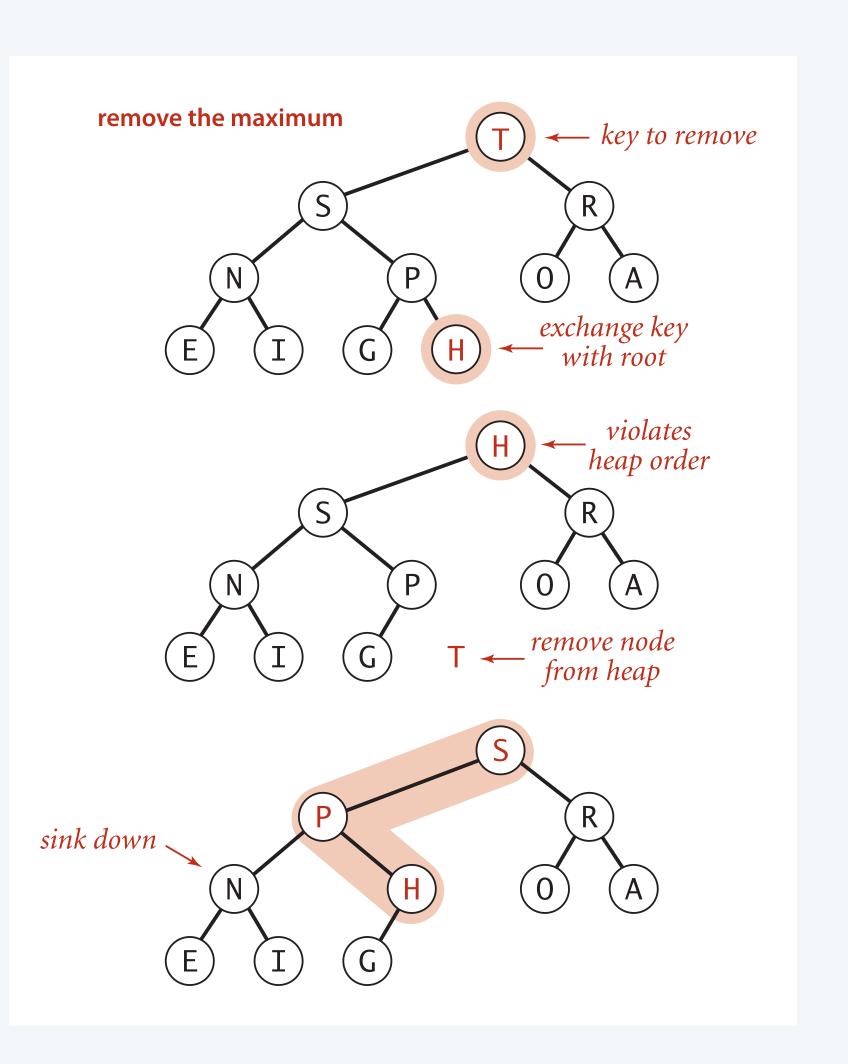


why not smaller child?

Binary heap: delete the maximum

Delete max. Exchange root with node at end; then, sink it down.

Cost. At most $2 \log_2 n$ compares.



Binary heap: Java implementation

```
public class MaxPQ<Key extends Comparable<Key>> {
  private Key[] a;
  private int n;
  public MaxPQ(int capacity) {
                                                                  fixed capacity
      a = (Key[]) new Comparable[capacity+1];
                                                                  (for simplicity)
  public void insert(Key key) // see previous code
                                                                  PQ ops
  public Key delMax()  // see previous code
  private void swim(int k)  // see previous code
                                                                  heap helper functions
  private void sink(int k)  // see previous code
  private boolean less(int i, int j) {
      return a[i].compareTo(a[j]) < 0;</pre>
                                                                  array helper functions
  private void exch(int i, int j)
   { Key temp = a[i]; a[i] = a[j]; a[j] = temp; }
```

Priority queue: implementations cost summary

Goal. Implement both Insert and Delete-Max in $\Theta(\log n)$ time.

implementation	INSERT	DELETE-MAX	Max
unordered list	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$
ordered array	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$
goal	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$

worst-case running time for MaxPQ with n items

Binary heap: considerations

Underflow and overflow.

- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use a resizable array.

Minimum-oriented priority queue.

- Replace less() with greater().
- Implement greater().

Other operations.

- Remove an arbitrary item.
- Change the priority of an item.

can implement efficiently with sink() and swim()
[stay tuned for Prim/Dijkstra]

leads to $O(\log n)$ amortized time per op

(how to make worst case?)

Immutability of keys.

- · Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

Priority queue with DELETE-RANDOM

Goal. Design an efficient data structure to support the following API:

• INSERT: insert a key.

• DELETE-MAX: return and remove a largest key.

• SAMPLE: return a random key.

• DELETE-RANDOM: return and remove a random key.

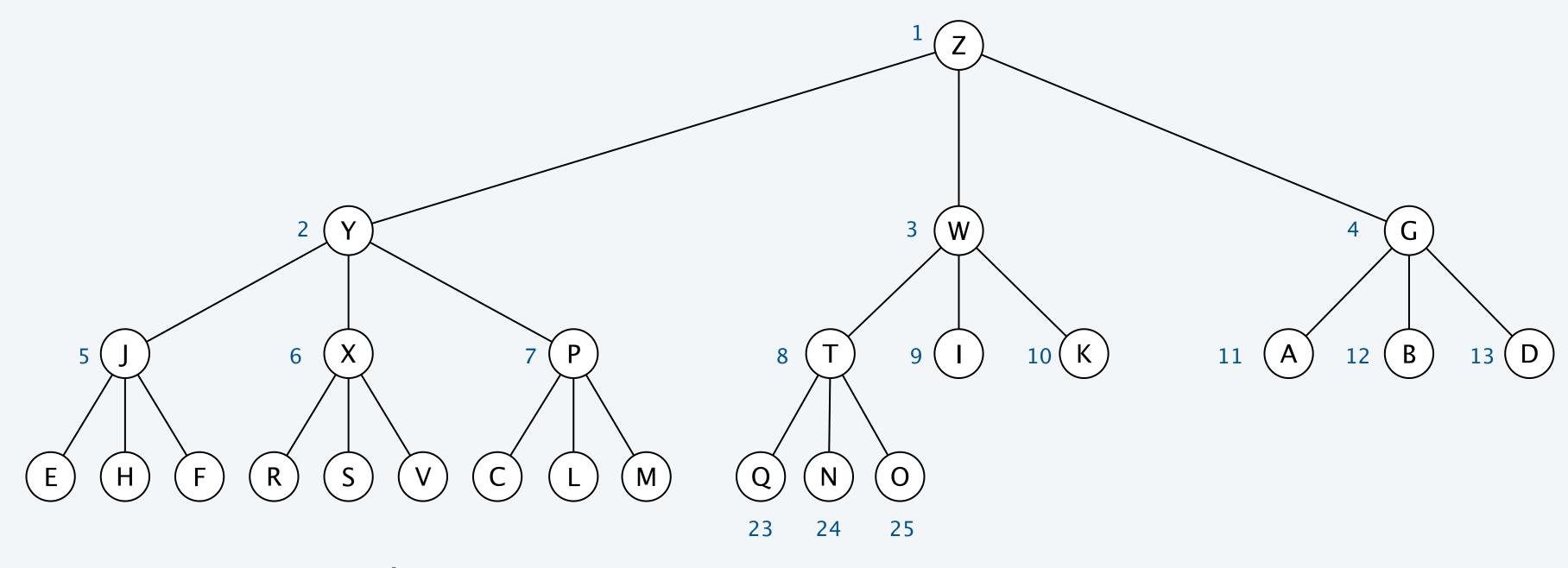
Multiway heaps

Multiway heaps.

- Complete d-way tree.
- Child's key no larger than parent's key.

Property. Height of complete d-way tree on n nodes is $\sim \log_d n$.

Property. Children of key at index k at indices 3k - 1, 3k, and 3k + 1; parent at index $\lfloor (k + 1) / 3 \rfloor$.



3-way heap

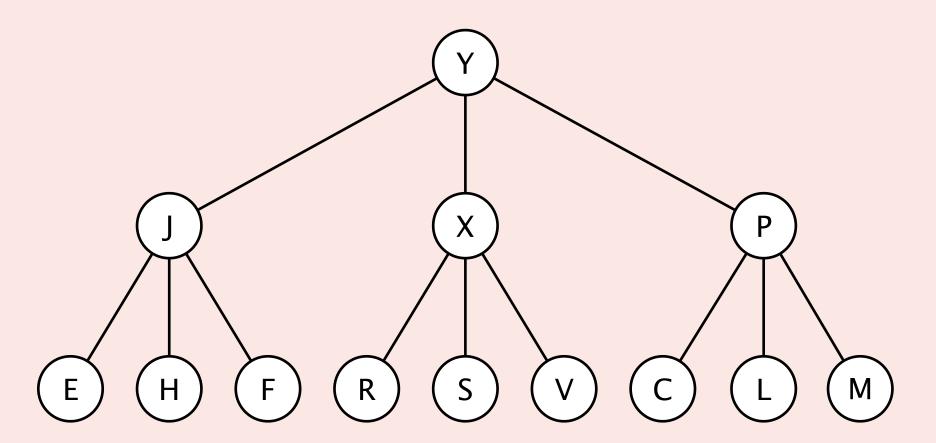
Priority queues: poll 5

In the worst case, how many compares to INSERT and DELETE-MAX in a d-way heap as function of both n and d?

A. $\sim \log_d n$ and $\sim \log_d n$

- **B.** $\sim \log_d n$ and $\sim d \log_d n$
- C. $\sim d \log_d n$ and $\sim \log_d n$

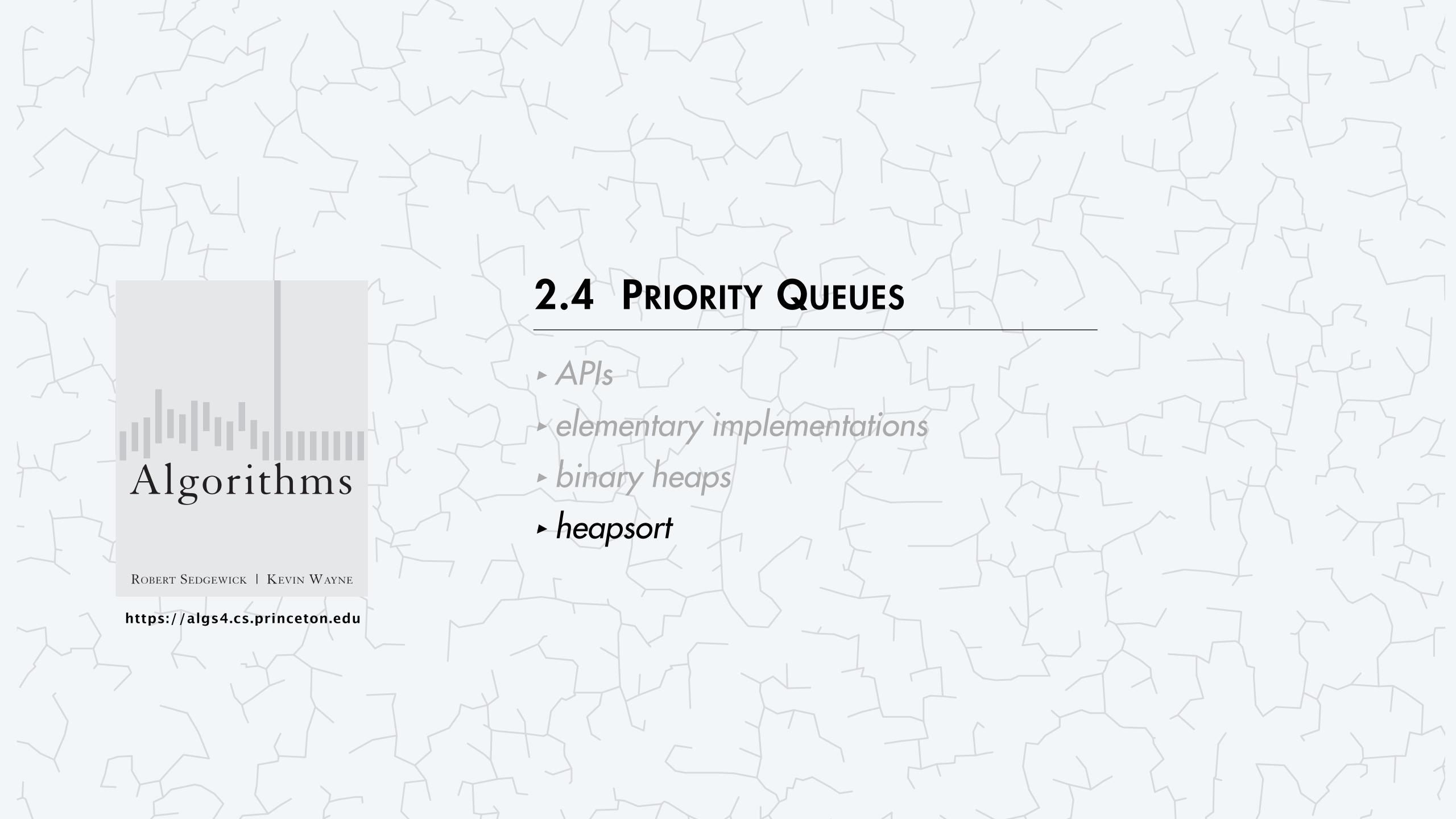
D. $\sim d \log_d n$ and $\sim d \log_d n$



Priority queue: implementation cost summary

implementation	INSERT	DELETE-MAX	Max	
unordered list	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$	
ordered array	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$	
binary heap	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$	
d-ary heap	$\Theta(\log_d n)$	$\Theta(d \log_d n)$	Θ(1) ←	sweet spot: $d = 4$
Fibonacci	$\Theta(1)$	$\Theta(\log n)$	Θ(1) ←	—— see COS 423
impossible	$\Theta(1)$	$\Theta(1)$	Θ(1) ←	— why impossible?

worst-case running time for MaxPQ with n items



Priority queues: poll 6

What are the properties of this sorting algorithm?

```
public void sort(String[] a) {
   int n = a.length;
   MinPQ<String> pq = new MinPQ<String>();

for (int i = 0; i < n; i++)
        pq.insert(a[i]);

for (int i = 0; i < n; i++)
        a[i] = pq.delMin();
}</pre>
```

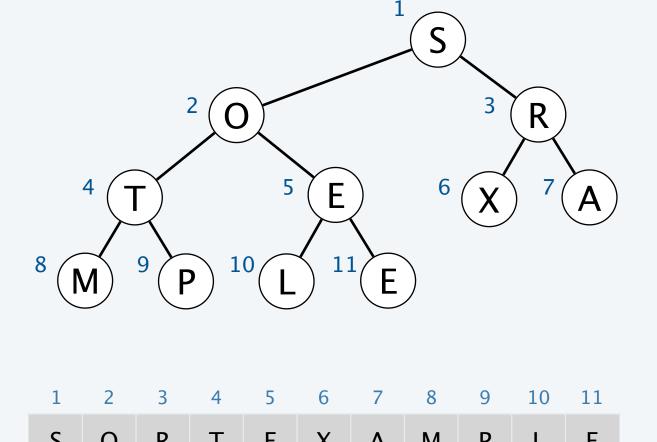
- A. $\Theta(n \log n)$ compares in the worst case.
- B. In-place.
- C. Stable.
- **D.** All of the above.

Heapsort

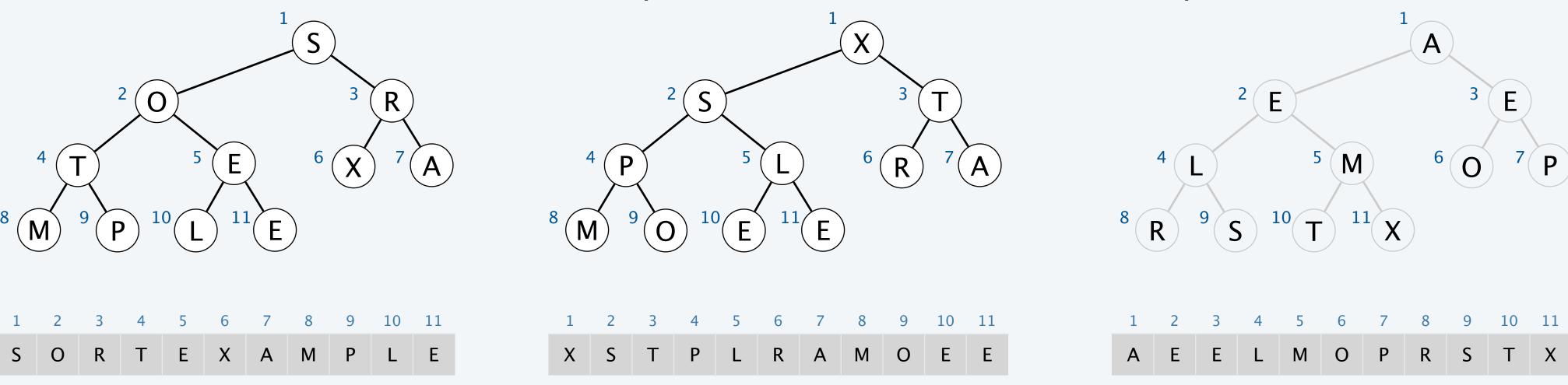
Basic plan for in-place sort.

- View input array as a complete binary tree. ← we'll assume 1-indexed for now
- Phase 1 (heap construction): build a max-oriented heap.
- Phase 2 (sortdown): repeatedly remove the maximum key. ←— a version of selection sort

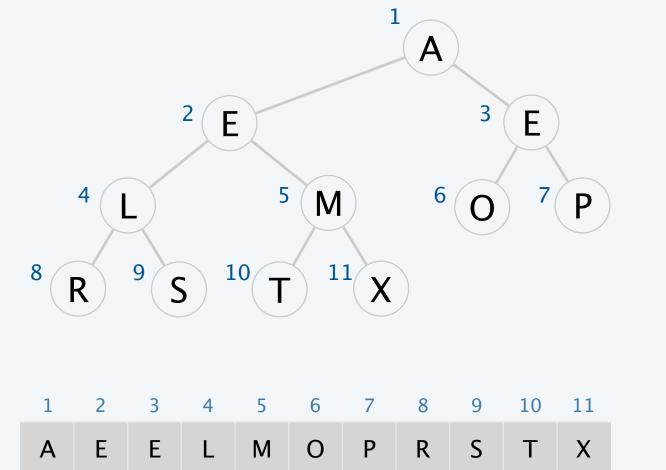
keys in arbitrary order



build max heap (in place)



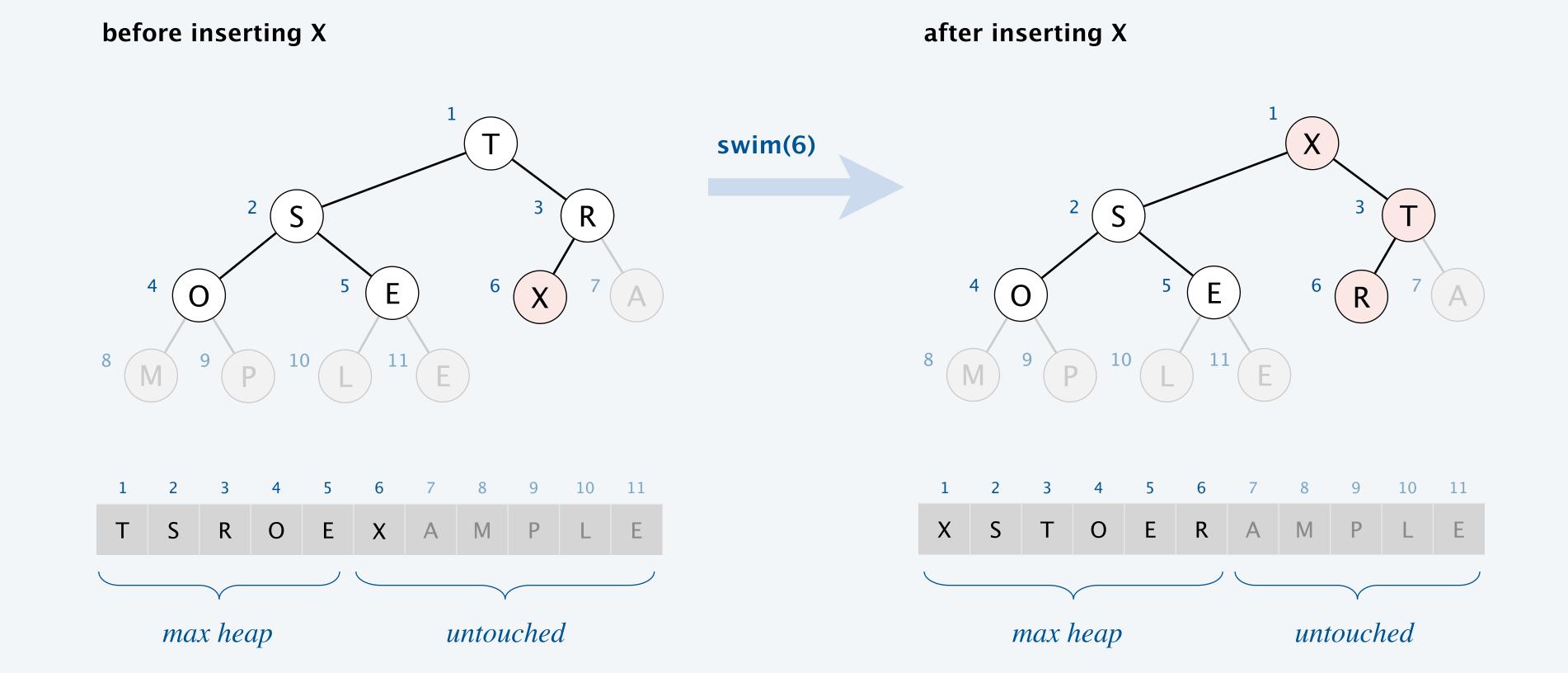
sorted result (in place)



Heapsort: top-down heap construction

Phase 1 (top-down heap construction).

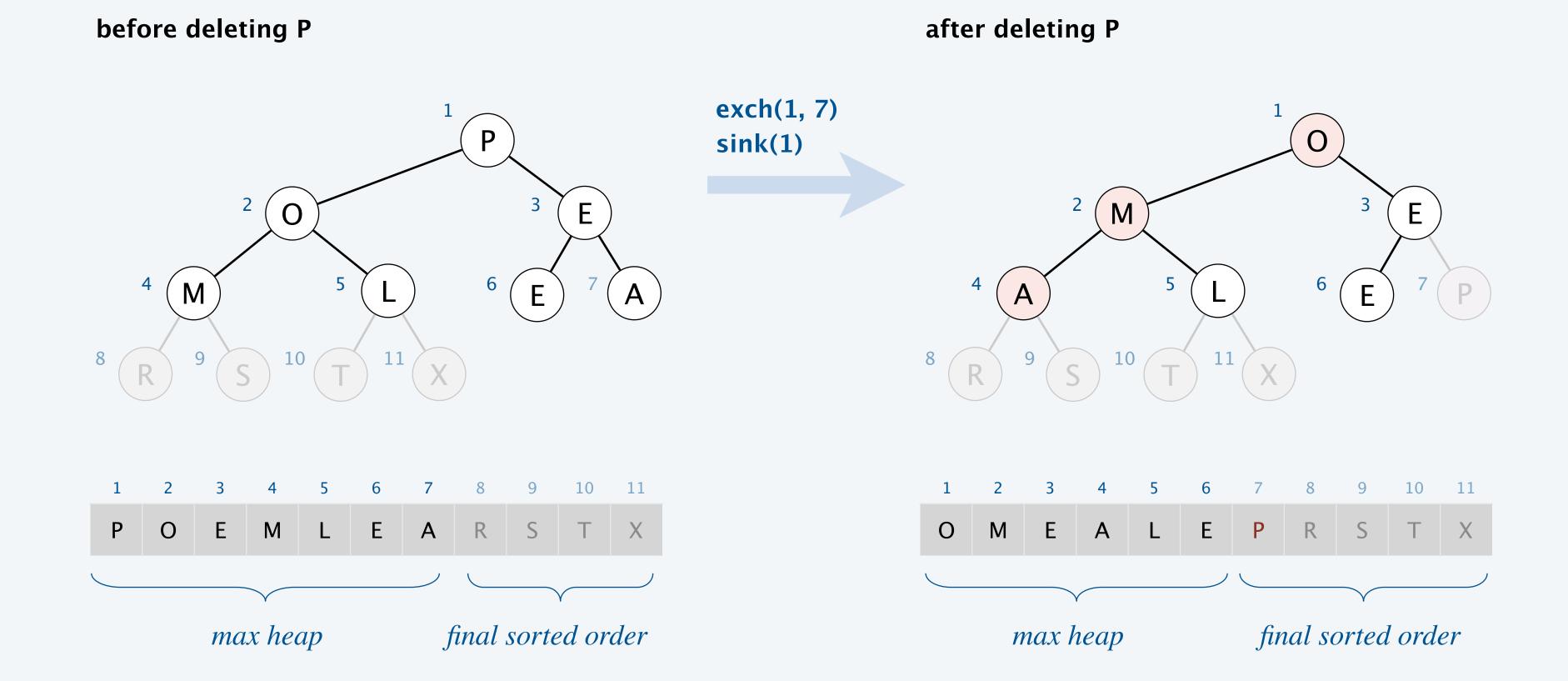
- View input array as complete binary tree.
- Insert keys into a max heap, one at a time.



Heapsort: sortdown

Phase 2 (sortdown).

- Remove the maximum, one at a time.
- Leave in array (instead of nulling out).



Heapsort: Java implementation

```
public class HeapTopDown {
  public static void sort(Comparable[] a) {
     // top-down heap construction
      int n = a.length;
      for (int k = 1; k <= n; k++)
         swim(a, k);
     // sortdown
      int k = n;
     while (k > 1) {
        exch(a, 1, k--);
        sink(a, 1, k);
```

https://algs4.cs.princeton.edu/24pq/HeapTopDown.java.html

```
private static void sink(Comparable[] a, int k, int n)
{    /* as before */ }

private static void swim(Comparable[] a, int k)
{    /* as before */ }

but make static
    (and pass arguments a[] and n)

private static boolean less(Comparable[] a, int i, int j)
{    /* as before */ }

private static void exch(Object[] a, int i, int j)
{    /* as before */ }

but convert from 1-based indexing to 0-base indexing
```

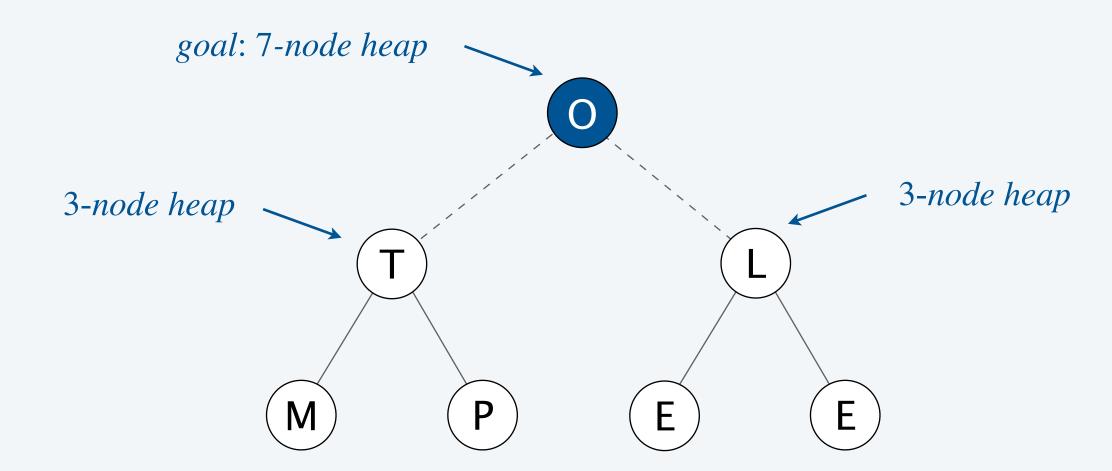
Heapsort: mathematical analysis

Proposition. Heapsort uses only $\Theta(1)$ extra space.

Proposition. Heapsort makes $\leq 3n \log_2 n$ compares (and $\leq 2n \log_2 n$ exchanges).

- Top-down heap construction: $\leq n \log_2 n$ compares (and exchanges).
- Sortdown: $\leq 2n \log_2 n$ compares (and $\leq n \log_2 n$ exchanges).

Bottom-up heap construction. [see book] Successively building larger heap from smaller ones. Proposition. Makes $\leq 2n$ compares (and $\leq n$ exchanges).



Heapsort: context

Significance. In-place sorting algorithm with $\Theta(n \log n)$ worst-case.

- Mergesort: no, $\Theta(n)$ extra space. \longleftarrow *in-place merge possible; not practical*
- Quicksort: no, $\Theta(n^2)$ time in worst case. $\longleftarrow \Theta(n \log n)$ worst-case quicksort possible; not practical
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

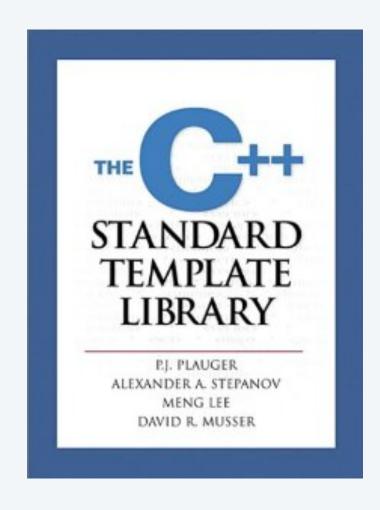
- Inner loop longer than quicksort's.
- Not stable.

Introsort

Goal. As fast as quicksort in practice; in place; $\Theta(n \log n)$ worst case.

Introsort.

- Run quicksort.
- Cutoff to heapsort if function-call stack depth exceeds $2 \log_2 n$.
- Cutoff to insertion sort for $n \le 16$.



In the wild. C++ STL, Microsoft .NET Framework, Go.

Sorting algorithms: summary

	inplace?	stable?	best	typical	worst	remarks
selection	✓		$\frac{1}{2} n^2$	$\frac{1}{2} n^2$	$\frac{1}{2} n^2$	n exchanges
insertion	✓	✓	n	$\frac{1}{4} n^2$	$\frac{1}{2} n^2$	use for small n or partially ordered
merge		✓	$\frac{1}{2} n \log_2 n$	$n \log_2 n$	$n \log_2 n$	$\Theta(n \log n)$ guarantee; stable
timsort		✓	n	$n \log_2 n$	$n \log_2 n$	improves mergesort when pre-existing order
quick	✓		$n \log_2 n$	2 <i>n</i> ln <i>n</i>	$\frac{1}{2} n^2$	$\Theta(n \log n)$ probabilistic guarantee; fastest in practice
3-way quick	✓		n	2 <i>n</i> ln <i>n</i>	$\frac{1}{2} n^2$	improves quicksort when duplicate keys
heap	✓		3 n	$2 n \log_2 n$	$2 n \log_2 n$	$\Theta(n \log n)$ guarantee; in-place
?	✓	✓	n	$n \log_2 n$	$n \log_2 n$	holy sorting grail

Credits

image	source	license
Emergency Room Triage	unknown	
Car GPS	Adobe Stock	Education License
Joshua Trees	Adobe Stock	Education License
Sycamore Trees	Alexey Sergeev	by author
Weirwood Tree	AziKun's Anime	
East African Doum Palm	Shlomit Pinter	by author
The Peter Principle	<u>Sketchplanations</u>	CC BY-NC 4.0
Computer and Supercomputer	New York Times	