COS 226 Algorithms and Data Structures Fall 2025

Midterm

This exam has 8 questions worth a total of 60 points. You have 80 minutes.

Instructions. This exam is preprocessed by computer. Write neatly, legibly, and darkly. Put all
answers (and nothing else) inside the designated answer spaces. Fill in bubbles and checkboxes
completely: @ and B. To change an answer, erase it completely and redo.

Resources. The exam is closed book, except that you are allowed to use a one-page reference
sheet (8.5-by-11 paper, one side, in your own handwriting). No electronic devices are permitted.

Honor Code. This exam is governed by Princeton’s Honor Code. Discussing the contents of this
exam before the solutions are posted is a violation of the Honor Code.

Please complete the following information now.

Name:

NetID:

Exam room: Q Friend 101 O Maeder 002 Q McCosh 4 O Other
P01 PO1A P02 P0O2A P02B PO3A P03B P04

Precept:

o o o O o O O O

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

PRINCETON UNIVERSITY

1. Initialization. (1 point)

In the spaces provided on the front of the exam, write your name and NetID; fill in the
bubbles for your exam room and the precept in which you are officially registered; write and
sign the Honor Code pledge.

2. Performance. (9 points)

(a) Consider a symbol table that is defined by the following Java implementation:

public class LinearProbingHashST {

private int[] keys; // the keys
private String[] vals; // the corresponding values
private int n; // number of key-value pairs

In the worst case, how much memory (in bytes) does a LinearProbingHashST object
use as a function of the number of key—value pairs n?

Assume that keys[] and vals[] are resizable arrays whose lengths double when the
array is > + full and whose lengths halve when the array is < % full.

Count all memory (including object references) allocated by the LinearProbingHashST,
but do not count the memory for the String objects themselves (which the client allo-
cates). Analyze the memory using our 64-bit memory cost model; simplify your answer
with tilde notation.

Write your answers in the box below.

bytes

COS 226 MIDTERM, FALL 2025 3

(b) Assume that a MinPQ is implemented using a binary heap with a resizable array (that
doubles when full and halves when < ;11 full). What is the worst-case running time of the
following code fragment as a function of n? Fill in the best-matching bubble.

MinPQ<Integer> pq = new MinPQ<Integer>();
for (dint 1 = 0; i < n; i++)
pq.insert(alil);
for (int 1 = 0; i < n; i++)
ali]l = pq.delMin();

O O O O O

O(logn) O(n) O©(nlogn) 0(n?) O(n?logn)

(¢) How many times is the function op() called as a function of n?
Fill in the best-matching bubble.

for (int i = 0; i < n*n; i++)
for (int j = i+1; j < n*n; j++)
for (int k¥ = 1; k <= n*n; k = kx*2)
opQ);

O O O O O

4

1,2 1,4 4 4
~ 5n”logyn ~2n ~5n”logyn ~n*logsn ~2n"logyn

(d) Which expressions below correctly describe the function f(n) =2n? + 2n + 6logyn ?
Fill in all checkbozes that apply.

L] L] L] L]

O(logn) O(n) O(n?) O(n?)

L] L] L] L]

Q(logn) Q(n) Q(n?) Q(n?)

PRINCETON UNIVERSITY

3. Data structures. (10 points)

(a) Consider the following parent-link representation of a weighted quick union (link-by-size)
data structure:

Which of the following could have been the pair (p,q) in the last call to union(p, q)?
Assume that just prior to the call, p and ¢ were in different sets.

Recall: when calling union(p, q) with two trees of equal size, our tiebreaking convention
is to make the root of tree containing q point to the root of the tree containing p.

Fill in all checkbozes that apply.

L] L] L] L]

(0,4) (2,3) (4,0) (4,5)

(5,0) (5,7) (6,4) (8,9)

COS 226 MIDTERM, FALL 2025 5

(b) Consider the following binary tree representation of a maz-oriented binary heap:

Suppose that the key in the highlighted node is changed from 0 to 77 and then a swim()
operation is applied to restore heap order. Which pairs of keys are compared?

Fill in all checkbozes that apply.

L] L] L] L] L]

0 and 5 0 and 77 5 and 77 10 and 55 10 and 77

L] L] L] L] L]

70 and 75 70 and 77 40 and 77 75 and 77 77 and 80

PRINCETON UNIVERSITY

(c¢) The following BST satisfies perfect black balance, but violates the color invariants:

red link

Give a sequence of 4 elementary operations that restores the color invariants.

operation 1 operation 2 operation 3 operation 4

key

color flip O O O O
rotate left Q O Q O
rotate right Q O Q O

Examples of elementary operations (for reference):

3 color flip »
(3) (3)
(7 (&) (1 (8)
T T, T3 Ty T
8
T Ts

Ty

T
8 rotate right »

T2
e « 3 rotate left e
e Ts T,
T b

COS 226 MIDTERM, FALL 2025 7

4. Five sorting algorithms. (5 points)

The leftmost column contains an array of 24 integers to be sorted; the rightmost column
contains the integers in sorted order; the other columns are the contents of the array at some
intermediate step during one of the five sorting algorithms listed below.

Match each algorithm by writing its letter in the box under the corresponding colummn.
Use each letter exactly once.

37 11 11 95 35 11 11
11 17 20 94 11 16 16
39 20 23 83 16 17 17
86 23 35 88 17 20 20
b4 35 37 92 20 23 23
44 37 39 68 23 35 35
35 39 44 37 37 37 37
23 44 54 75 44 39 39
94 54 67 86 94 40 40
20 67 68 56 54 42 42
67 68 86 67 67 44 44
68 83 94 63 68 54 54
95 86 17 44 95 95 56
17 88 75 17 86 68 63
83 94 77 35 83 83 67
88 95 83 23 88 88 68
75 75 88 11 75 75 75
77 77 95 77 77 77 77
40 40 16 40 40 94 83
42 42 40 42 42 86 86
56 56 42 20 56 56 88
92 92 56 54 92 92 92
16 16 63 16 39 67 94
63 63 92 39 63 63 95
A G
A. Original array D. Mergesort F. Heapsort
(top-down)
B. Selection sort G. Sorted array

) E. Quicksort
C. Insertion sort (standard, no shuffle)

PRINCETON UNIVERSITY

5. Analysis of a sorting algorithm. (10 points)

Consider the following sorting algorithm:

// Rearrange elements of al[] to put in ascending order
public static void mysterySort(Comparable[] a) {
int n = a.length;
for (int 1 = 0; i < n; i++) {
boolean exchanged = false;
for (dnt j =0; j <n-1i-1; j++) {
if (less(alj+1], aljl)) {
exch(a, j+1, j);
exchanged = true;

}

if ('exchanged) break; // no exchanges, already sorted

(a) Which invariants hold at the beginning of each iteration of the ¢ loop (i.e., for each value
of)7 Fill in all checkbozes that apply.

D The first ¢ array elements are in sorted order.
The last ¢ array elements are in sorted order.

The first ¢ array elements contain the ¢ smallest elements in the array.

O O

The last 7 array elements contain the ¢ largest elements in the array.

(b) Is the sorting algorithm in-place? Fill in the corresponding bubble.
Q Yes. It is in-place.

Q No. Tt is not in-place.

(c) Is the sorting algorithm stable? Fill in the corresponding bubble.
Q Yes. It is stable.

Q No. It is not stable.

COS 226 MIDTERM, FALL 2025 9

(d) Consider running mysterySort () on an input array a[] of length n. For each quantity
on the left, write the letter of the best matching expression on the right.

Write one uppercase letter in each box. You may use each letter once, more than once,
or not at all.

Number of calls to exch() to sort an integer A. 0
array of the form [2,3,4,....,n-1,n,1].

Number of calls to 1less() in the best case.

Number of calls to 1less() in the worst case.

E. ~ %n logyn

F. ~nlogyn

10

PRINCETON UNIVERSITY

6. Properties of algorithms and data structures. (9 points)

Identify each statement as true or false by filling in the appropriate bubble.

true false

o O

Mergesort makes ~ 2nlogy n compares to sort any array of 2n comparable
elements (both in the best case and worst case).

Any compare-based algorithm for searching for a key in a sorted array of
length 3n must make Q2(logn) compares in the worst case.

Consider the problem of sorting an array of n comparable elements in
which there are only 4 distinct keys. It is possible to design an algorithm
for the problem that makes < 4n compares in the worst case.

Consider any maz-oriented binary heap with at least 8 keys. Let x be a key
in a node at depth 2 (grandchild of the root) and y be a key in a node at
depth 3 (great-grandchild of the root). Then, we must have z > y.

Given any two binary search trees, each on n keys, it is possible to create a
binary search tree on the 2n keys using at most 2n compares. Assume the
2n keys are distinct.

Consider inserting a key into a left-leaning red—black BST. During the
insertion, there can be two (or more) consecutive left rotations, without an
intervening color flip or right rotation.

COS 226 MIDTERM, FALL 2025 11

7. Binary search. (6 points)

Design an algorithm to find the index of the first 1 in a sorted array of 0Os and 1s. For
simplicity, assume that the array contains at least one 0 and at least one 1. For example, in
the follow array, the index of the first 1 is 3.

To do so, complete the following partial implementation:

// precondition: a[] is sorted and contains only 0Os and 1s, A. 0
Y4 with at least one 0 and at least one 1 B. 1
public static int indexOfFirstOne(int[] a) { C. hi >= 1o
int 1o = 0; D. hi> 1o
int hi = a.length - 1; E. hi>Tlo+1
// invariants: a[lo] = 0 and al[hi] = 1 F. 1o
wnite (QEEHED > ¢ G To+1
int mid = To + (hi - 10) / 2; H. mid - 1
i+ /D) - GEID> ' - GEED -
else hi =° ; J. mid +1
} K. hi-1
return “ ; L. hi

For each numbered oval above, write the uppercase letter of the corresponding expression on
the right in the space provided. You may use each letter once, more than once, or not at all.

12

PRINCETON UNIVERSITY

8. Data structure design. (10 points)

Design a data type for a uni-stack of strings that supports the classic push and pop operations
for a stack, but handles duplicate items in a different manner: if a string is pushed onto a
uni-stack that already contains that string, the pre-existing string is removed from the stack.

In particular, it should implement the following API:

public class UniStack

UniStack O create an empty uni-stack of strings
void push(String item éMove an.y string on the- uni-stack equal to item;
then, add 1item to the uni-stack
. remove and return the string on the uni-stack
String pop ()
that was added most recently
int size() number of strings on the uni-stack

Performance requirements.

e The amount of memory must be O(n), where n is the number of items on the uni-stack.

e Each operation must take O(logn) time in the worst case.

Partial credit (for 50% credit).

e Same API as UniStack except that calling push() on a string already on the uni-stack
has no effect (the string remains in place and is not duplicated).

e Same performance requirements as above.

Example. Here is a sample sequence of operations:

UniStack stack = new UniStack(); // []

stack.push("A"); // [A]

stack.push("B"); // [BA]

stack.push("C"); // [CBA]J]

stack.push("D"); // [DCBA]I

stack.push("B"); // [BDCA]

stack.size(); // [BDCA] returns 4 (not 5)
stack.popQ; // [DCAI returns B
stack.pop(); // [CAIl returns D
stack.popQ ; // [A] returns C
stack.pop(); /7] returns A (not B)

Note: the comments show the strings in the stack, with the most recently added item at left,
(but the API does not require you to maintain the strings internally in any particular order).

COS 226 MIDTERM, FALL 2025 13

Are you attempting the partial or full credit solution? You may attempt only one.

O partial credit O full credit

(a) Using Java code, declare the instance variables (along with any supporting nested classes)
that you would use to implement UniStack. You may use any of the data types that we
have considered in this course (either algs4.jar or java.util versions). If you make
any modifications to these data types, describe the modifications.

14

PRINCETON UNIVERSITY

(b) Give a concise English description of your algorithm for implementing the method
push(String item). You may use code or pseudocode to improve clarity.

(¢) Give a concise English description of your algorithm for implementing the method pop ().
You may use code or pseudocode to improve clarity.

COS 226 MIDTERM, FALL 2025

This page is intentionally blank. You may use this page for scratch work.

15

