
COS 226 Algorithms and Data Structures Fall 2025

Midterm Solutions

1. Initialization.

You will lose points if you neglect to write your name; select the wrong precept; go to the
wrong room; or fail to write and sign the honor code.

2. Performance.

(a) ∼ 96n bytes

The amount of memory is dominated by the two arrays of length m: 4m bytes for the
int[] and 8m bytes for the String[] array, for a total of ∼ 12m bytes. The worst-case
memory usage arises just before a shrinking operation, at which point the array is 1

8 full
and m = 8n.

Very similar to the question asked in readme.txt on Assignment 2.

(b) Θ(n logn)

Each insert() and delMin() operation takes O(logn) amortized time, so any sequence
of 2n such operations takes O(n logn) time in the worst case. Since the code fragment is a
compare-based sorting algorithm, the sorting lower bound implies that it makes Ω(n logn)
time in the worst case.

This was the last iClicker question in the Priority Queues lecture.

(c) ∼ n4 log2 n

For each i and j, the k loop iterates log2(n
2
) ∼ 2 log2 n times. The outer two loops iterate

∼
1
2n

4 times. Multiplying together yields ∼ n4 log2 n.

(d) O(n2
), O(n3

), Ω(logn), Ω(n), Ω(n2
)

Big O notation provides an upper bound; Big Omega notation provides a lower bound.

3. Data structures.

(a) (4,0), (5,0), (8,9)

The link 0→4 must be the last link added to the big tree (rooted at 4). If the last linked
added were 5→4 or (6→4), then, just prior to adding this link, the tree rooted at 4 would
have height 3 but only 6 (or 7) nodes. In weighted quick union, any tree of height h must
have at least 2h nodes.

(b) (10,77), (75,77), (77,80)

(c) 1. color flip 60
2. right rotate 90
3. color flip 75
4. left rotate 45



2 PRINCETON UNIVERSITY

4. Five sorting algorithms.

C D F E B

C. Insertion sort after 16 iterations

D. Mergesort just before the second-to-last last call to merge()

F. Heapsort after heap construction phase

E. Quicksort after first partitioning step

B. Selection sort after 12 iterations

5. Analysis of a sorting algorithm.

(a)

At the beginning of each iteration i, the last i array elements contain the i largest element
in the array, and they are in sorted order. This is a version of selection sort (known as
bubblesort), where the largest elements are put in place first.

(b) yes, in-place

Only Θ(1) extra memory is used.

(c) yes, stable

Two elements are exchanged if and only if they are adjacent and the element to the
right is strictly smaller than the element to the left. So, the relative order of equal keys
remains the same.

(d) C C H

• In each iteration of the i loop (except the last), there is exactly 1 exchange—
exchanging the element 1 with the element immediately to its left. So, the total
number of exchanges is n − 1. (The total number of compares is ∼ 1

2n
2, but this

question is about exchanges, not compares.)

• A best-case input is an array of n keys in ascending order. When i = 0, there will
n − 1 compares and zero exchanges. Since there are no exchanges when i = 0, the
algorithm will terminate.

• A worst-case input is an array of n keys in strictly descending order. Iteration i
makes n− i− 1 compares and n− i− 1 exchanges. So, the total number of compares
is (n − 1) + (n − 2) + . . . + 1 + 0 ∼ 1

2n
2.



COS 226 MIDTERM SOLUTIONS, FALL 2025 3

6. Properties of algorithms and data structures.

F T T F T F

• In the best case (e.g., all equal keys), mergesort makes only ∼ 1
2m log2m compares to

sort an array of length m. Here, m = 2n.

• From precept, we know that any compare-based algorithm for searching for a key in a
sorted array of length m must make Ω(logm) compares in the worst case. Here, m = 3n.

• The number of partitioning steps in 3-way quicksort is less than (ore equal to) the number
of distinct keys k. In this problem, k = 4. Each partitioning step makes ≤ n compares.
So, there are ≤ 4n compares in total.

• Consider the binary heap from Q3 (b), with x = 10 at depth 2 and y = 60 at depth 3.

• Take a level-order traversal of the two BSTs. Then, merge the two sorted sequences,
each of length n, together using the merging algorithm from mergesort. Finally, form the
new BST (e.g., by building a completely unbalanced BST with each successive key being
the right child of the previous one). No compares are needed for either the level-order
traversals or building the BST; the merging step makes ≤ 2n compares.

• During an LLRB insertion, there is never more than one right-leaning red link at a time.
A precondition for performing a left rotation is the existence of a right-leaning red link.
The left rotation eliminates the right-leaning red link. So, before the next left rotation,
there must be some intervening operation.

7. Binary search.

E I A I I L

This is a special case of firstIndexOf() from Assignment 3. It maintains the two loop
invariants (a[lo] = 0 and a[hi] = 1) from the comments. So, when the loop terminates,
we know that the first 1 is at index hi.

We note that D I A J I F and D I A J I L also solve the problem and were awarded full credit
(despite not maintaining the invariant a[lo] = 0).



4 PRINCETON UNIVERSITY

8. Data structure design.

Full-credit solution.

The main idea is to combine two data structures:

• A doubly linked list that maintains the uni-stack items in order (from most recently
added to least recently added), with no duplicates. It must be doubly linked to support
efficient deletion of an arbitrary node.

• A red–black BST that maps from strings on the uni-stack to the corresponding doubly
linked list nodes. This symbol table has two roles: (1) to determine efficiently whether
a string is already on the uni-stack and (2) if so, to get a reference to the corresponding
linked list node (so that the node can be efficiently deleted).

(a) public class UniStack {

private RedBlackBST<String, Node> st;

private Node first; // first node in the linked list

// node in a doubly linked list

private static Node {

private String item; // the string

private Node next; // next node in the linked list

private Node prev; // previous node in the linked list

}

(b) • If item is in the symbol table, get the linked list node containing item and delete
that node from the linked list.

• Create a new node x containing item; add x to the front of the linked list; and
update first

• Update the symbol table by mapping item to the newly created linked list node x.

(c) • Delete the first node from the linked list, updating first; let s be the string in that
node.

• Delete s from the symbol table.

• Return s.

All symbol table operations take O(logn) time in the worst case. All linked list opera-
tions take O(1) time in the worst case. The amount of memory for the red–black BST
and the doubly linked list are each Θ(n).

With this implementation, it’s also easy to implement size() in O(1) time since the
number of strings on the uni-stack is always equal to the number of string keys in the
symbol table.



COS 226 MIDTERM SOLUTIONS, FALL 2025 5

Alternative full-credit solution. Maintain an integer counter (that counts the number of
uni-stack push operations) and two symbol tables:

• Symbol table 1: map the string s to the integer k if s is currently on the uni-stack and
s was the kth string pushed onto the uni-stack.

• Symbol table 2: map the integer k to the string s if s is currently on the uni-stack and
s was the kth string pushed onto the uni-stack.

The string associated with the largest integer in the second symbol table is the one that was
added most recently to the uni-stack.

(a) public class UniStack {

private int counter = 0; // increments after each call to push()

private RedBlackBST<String, Integer> st1;

private RedBlackBST<Integer, String> st2;

(b) • If item is in st1, get the corresponding integer k and delete k from st2.

• Map item to counter in st1; map counter to item in st2.

• Increment counter.

(c) • Get the largest integer k in st2.

• The string s to pop is st2.get(k).

• Delete s from st1; delete k from st2.

• Return s.

Implement both symbol tables using red–black BSTs so that all operations take O(logn) time
in the worst case.

Partial credit solution. Maintain a stack along with a symbol table to keep track of the
strings on the stack.

• push: If item is already in the symbol table, do nothing. Otherwise, push item onto the
stack and add item to the symbol table.

• pop: pop from the stack (and return the popped string); delete the popped string from
the symbol table.

Implement the stack with a singly linked list and the symbol table with a red–black BST so
that all operations take O(logn) time in the worst case.


