Final Exam Solutions

1. Initialization.

Don't forgot to do this.

2. Minimum spanning trees.

- (a) 0 1 2 4 5 6 11
- (b) 6 4 1 2 0 5 11

3. Depth-first search.

- (a) 0 2 3 1 7 9 4 8 6 5
- (b) 7 1 9 3 8 4 2 5 6 0
- (c) yes

The digraph is a DAG, so the DFS postorder is guaranteed to be a topological order.

4. Shortest paths.

- (a) 0 1 4 5 3 2
- (b) 0 5 4 3 1 2
- (c) 14

5. Data structures.

- (a) T R H E S D A Y - - M O
- (b) no
- (c) (10, 1), (11, 7)
- (d) $\Theta(E+V)$
- (e) O(V), $O(V^2)$, $\Theta(V)$, $\Omega(1)$, $\Omega(V)$

- 6. Maxflows and mincuts.
 - (a) 31
 - (b) ABEFG
 - (c) 34
 - (d) 31
 - (e) $A \to F \to B \to D \to C \to H$
 - (f) 4
- 7. Dynamic programming.

ECBIKM or ECBKIM

It's also possible to substitute H for C.

- 8. Karger's algorithm.
 - (a) ADEF
 - (b) 4
- 9. Multiplicative weights.
 - (a) $d_p = 0$
 - (b) $v_p = 7$
 - (c) $s_p = 0$
 - (d) weight = 25
- 10. Intractability.

11. Threshold connectivity.

Solution 1. The main idea is to use binary search to find the threshold weight w^* , maintaining an interval [lo, hi] for which

- deleting all edges in G of weight greater than lo disconnects G
- deleting all edges in G of weight greater than hi does not disconnect G

For added efficiency, sort the edges by weight and do the binary search using only the actual edge weights (instead of all integers between 0 and U).

- Set $w_0 = 0$ an let w_1, w_2, \dots, w_E denote the edge weights in ascending order.
- Initialize lo = 0, hi = E.
- While $lo \neq hi 1$:
 - set $mid = \frac{lo+hi}{2}$
 - create a graph G' that contains only the edges of weight $\leq w_{mid}$
 - if G' is connected, update hi = mid
 - otherwise, update lo = mid.
- Return $w^* = w_{hi}$

To sort the edges by weight, use mergesort. This takes $O(E \log E)$ time.

To determine whether G' is connected, use BFS or DFS. This takes O(E) time. This calculation needs to be performed $O(\log E)$ times within the binary search. So, the overall running time of this phase is $O(E \log E)$.

Solution 2. Compute an MST of G using either Kruskal's algorithm or Prim's algorithm. Let w_{max} denote the heaviest edge in the MST. Then, $w^* = w_{max}$. To see why this works:

- $w^* \ge w_{max}$: If we remove all edges in G of weight $> w_{max}$, G remains connected because the MST connects all vertices in G and uses only edges of weight $\le w_{max}$.
- $w^* \leq w_{max}$: When the edge of weight w_{max} was added to the MST by Kruskal or Prim, it was done so because it is min weight crossing edge in some cut. Removing all edges in G of weight $\geq w_{max}$ would remove all edges in this cut, thereby disconnecting G.

90% partial credit solution: Same as Solution 1, except binary search over the interval [0, U] instead of the sorted array of weights. This takes $\Theta(E \log U)$ time in the worst case.

50% partial credit solution. Same as Solution 1, except sequentially search over the interval [0, U] instead of binary search. This take $\Theta(EU)$ time in the worst case.

12. Key-and-portal shortest path.

- (a) The idea is to use familiar tricks to model each component:
 - Model the requirement that a path must contain a key by using the graph copy trick.
 - Model an undirected edge with two antiparallel edges.
 - Model multiple destinations (portals) with an artificial sink vertex.

Here's the formal construction:

- Graph copy: For each vertex v in G: create two vertices v' and v'' in G'.
- Path must contain a key: For each edge u-v of weight w in G that contains a key: create two edges $u' \to v''$ and $v' \to u''$ in G', of weight w. The only way to move from graph copy 1 to graph copy 2 is via one of these edges.
- Undirected edges: For each edge u-v in G of weight w: create two pairs of antiparallel edges $u' \to v'$, $v' \to u'$, $u'' \to v''$, and $v'' \to u''$, in G', all of weight w.
- Multiple destinations: Create an artificial sink vertex t'. For each portal vertex v in G, create an edge $v'' \to t'$ in G' of weight 0.
- Source and sink: Vertex s' is the source and vertex t' is the destination.

Key-and-portal paths in G correspond with directed paths from s' to t' in G', and they have the same weight.

(b) The lines with bidirectional arrows represent two antiparallel edges of the given weight.

