COS 226 Algorithms and Data Structures Spring 2025

Final Exam Solutions

1. Initialization.

Don’t forgot to do this.

2. Minimum spanning trees.

(a) 01245611

(b) 64120511

3. Depth-first search.
(a) 0231794865
(b) 7193842560

(c) yes

The digraph is a DAG, so the DFS postorder is guaranteed to be a topological order.

4. Shortest paths.
(a) 014532
(b) 054312

(c) 14

5. Data structures.

TRHESDAY------ MO

(a
(b

no

(
(

)
)
c) (10, 1), (11, 7)
d) O(E+V)
)

(e) O(V), O(V?), 0(V), (1), Q(V)

6. Maxflows and mincuts.

(a
(b) ABEF G

31

w

c) 34

(
(d

w

1

e) A-oF-B-D-C—-H

)
)
)
)
(e)
(f) 4

7. Dynamic programming.

ECBIKMorECBKIM

It’s also possible to substitute H for C.

8. Karger’s algorithm.
(a) ADEF

(b) 4

9. Multiplicative weights.
d,=0

b

(a
(7

,E@
Il

)
)

(c) sp=0
)

(d) weight = 25

10. Intractability.

H §H EEEEEBN

PRINCETON UNIVERSITY

COS 226 FINAL EXAM SOLUTIONS, SPRING 2025 3

11. Threshold connectivity.
Solution 1. The main idea is to use binary search to find the threshold weight w*, main-
taining an interval [lo, hi] for which
e deleting all edges in G of weight greater than lo disconnects G
e deleting all edges in G of weight greater than hi does not disconnect G

For added efficiency, sort the edges by weight and do the binary search using only the actual
edge weights (instead of all integers between 0 and U).

e Set wp =0 an let wy,wo,...,wg denote the edge weights in ascending order.
o Initialize lo=0, hi = E.
e While lo # hi - 1:

lo+hi
2

— create a graph G’ that contains only the edges of weight < w,iq

— set mid =

— if G’ is connected, update hi = mid
— otherwise, update lo = mid.

e Return w” = wy;

To sort the edges by weight, use mergesort. This takes O(F log F') time.

To determine whether G’ is connected, use BFS or DFS. This takes O(F) time. This calcula-
tion needs to be performed O(log F) times within the binary search. So, the overall running
time of this phase is O(Elog E).

Solution 2. Compute an MST of G using either Kruskal’s algorithm or Prim’s algorithm.
Let wyqz denote the heaviest edge in the MST. Then, w* = wpa:. To see why this works:

o W' > Whyae: If we remove all edges in G of weight > wynez, G remains connected because
the MST connects all vertices in G and uses only edges of weight < wpqz.

o W < Wpar: When the edge of weight wy,q, was added to the MST by Kruskal or Prim,
it was done so because it is min weight crossing edge in some cut. Removing all edges
in G of weight > w4, would remove all edges in this cut, thereby disconnecting G.

90% partial credit solution: Same as Solution 1, except binary search over the interval
[0,U] instead of the sorted array of weights. This takes ©(FElogU) time in the worst case.

50% partial credit solution. Same as Solution 1, except sequentially search over the
interval [0, U] instead of binary search. This take ©(E U) time in the worst case.

PRINCETON UNIVERSITY

12. Key-and-portal shortest path.

(a) The idea is to use familiar tricks to model each component:

o Model the requirement that a path must contain a key by using the graph copy trick.
o Model an undirected edge with two antiparallel edges.
e Model multiple destinations (portals) with an artificial sink vertex.

Here’s the formal construction:

e Graph copy: For each vertex v in G: create two vertices v’ and v” in G’.

e Path must contain a key: For each edge u—v of weight w in G that contains a key:
create two edges v’ — v” and v - v” in G', of weight w. The only way to move
from graph copy 1 to graph copy 2 is via one of these edges.

o Undirected edges: For each edge u—v in G of weight w: create two pairs of antiparallel
edges u' - v/, v - o/, v’ - 0", and v" - 4", in G’, all of weight w.

e Multiple destinations: Create an artificial sink vertex t’. For each portal vertex v in
G, create an edge v — t' in G’ of weight 0.

e Source and sink: Vertex s’ is the source and vertex t’ is the destination.

Key-and-portal paths in G correspond with directed paths from s’ to ¢’ in G’, and they
have the same weight.

(b) The lines with bidirectional arrows represent two antiparallel edges of the given weight.

S, o

®

