
COS 226 Algorithms and Data Structures Fall 2025

Final

This exam has 15 questions worth a total of 75 points. You have 180 minutes to complete it.

Instructions. This exam is preprocessed by computer. Write neatly, legibly, and darkly. Put all
answers (and nothing else) inside the designated answer spaces. Fill in bubbles and checkboxes
completely: and . To change an answer, erase it completely and redo.

Resources. The exam is closed book, except that you may use a one-page reference sheet (8.5-
by-11 paper, both sides, in your own handwriting). No electronic devices are permitted.

Honor Code. This exam is governed by Princeton’s Honor Code. Discussing the contents of this
exam before the solutions are posted is a violation of the Honor Code.

Please complete the following information now.

Name:

NetID:

Exam room: # Friend 101 # CS 104 # CS 105 # Other

P01 P01A P02 P02A P02B P03A P03B P04

#Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

1. Initialization. (1 point)

On the front page of the exam, in the spaces provided,

• write your name and NetID;

• fill in the bubbles for your exam room and official precept; and

• write out and sign the Honor Code pledge.

2. Minimum spanning trees. (5 points)

Consider the following edge-weighted graph (with distinct edge weights):

s

8

Final, Fall 2025

12

9

0 7

11

6

Kruskal: 0 1 2 4 6 8 11
Prim: 0 6 4 1 2 8 11

510

4

3

2 1

(a) List the weights of the edges that Kruskal’s algorithm adds to form an MST, in the order
they are added.

(b) Start Prim’s algorithm from vertex s. List the weights of the edges that Prim’s algorithm
adds to form an MST, in the order they are added.

COS 226 FINAL, FALL 2025 3

3. Depth-first search. (5 points)

Run depth-first search on the following digraph, starting from vertex 0. Assume adjacency
lists are in sorted order: for example, when exploring edges leaving vertex 0, consider 0→ 2
before 0→4 or 0→6.

24

60

3

5

9

1

8

7

start from here

preorder: 0 2 8 4 3 1 5 7 6 9
postorder:

Final, Fall 2025

(a) List the 10 vertices in the order they appear in DFS preorder.

0

(b) List the 10 vertices in the order they appear in DFS postorder.

0

(c) At the moment when dfs(G, 6) is called, for how many vertices (including vertex 6)
have calls to dfs(G, v) been made but not yet finished?

#
1 2 3 4 5 6 7 8

4 PRINCETON UNIVERSITY

4. Shortest paths. (5 points)

Consider running the Bellman–Ford algorithm on the edge-weighted digraph below, with
source vertex s = 3. Assume that in each pass, the edges are processed in the order shown in
the table at right (lexicographic order by endpoints).

54

10

7

3

6

2

source
vertex

Final, Fall 2025

2

4

1 7

34 30

4 6

3 31

46

1

46

 v 0 1 2 3 4 5 6 7
 --
 distTo[v] - - 31 0 - 76 46 46

after two passes

Here is the distTo[] array after pass 3:
[edge relaxations that change the distTo[] array:
 C->G F->B F->E G->F G->H]

 v A B C D E F G H
 --
 distTo[v] - 83 31 0 110 67 37 38

Here is the distTo[] array after pass 4:
[edge relaxations that change the distTo[] array:
B->A F->B F->E]

 v A B C D E F G H
 --
 distTo[v] 87 74 31 0 101 67 37 38

edges

1 → 0

1 → 2 4 → 0

1 → 6 4 → 1

2 → 6 5 → 1

3 → 2 5 → 4

3 → 6 6 → 5

3 → 7 6 → 7

Here is the distTo[] array after pass 5:
[edge relaxations that change the distTo[] array:
B->A]

 v A B C D E F G H
 --
 distTo[v] 78 74 31 0 101 67 37 38

After one pass over all the edges, the distTo[] values are as follows:

v 0 1 2 3 4 5 6 7

distTo[v] ∞ ∞ 31 0 ∞ 76 46 46

(a) What are the distTo[] values at the end of the next (second) pass?
Write the eight values in the table below.

v 0 1 2 3 4 5 6 7

distTo[v]

(b) Which vertices will have their distTo[] values decreased during the third pass?
Fill in all checkboxes that apply.

0 1 2 3 4 5 6 7

COS 226 FINAL, FALL 2025 5

5. Hash tables. (4 points)

Consider a linear-probing hash table with capacity 10 that neither grows nor shrinks. Answer
parts (a)–(c) independently. For each part, assume the hash table initially contains the 6 keys
in the positions shown below.

index 0 1 2 3 4 5 6 7 8 9

key S E N M C O

(a) Assume hash(X) = 5. If you insert X into the hash table, at which index will it end up?

#
0 1 2 3 4 5 6 7 8 9

(b) Assume hash(Y) = 8. If you insert Y into the hash table, at which index will it end up?

#
0 1 2 3 4 5 6 7 8 9

(c) Assume hash(Z) is equally likely to be any integer from 0 to 9, inclusive. If you insert
Z into the hash table, what is the probability that it will end up at index 6?

#
0 1

10
2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10 1

6 PRINCETON UNIVERSITY

6. Kd-trees. (4 points)

Consider the following 2d-tree:

Final, Fall 2025

(9, 5)

(5, 6)

(6, 2) (3, 12)

(7, 15)

(14, 8)

(12, 4)

(20, 7)

(18, 12)

(10, 14)

(15, 3)

(8, 5)

(a) Suppose you insert the point (10,1). Where will it be inserted in the tree?

#
left child
of (3,12)

left child
of (12,4)

left child
of (15,3)

right child
of (15,3)

right child
of (20,7)

(b) Suppose you perform a range search for all points with 4 ≤ x ≤ 8 and 10 ≤ y ≤ 20.
Which 2d-tree nodes are explored during the range search?

Fill in all checkboxes that apply.

(3, 12) (5, 6) (7, 15) (8, 5) (9, 5) (12, 4) (18, 12)

COS 226 FINAL, FALL 2025 7

7. Analysis of algorithms. (5 points)

Consider the following graph-processing code:

double[] distTo = new double[digraph.V()];

DirectedEdge[] edgeTo = new DirectedEdge[digraph.V()];

for (int v = 0; v < digraph.V(); v++) {

distTo[v] = Double.INFINITY;

}

distTo[s] = 0.0;

for (int i = 1; i < digraph.V(); i++) {

for (int v = 0; v < digraph.V(); v++) {

for (DirectedEdge e : digraph.adj(v)) {

relax(e); // constant time

}

}

}

For this question, assume that

• digraph is of type EdgeWeightedDigraph,

• all vertices are reachable from s, and

• the digraph is simple (it has no parallel edges and no self-loops).

(a) Suppose that the EdgeWeightedDigraph data type is implemented using the adjacency-
lists representation. What is the order of growth of the worst-case running time of the
code as a function of the number of vertices V and edges E?

#
Θ(E + V) Θ(V 2) Θ(EV) Θ(E2) Θ(V 3)

(b) Repeat part (a), but now assume that EdgeWeightedDigraph is implemented using the
adjacency-matrix representation.

#
Θ(E + V) Θ(V 2) Θ(EV) Θ(E2) Θ(V 3)

8 PRINCETON UNIVERSITY

8. Maxflows and mincuts. (5 points)

Consider the following flow network and a maxflow f∗. On some edges, both the flow and the
capacity are shown; on others, only the capacity is shown; on the remaining edges, neither is
shown. A mincut with S∗ = {A, B, E, F, G} is highlighted in the diagram.

Final, Fall 2025

H

C

G

D

source s

target t

y / 5

z / 9

C

F

x / 6A

E

B10 / 15

4 / 7 0 / 3

flow capacity

(a) What is the capacity of the mincut S∗?

#
10 11 14 15 16 19 20

(b) What is the value of the maxflow f∗?

#
10 11 14 15 16 19 20 can’t be determined

(c) What is x, the amount of flow on edge B → C?

#
0 1 2 3 4 5 6 can’t be determined

(d) What is y, the amount of flow on edge C → G?

#
0 1 2 3 4 5 6 can’t be determined

(e) What is z, the amount of flow on edge G→H?

#
0 1 2 3 5 7 9 can’t be determined

COS 226 FINAL, FALL 2025 9

9. Dynamic programming. (6 points)

You have n gold bars with weights w1,w2, . . . ,wn, all positive integers. Determine whether
the bars can be partitioned into two groups so that each group has total weight exactly 1

2 W ,
where W = w1 +w2 + ⋯ +wn. Assume W is even.

For example, if the weights are {3, 6, 4, 12, 23}, then the answer is no. If the weights are
{3, 6, 4, 12, 17}, then the answer is yes, because w1 +w2 +w4 = w3 +w5 = 1

2 W = 21.
You will formulate this as a dynamic programming problem. Define the following subproblems,
one for each i and j with 0 ≤ i ≤ n and 0 ≤ j ≤ 1

2 W :

OPT (i, j) =
⎧⎪⎪⎨⎪⎪⎩

true if some subset, possibly empty, of {w1,w2, . . . ,wi} sums to exactly j

false otherwise

Consider the following partial bottom-up implementation:

boolean[][] opt = new boolean[n+1][W/2 + 1];

opt[0][0] = true;

for (int j = 1; j <= W/2; j++)

 opt[0][j] = ;

for (int i = 1; i <= n; i++)

 opt[i][0] = ;

for (int i = 1; i <= n; i++) {

 for (int j = 1; j <= W/2; j++) {

 opt[i][j] = ;

 if (&&)

 opt[i][j] = ;

 }

}

StdOut.println("answer = " + opt[n][W/2]);

A. false

B. true

C. null

D. (j >= weights[i])

E. (j < weights[i])

F. (j == weights[i])

G. opt[i-1][j-1]

H. opt[i-1][j]

I. opt[i][j-1]

J. opt[i][j]

K. opt[i][j+1]

L. opt[i-1][j - weights[i]]

M. opt[i][j - weights[i]]

2

4 5

6

Final, Fall 2025

3

1

For each numbered oval above, write the letter of the corresponding expression on the right in
the space provided. You may use each letter once, more than once, or not at all.

1 2 3 4 5 6

10 PRINCETON UNIVERSITY

10. Graph algorithms. (5 points)

Suppose we modify a graph algorithm to terminate early. Which of the following early-
termination rules still guarantee that the algorithm’s output is correct?

For each rule, fill in exactly one bubble: valid or invalid.

valid invalid

#
Stop Kruskal’s algorithm as soon as V − 1 edges have been
added to T (instead of continuing until all E edges have been
considered).

#
Stop breadth-first search as soon as every vertex has been
marked and enqueued (instead of continuing until the queue is
empty).

#
Stop Dijkstra’s algorithm as soon as every vertex has been
inserted into the priority queue (instead of continuing until the
priority queue is empty).

#
When using depth-first search to determine whether t is
reachable from s, stop as soon as t is marked (instead of
continuing until all reachable vertices are marked).

#
Assuming all edge weights are nonnegative, stop Bellman–Ford
as soon as a full pass (relaxing all E edges) completes without
decreasing any distTo[] values (instead of always performing
V − 1 passes).

COS 226 FINAL, FALL 2025 11

11. Randomness. (4 points)

Consider the following code fragment, which uses rejection sampling. At each step, it selects
a site in an n-by-n grid uniformly at random and opens it if it is not already open, continuing
until all n2 sites are open:

boolean[][] isOpen = new boolean[n][n];

int numOpened = 0;

while (numOpened < n*n) {

int col = StdRandom.uniformInt(n); // two calls to

int row = StdRandom.uniformInt(n); // uniformInt()

if (!isOpen[col][row]) {

StdOut.printf("open site (%d, %d)\n", col, row);

isOpen[col][row] = true;

numOpened++;

}

}

(a) What is the expected number of uniformInt() calls performed to open the first site?

#
1 2 4 8 Θ(n)

(b) Once exactly one site remains closed, what is the expected number of uniformInt() calls
performed to open that last site?

#
2 n 2n n2 2n2

(c) Once exactly two sites remain closed, what is the expected number of uniformInt() calls
performed to open one of them (the second-to-last site)?

#
2 n 2n n2 2n2

(d) What is the expected number of uniformInt() calls performed to open all n2 sites?

#
Θ(n2) Θ(n2 logn) Θ(n3) Θ(n4) Ω(2n)

(e) What is the worst-case number of uniformInt() calls performed to open all n2 sites?

#
Θ(n2) Θ(n2 logn) Θ(n3) Θ(n4) Ω(2n)

12 PRINCETON UNIVERSITY

12. Expert algorithms. (5 points)

For each of the following statements, indicate whether it is (1) always true, (2) always false,
or (3) sometimes true and sometimes false, depending on the particular sequence of expert
predictions and outcomes. Each statement refers to a single run of an expert algorithm on
some sequence.

For each statement, fill in exactly one bubble.

always always

true false depends

If a strict majority of the experts predicts 1 on day t, the
multiplicative-weights algorithm also predicts 1 on day t.

In the multiplicative-weights algorithm, an expert who has made
6 mistakes has exactly half the weight of an expert who has
made 7 mistakes.

If a strict majority of the experts is perfect, then the
multiplicative-weights algorithm never makes a mistake.

In the simplified AdaBoost algorithm, the weight array on day
16 is [1/4, 1/8, 1/16, 1/8, 7/16].

Suppose we modify the elimination algorithm so that on day
t we remove an expert only if both (1) the expert makes a
mistake and (2) the algorithm makes a mistake.

Assuming there is at least one perfect expert, this version
of the elimination algorithm makes at most log2 n mistakes,
where n is the number of experts.

COS 226 FINAL, FALL 2025 13

13. Intractability (5 points).

Suppose that Problem A is in P; Problem B is in NP; Problem C is not in P.
Which of the following statements must be true?

Fill in all checkboxes that apply.

Problem A is in NP.

Problem C is in NP.

Problem B can be solved in exponential time.

Problem B cannot be solved in polynomial time.

If Problem C poly-time reduces to Problem B, then P ≠ NP

14 PRINCETON UNIVERSITY

14. Fattest path. (8 points)

Given a digraph G with positive integer edge weights (capacities), the bottleneck capacity of
a directed path is the smallest capacity of any edge on that path. A fattest path from s to t
is an s↝t path whose bottleneck capacity is as large as possible.

For example, in the edge-weighted digraph G below:

• The bottleneck capacity of the path s→3→4→t is 3.
• The bottleneck capacity of the path s→4→1→2→t is 7.
• The path s→4→1→2→t is a fattest path from s to t.

3

s

t

2

4

1

Final, Fall 2025 (Bottleneck Capacity)

4
edge

capacity

3

6

10

5

87

8

9

(a) Design an algorithm that takes as input an edge-weighted digraph G, two vertices s and
t, and an integer w, and either

• outputs an s↝t path whose bottleneck capacity is ≥ w, or
• reports that no such path exists.

Your algorithm must run in O(E + V) time in the worst case, where V and E are the
number of vertices and edges in G.

In the box below, describe your algorithm. You may use any of the algorithms from the
course as subroutines. Your answer will be graded on correctness, efficiency, and clarity.

COS 226 FINAL, FALL 2025 15

(b) Design an algorithm that takes as input an edge-weighted digraph G and two vertices s
and t, and either

• outputs a fattest path from s to t, or

• reports that no s↝t path exists.

Use an algorithm for the problem in part (a) as a subroutine. You may assume that this
subroutine is correct, even if your solution to part (a) is not.

Performance requirement. For full credit, the running time of your algorithm must
be O((E + V) logE) in the worst case, where V and E are the number of vertices and
edges in G.

Partial credit. We will award 80% credit for a correct algorithm whose running time
is Θ((E + V) logU), where U is the maximum capacity of any edge, and 50% credit if
the running time is Θ((E + V)U).

In the box below, describe your algorithm. Your answer will be graded on correctness,
efficiency, and clarity.

Are you attempting the full-credit or partial-credit solution? You may attempt only one.

#
full credit 80% partial credit 50% partial credit

16 PRINCETON UNIVERSITY

15. Tiger cut. (8 points)

You are given a digraph G in which each vertex is colored orange, black, or white. Your
goal is to recolor each white vertex either orange or black (without changing the colors of the
non-white vertices) so as to minimize the number of edges that point from black vertices to
orange vertices.

An example. Consider the following digraph G, where vertices 0 and 3 are black, vertices 2
and 5 are orange, and vertices 1 and 4 are white. The optimal solution colors vertex 4 black
and vertex 1 orange, leaving only two edges that point from black to orange, 4→1 and 0→2.
(Every other way of recoloring the white vertices yields more such edges.)

t

3

0

5

2

4

1

Final, Fall 2025: Tiger Cut (Directed)

3

0

5

2

4

1s

Goal. Design a polynomial-time reduction from the Tiger-Cut problem to the classic Min-
st-Cut problem:

• Min-st-Cut: Given a flow network G′ with positive edge capacities, a source vertex s,
and a target vertex t, find an st-cut of minimum capacity.

Reduction requirements. For full credit, your reduction must construct a flow network G′

with V ′ = V + 2 vertices and E′ ≤ E + V edges, where V and E are the numbers of vertices
and edges in G.

COS 226 FINAL, FALL 2025 17

(a) Describe your reduction from Tiger-Cut to Min-st-Cut. Your reduction must work
for any instance of Tiger-Cut, not just the one on page 16.

Describe how to transform a Tiger-Cut instance G into a Min-st-Cut instance (G′, s, t).
Which vertices and edges are in the new flow network G′? What are their capacities?
Which vertices are the source s and target t?

Now describe how to transform a solution to the Min-st-Cut instance back into a solu-
tion to the original Tiger-Cut instance. How do you use a minimum st-cut (S∗, T ∗)
of G′ to determine which color to assign to each white vertex?

Your answers will be graded on correctness, efficiency, and clarity.

18 PRINCETON UNIVERSITY

(b) Draw the Min-st-Cut instance (G′, s, t) that would be constructed for the Tiger-Cut
instance from page 16:

t

3

0

5

2

4

1

Final, Fall 2025: Tiger Cut (Directed)

3

0

5

2

4

1s

We have already provided the V ′ = V + 2 vertices in G′ and labeled the source s and
target t. Be sure to draw all edges, including their directions and capacities.

t

Final, Fall 2025: Tiger Cut (Directed)

3

0

5

2

4

1

s

COS 226 FINAL, FALL 2025 19

This page is intentionally blank. You may use this page for scratch work but do not remove
it from the exam.

20 PRINCETON UNIVERSITY

You may use this page as a reference during the exam.

Discrete Sums

Triangular: 1 + 2 + 3 + 4 + ⋯ + n ∼ 1
2 n2

Logarithmic: log2 1 + log2 2 + log2 3 + log2 4 + ⋯ + log2 n ∼ n log2 n

Harmonic: 1 + 1

2
+ 1

3
+ 1

4
+ ⋯ + 1

n
∼ lnn

Geometric: 1 + 2 + 4 + 8 + ⋯ + n ∼ 2n (for n a power of 2)

Logarithm Identities

Product rule: log(xy) = logx + log y

Quotient rule: log (x
y
) = logx − log y

Power rule: log(xk) = k logx

Change of base: loga x =
logb x

logb a

Unless otherwise noted, log denotes the logarithm function in some fixed base b > 1.

