
COS 226 Algorithms and Data Structures Fall 2024

Final

This exam has 12 questions worth a total of 100 points. You have 180 minutes.

Instructions. This exam is preprocessed by computer. Write neatly, legibly, and darkly. Put all
answers (and nothing else) inside the designated spaces. Fill in bubbles and checkboxes completely:
 and . To change an answer, erase it completely and redo.

Resources. The exam is closed book, except that you are allowed to use a one page reference
sheet (8.5-by-11 paper, both sides, in your own handwriting). No electronic devices are permitted.

Honor Code. This exam is governed by Princeton’s Honor Code. Discussing the contents of this
exam before the solutions are posted is a violation of the Honor Code.

Please complete the following information now.

Name:

NetID:

Exam room: # McCosh 50 # McCosh 60 # Other

P01 P02 P03 P05 P06 P07 P08 P09 P10

#
Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

1. Initialization. (1 point)

In the spaces provided on the front of the exam, write your name and NetID; fill in the bubble
for your exam room and the precept in which you are officially registered; write and sign the
Honor Code pledge.

2. Graph search algorithms. (11 points)

Run depth-first search and breadth-first search on the following digraph, starting from vertex 0.
Assume the adjacency lists are in sorted order: for example, when iterating over the edges
leaving vertex 4, do so in the following order: 4→2, 4→5, 4→6 then 4→9.

46

20

3

7

9

1

8

5

start here

BFS queue remove: 0 2 6 8 5 3 4 9 1 7
preorder: 0 2 5 3 6 8 4 9 1 7

postorder: 3 5 2 6 1 7 9 4 8 0

Final, Fall 2024

(a) List the 10 vertices in the order they are removed from the queue during the execution
of BFS.

0

(b) List the 10 vertices in DFS preorder.

0

COS 226 FINAL, FALL 2024 3

(c) List the 10 vertices in DFS postorder.

0

(d) Is the reverse of the DFS postorder in part (c) a topological order for this digraph?

#

yes no

4 PRINCETON UNIVERSITY

3. Minimum spanning trees and global mincut. (12 points)

Consider the following edge-weighted graph.

E

A

G

D

H

C

F

Final, Fall 2024

0.6

0.7

0.5

0.8

0.3

0.4

0.55

0.9

Kruskal: 0.1 0.2 0.25 0.3 0.4 0.55 0.6
Prim: 0.4 0.2 0.1 0.3 0.55 0.6 0.25

0.1 0.25

start Prim here

B

0.35

0.2

(a) List the weights of the MST edges in the order that Prim’s algorithm adds them to the
MST. Start Prim’s algorithm from vertex B.

COS 226 FINAL, FALL 2024 5

(b) Run one execution of Karger’s algorithm for finding a global mincut on the (unweighted
version) of the graph from part (a). Assume that the uniformly random weights assigned
to each edge in this execution of Karger’s algorithm are the edge weights on that graph.

Which cut does this execution of Karger’s algorithm output?

Mark all vertices that are on the same side of the cut as vertex B.

A B C D E F G H

(c) How many edges cross the cut output by this execution of Karger’s algorithm?

#

0 1 2 3 4 5 6

(d) Is the cut obtained by this execution of Karger’s algorithm a global mincut?

#

yes no

6 PRINCETON UNIVERSITY

4. Shortest paths. (15 points)

Consider the following edge-weighted digraph G:

1

0

3

4

2

5

40

Final, Fall 2024

60120

25

70 20

10

Dijsktra: 0 5 4 1 2 3, ? = 60
After one pass of BF: 2 and 3 are not optimal
After the second round they are all optimal

?

start here

90

100

(a) During the execution ofDijkstra’s algorithm, immediately after relaxing vertex 4, distTo[3]
is 150. What is the weight of the edge 4→ 3?

#
10 25 30 35 40 50 60 75 80

Use the weight of the edge 4 → 3 you found in this part of the question in all the other
parts of the question.

(b) List the 6 vertices in the order they are removed from the priority queue during Dijkstra’s
algorithm with source vertex s = 0.

0

COS 226 FINAL, FALL 2024 7

(c) Consider running the Bellman–Ford algorithm on G, with source vertex s = 0. Assume
that, in each pass, the edges are relaxed in sorted order:

0→1, 0→4, 0→5, 1→2, 2→3, 4→3, 5→1, 5→2, 5→3, 5→4

Immediately after the first pass, what are the values of distTo[v] for each vertex v?
If distTo[v] is infinite, write ‘∞’.

Write the values in the corresponding boxes.

distTo[0] distTo[1] distTo[2] distTo[3] distTo[4] distTo[5]

0

(d) Does the value of distTo[v] change for any vertex v in the second pass of the Bellman–
Ford algorithm?

#

yes no

(e) Does the value of distTo[v] change for any vertex v in any pass of the Bellman–Ford
algorithm after the second?

#

yes no

8 PRINCETON UNIVERSITY

5. Maxflows and mincuts. (15 points)

Consider the following flow network and a flow f .

Final, Fall 2024 (before augmenting path)

6 / 10 0 / 18

18 / 18F

flow capacity

A

11 / 19
6 / 10 36 / 36

13 / 29

0 / 1340 / 40 I

E

J

2 / 214 / 14

22 / 35

C

min cut: { A, B, C, F, G, H }
max flow value = 42

24 /
24

B

H

D

23 /
40

source

target

G

40 / 48

20 / 20

(a) What is the value of the flow f?

#

14 22 23 30 32 36 42 44 48

(b) What is the capacity of the cut {A,B,C,D,E}?

#

0 34 36 46 79 82 113 128 192

(c) Find an augmenting path with respect to f . Write the sequence of vertices in the path.

A →

COS 226 FINAL, FALL 2024 9

(d) What is the value of the maximum flow?

#

14 22 23 30 32 36 42 44 48

(e) Compute a minimum A-J cut in the graph. Which vertices are on the source side of
your minimum cut? Mark all that apply.

A B C D E F G H I

(f) If the capacity of edge I → C were 16 (instead of 10), what would the value of the
maximum flow be?

#

14 22 23 30 32 36 42 44 48

(g) If the capacity of the edge H → I were 34 (instead of 40), what would the value of the
maximum flow be?

#

14 22 23 30 32 36 42 44 48

10 PRINCETON UNIVERSITY

6. Properties of graph algorithms (5 points).

Recall that in this course we assume all graphs and digraphs are simple, meaning they contain
no self-loops or parallel edges.

Identify each statement as either always true or sometimes/always false.

true false

Every undirected graph with V vertices and at least V edges has a cycle.

#
Suppose we run DFS on an undirected graph that has a path between u
and v. If u is marked before v, then the recursive call dfs(v) returns
before the recursive call dfs(u) does.

#

Let G1 and G2 be two flow networks (weighted digraphs) with the same
vertex set V. Their union is defined as a flow network with vertex set V,
where for any u ≠ v ∈ V, the capacity of the edge u→ v is the sum of the
capacities of the edges u→ v in G1 and G2. (If u→ v does not exist in
one of the networks, the capacity of u→ v in this network is 0.)
The value of the maximum st-flow in the union network equals the sum
of the values of the maximum st-flows in G1 and G2.

#
If f is a flow that contains a directed cycle with a positive flow value
(i.e., the flow on every edge of the cycle is positive), then f is not a
maximum flow.

A “star” digraph that consists of one vertex of out-degree n and n
vertices with out-degree 0 has exactly n distinct topological orderings.

COS 226 FINAL, FALL 2024 11

7. Dynamic programming: Halloween. (5 points)

It’s Halloween, and your young cousins are dragging you trick-or-treating down the street.
You know how many pieces of candy they’ll collect at each house and want to minimize the
total amount they receive. After visiting house i (starting from house 0, which is your house,
where they collect 0 pieces), your cousins allow you to either go to house i + 1 or skip it and
go to house i + 2 (but you can’t get away with skipping two houses in a row).

Assume the number of pieces of candy collected at each house is represented by an integer
array candy[] of length n ≥ 2, where the amount given away at house i is candy[i] (with
candy[0]=0 representing your house). Determine the minimum total number of pieces of
candy that can be collected without skipping two consecutive houses.

Example. If n = 10 and candy[] is the array below, the minimum obtainable number is 23.
This is achieved by visiting houses 0, 2, 3, 5, 6 and 8 (skipping houses 1, 4, 7 and 9), thus
collecting 3 + 2 + 5 + 1 + 12 = 23 pieces of candy.

house 0 1 2 3 4 5 6 7 8 9

candy 0 5 3 2 8 5 1 10 12 13

We will solve this problem using dynamic programming. For each i with 0 ≤ i < n, define the
following subproblems:

opt[i] =
minimum number of pieces of candy collected from houses 0 to i,

given that house i is visited.

Consider the following bottom-up implementation, with some parts omitted:

static int minCandy(int[] candy) {
int n = candy.length;

int[] opt = new int[n];

opt[0] = candy[0];

opt[1] = candy[1];

for (int i = 2; i < n; i++)

opt[i] = <blank 1>;

return Math.min(<blank 2>, <blank 3>);

}

12 PRINCETON UNIVERSITY

Fill in the ommited blanks with valid Java code that completes a correct implementation of
minCandy():

<blank 1> is

<blank 2> is

<blank 3> is

COS 226 FINAL, FALL 2024 13

8. Multiplicative weights (5 points).

Consider the experts problem with n ≥ 2 experts over a period of T ≥ 100 days.

Identify each statement as either always true or sometimes/always false.

true false

#
If there is an expert that always predicts correctly, the multiplicative
weights algorithm makes no fewer mistakes than the elimination
algorithm.

#
If there is an expert that always predicts correctly, then once the
multiplicative weights algorithm does not make a mistake for 2.41 log2 n
consecutive days, it will not make any mistakes in subsequent days.

#

In the multiplicative weights algorithm, if we halve the weight of an
expert only on days when both the expert and the algorithm make a
mistake, the worst-case number of mistakes remains at most
2.41(M + log2 n).

#

Suppose T consists of T /7 consecutive weeks and that, for each day of
the week, there exists an expert who predicts correctly (e.g., one expert
for Mondays, another for Thursdays, etc.). Then there exists a
prediction algorithm that makes O(logn) mistakes.

#

In the simplified AdaBoost algorithm, suppose that T = 100 and that in
every call to the iterate method, the trained decision stump correctly
labels points in the training set whose collective weight is at least 90% of
the total weight. If the final boosted model’s predict method is applied
to each point in the training set, it will correctly label all such points.

14 PRINCETON UNIVERSITY

9. Intractability (5 points).

Identify each statement as either always true or sometimes/always false.

true false

If problems X and Y are in P, then X poly-time reduces to Y and Y
poly-time reduces to X.

If problem Y is in P and 3-Sat poly-time reduces to Y , then P = NP.

#

Both of the following are polynomial-time algorithms: (1) an algorithm
that receives a binary array as input and prints the value of every entry;
(2) an algorithm that receives a positive integer x as input and prints all
integers between 1 and x.

#

Recall that there is a randomized approximation algorithm for 3-Sat
that returns an assignment satisfying a 7

8 fraction of the equations with
probability 0.99.
Running this algorithm 100 times and returning the assignment that
satisfies the largest number of equations yields an assignment that
satisfies over 0.99 of the equations with probability at least 0.99.

#

Consider the following decision problem: given a 3-Sat instance,
determine whether a satisfying assignment with the fewest variables
assigned true has exactly n

2 variables assigned true.
The witness and verification algorithm below prove that the problem
above is in NP:
Witness: A boolean assignment claimed to be a satisfying assignment
with the fewest variables assigned true.
Verification: Check that the witness assignment satisfies all equations
and has exactly n

2 variables assigned true. Additionally, for every
subset S of variables where ∣S∣ < n

2 , check that the assignment with
variables in S assigned true and all others assigned false is
unsatisfiable.

COS 226 FINAL, FALL 2024 15

10. Randomness: majority element (5 points).

An element x is the majority element of the array arr if x appears in more than half of the
entries in arr. For example, 8 is the majority element of the following integer array, as it
appears in 9 out of 16 entries: [8 7 8 8 8 0 8 8 4 4 4 4 8 8 4 8].

The randomized methods majA and majB below are designed to find the majority element in
an array that is guaranteed to have a majority element. Both methods utilize a determin-
istic helper function, isMaj(arr,x), which checks in Θ(n) time whether a given candidate
element x is the majority element of the array arr.

static Object majA(Object[] arr) {

Object x;

Object maj = null;

for (int t = 0; t < 10; t++) {

x = arr[StdRandom.uniformInt(arr.length)];

if (isMaj(arr,x))

maj = x;

}

return maj;

}

static Object majB(Object[] arr) {

Object x;

while (true) {

x = arr[StdRandom.uniformInt(arr.length)];

if (isMaj(arr,x))

return x;

}

}

static boolean isMaj(Object[] arr, Object x) {

int count = 0;

for (int i = 0; i < arr.length; i++)

if (x.equals(arr[i]))

count++;

return (count > arr.length / 2);

}

16 PRINCETON UNIVERSITY

Fill in all checkboxes that apply.

majA is a randomized Las Vegas algorithm and majB is a randomized Monte Carlo al-
gorithm.

The error probability of majA is at most 1
210

.

The expected number of array accesses made by majB is Θ(n).

The greater the frequency of the majority element in arr, the lower the (exact) ex-
pected number of array accesses made by majB.

The greater the frequency of the majority element in arr, the lower the (exact) ex-
pected number of array accesses made by majA.

COS 226 FINAL, FALL 2024 17

11. Design: majority element. (12 points)

This question focuses on deterministic algorithms for finding the majority element, as defined
in Question 10.

(a) Design an algorithm that outputs the majority element if it exists, and returns null

otherwise.

Full credit: The algorithm should run in O(n logn) time in the worst case, where n
is the length of the array (you may assume that n is a power of 2). The algorithm can
only use the equals() instance method of array elements, which can be assumed to run
in Θ(1) time. That is, implement the method static Object maj(Object[] arr).

Hint for full credit: One option is to use a divide-and-conquer approach: split the
array into two subarrays, each of half the size. How can the majority elements of the
two subarrays help determine the majority element of the entire array?

Partial credit (at least half): The algorithm should run in O(n logn) time in the worst
case, but may assume that the array elements are Comparables and use the compareTo()
method. That is, implement the method static Comparable maj(Comparable[] arr).

18 PRINCETON UNIVERSITY

Choose one option to attempt:

Full-credit solution (Object[] array).

Partial credit solution (Comparable[] array).

In the space provided, give a concise English description of your algorithm for solving
the problem. You may use any of the algorithms that we have considered in this course
(e.g., lectures, precepts, textbook, assignments) as subroutines. If you modify such an
algorithm, be sure to describe the modification. Feel free to use code or pseudocode to
improve clarity.

COS 226 FINAL, FALL 2024 19

(b) As in the previous part of this question, design an algorithm that outputs the majority
element if it exists, and returns null otherwise. However, the new algorithm should run
in O(n) time on average under the uniform hashing assumption.

Advice: Recall that hash tables implement a symbol table data type, which does not
support duplicate keys. Consider choices of keys and associated values that are correct
under this constraint.

Give a concise English description of your algorithm. Feel free to use code or pseudocode
to improve clarity.

20 PRINCETON UNIVERSITY

12. Design: reachability with even-length paths. (9 points)

Given a digraph G, a start vertex s, and a target vertex t, we are interested in directed paths
of even length (i.e., consisting of an even number of edges) from s to t.

Example. In the following digraph, the path
s→ 3→ 4→ 2→ t (in orange) is an even-length
path from s to t. Note that there is also an
odd-length path from s to t: s→ 1→ 2→ t.

3

s

5

2

4

1

Final, Fall 2024

t

3

s 2

4

1

t

(a) Is the following claim correct?

There exists a digraph G with an even-length path from s to t, but none of the even-
length paths from s to t in G are simple. Recall that a simple path is a path that does
not visit any vertex more than once.

#

yes no

(b) Design an algorithm that, given a DAG G, a start vertex s, and a target vertex t,
determines whether there exists a directed path of even length from s to t.

Full credit: The algorithm should run in O(E + V) time in the worst case, where V is
the number of vertices and E is the number of edges in G.

Partial credit (at least half): The algorithm should run in O((E + V)E) time in the
worst case. Additionally, the algorithm is only required to output YES when there exists
an even-length path from s to t that is edge-disjoint from any odd-length path between s
and t (i.e., it shares no edges with any odd-length path). That is, the algorithm must

- output NO if there is no directed path of even length from s to t.

- output YES if there exists a directed path of even length from s to t that is edge-disjoint
from all odd-length paths between s and t.

- output either YES or NO for all other digraphs.

For example, the algorithm may return either YES or NO for the digraph above with
vertices s and t, as the only even-length path from s to t (in orange) shares the edge
2→ t with the odd-length path. However, the algorithm must return YES for the following
digraph with vertices s and t, as there exists an even-length path from s to t (in orange)
that does not share any edge with an odd-length path.

3

s

5

2

4

1

Final, Fall 2024

t

3

s 2

4

1

t

COS 226 FINAL, FALL 2024 21

Choose one option to attempt:

Full-credit solution.

Partial credit solution.

Give a concise English description of your algorithm. Feel free to use code or pseudocode
to improve clarity. You may also add a sketch to illustrate your algorithm.

22 PRINCETON UNIVERSITY

This page is intentionally blank. You may use this page for scratch work.

