
COS 226 Algorithms and Data Structures Fall 2024

Final Solutions

1. Initialization.

Don’t forget to do this.

2. Graph search algorithms.

(a) 0 2 6 8 5 3 4 9 1 7

(b) 0 2 5 3 6 8 4 9 1 7

(c) 3 5 2 6 1 7 9 4 8 0

(d) yes

For every edge u→v, u appears before v in this ordering.

3. Minimum spanning trees.

(a) 0.4 0.2 0.1 0.3 0.55 0.6 0.25

(b) A B C E F G

(c) 2

The edges (C,D) and (G,H) cross the cut.

(d) yes

Since there is no cut with a single crossing edge and this cut has two, it is a mincut.

4. Shortest paths.

(a) 60

(b) 0 5 4 1 2 3

The shortest path lengths are 0, 110, 120, 145, 90, 70.

(c) 0 110 130 155 90 70

(d) yes

The second pass of Bellman–Ford updates the distances of 2 and 4.

(e) no

The distTo[] values after the second pass match the distTo[] values obtained from
Dijkstra execution in part (b). Since these latter values are optimal and since distTo[]

values can only decrease, no further changes will occur after the second pass.



2 PRINCETON UNIVERSITY

5. Maxflows and mincuts.

(a) 36 = 14 + 22 = 36 + 0

(b) 113 = 35 + 24 + 18 + 36

(c) A→ F → G→ C → I → J

(d) 42 = 28 + 14

Verify that the value of the maximum flow matches the capacity of the minimum cut,
which is 42 = 40 + 2.

(e) A B C F G H

(f) 42

The flow can only increase. However, increasing the capacity of the edge I → C does not
affect the capacity of the minimum cut found in part (e).

(g) 36

The capacity of the cut found in part (e) decreases by 6. Since no other cut decreases by
more than 6, this cut remains the minimum cut.

6. Properties of graph algorithms.

T T F F F

(a) T: A spanning tree contains exactly V − 1 edges. Adding any extra edge will create a
cycle.

(b) T: At the time when dfs(u) is called, since there is a path from u to v and v has not
been visited before (as u is marked before v), dfs(v) will be called before dfs(u) finishes
and will therefore return before dfs(u) does.

(c) F: Consider two graphs, each with three vertices: s, t, and v, and two edges: s→ v and
v → t. In the first graph, the edge s→ v has capacity 1, and v → t has capacity 3. In the
second graph, the edge s → v has capacity 3, and v → t has capacity 1. In both graphs,
the value of the maximum flow is 1, but in the union graph, the value of the maximum
flow is 3.

(d) F: Consider a graph with five vertices: s, t, u, v, and w, and edges s→ u→ v → w → u→ t,
each with a capacity of 1. Sending 1 unit of flow through all edges achieves the maximum
flow, yet the cycle u→ v → w → u carries a positive flow.

(e) F: The vertex with an out-degree of 0 must be the first in any topological ordering. The
remaining vertices can be arranged in any order. Thus, there are n! possible orderings.



COS 226 FINAL SOLUTIONS, FALL 2023 3

7. Dynamic programming.

static int minCandies(int[] candies) {
int n = candies.length;

int[] opt = new int[n];

opt[0] = candies[0];

opt[1] = candies[1];

for (int i = 2; i < n; i++)

opt[i] = candies[i] + Math.min(opt[i - 1], opt[i - 2]);

return Math.min(opt[n - 1], opt[n - 2]);

}

8. Multiplicative weights.

F F T T F

(a) F: Partition the experts into three groups: S1, S2, and S3, with ∣S1∣ = 0.3n, ∣S2∣ = 0.4n,
and ∣S3∣ = 0.3n. Assume that on day 1, the experts in S1 make a mistake; on day 2,
the experts in S2 make a mistake; and from day 3 onward, all experts predict correctly.
It is evident that both algorithms are correct on all days except, possibly, day 2. The
elimination algorithm makes a mistake on day 2 because 0.4n out of the remaining 0.7n
experts are wrong. In contrast, the multiplicative weights algorithm is correct on day 2:
at that point, the total weight of S1 is 0.15n, the weight of S2 is 0.4n, and the weight
of S3 is 0.3n. Thus, the total weight of correct experts (0.45n) exceeds the total weight
of incorrect experts (0.4n).

(b) F: For any day t < T , it is possible for all but one expert to make their first mistake on
day t + 1. The combined weight of those experts is n − 1, which exceeds the weight of
the single correct expert.

(c) F: This modification does not impact the analysis of the multiplicative weights algorithm.

(d) T: Execute 7 independent instances of the elimination algorithm (or the multiplicative
weights algorithm), one for each day.

(e) F: Consider the scenario where, in each iteration, the decision stump correctly labels all
points except the first one. This stump correctly labels at least 90% of the total weight
as, ignoring normalization, after T = 100 iterations, the weight of the first point becomes
2100, while the total weight of all other points is n − 1. For sufficiently large n, n − 1 is
more than 90% of the total weight, which is n−1+2100. Furthermore, since the algorithm
determines the label of each point based on the majority output of the stumps, it will
mislabel the first point.



4 PRINCETON UNIVERSITY

9. Intractability.

T T F F F

(a) T: Since X is in P, it has a p(n)-time algorithm for some polynomial p(n). To prove
that X poly-time reduces to Y , it is enough to show that if Y has a T (n)-time algorithm
for some T (n) ≥ n, then X has a T (p(n))-time algorithm. However, since X already
has a p(n)-time algorithm, it follows that X also has a T (p(n))-time algorithm for any
T (n) ≥ n (regardless of the running time of any algorithm for Y ). A symmetric argument
shows that Y poly-time reduces to X.

(b) T: Since Y is in P, it is also in NP. Because 3-Sat is NP-complete and poly-time
reduces to Y , it follows that Y is NP-complete. However, if any NP-complete problem
has a polynomial-time algorithm, then P = NP.

(c) F: The first algorithm is polynomial time because a boolean array of length n is rep-
resented using Θ(n) bits, and the algorithm runs in Θ(n) time, which is linear in the
input size. In contrast, the second algorithm is not polynomial time. The integer x is
represented using Θ(logx) bits, but the algorithm has a running time of Θ(x), which is
exponential in the input size.

(d) F: Repetitions of a Monte Carlo randomized algorithm can reduce the error probability,
but the issue here is improving the approximation factor. (In fact, unless P = NP,
no polynomial-time approximation algorithm for 3-Sat can satisfy more than 7

8 of the
equations).

(e) F: The verification algorithm does not run in polynomial time because, for even n, half
of the subsets S ⊆ [n] have size ≤ n

2 , resulting in 2n−1 such subsets.

10. Randomness.

F T T T F

(a) F: majA is Monte Carlo (deterministic running time, not guaranteed to be correct). majB
is Las Vegas (guaranteed to be correct, running time depends on randomness).

(b) T: A majority element is found in each iteration of the loop with a probability greater
than 1

2 .

(c) T: The expected number of loop iterations is Θ(1) because the probability of halting
after each iteration is at least 1

2 . Since each iteration takes Θ(n) time, the total runtime
is Θ(n).

(d) T: As the frequency of the majority element increases, the probably of one iteration of
the loop finding the majority element also increases. This reduces the expected number
of iterations. (The number of array accesses per iteration does not change.)

(e) F: The number of iterations and the number of array accesses per iteration remain the
same. As a result, the overall number of array accesses stays unchanged.



COS 226 FINAL SOLUTIONS, FALL 2023 5

11. Design: majority element.

(a) Full credit. For full credit, observe that if x is the majority element of arr, then x
must be the majority element of either the left or right subarray of arr. The reasoning is
that if x appears in at most half of the entries in each subarray, it cannot appear in more
than half of the entries in arr and, therefore, cannot be its majority element. This leads
to a divide-and-conquer algorithm that recursively computes the majority elements of
the two subarrays and checks whether either of the obtained candidates is the majority
of the entire array. The running time satisfies the recurrence T (n) = 2T (n/2) +Θ(n),
which resolves to T (n) = Θ(n logn).

Partial credit. For partial credit, sort the array and check if arr[n/2] is a majority
element. Note that if a majority element exists, it will appear at least n/2+1 consecutive
times after sorting, which guarantees that it appears at the position n/2. Another option
is to count how many times each element appears in the sorted array.

(b) Use the frequency counter we implemented in the lecture on symbol tables, utilizing a
hash table. Then, check whether the maximum frequency exceeds n/2.

Recall that the frequency counter treats array objects as keys, with values representing
their counts. It processes the array by iterating through each index i, checking if arr[i]
is already a key in the hash table and, if so, retrieving the associated counter c. If the
key does not exist, it is added with an initial count value of 1. Otherwise, it is re-added
with the associated counter c+ 1. Finally, the algorithm scans the hash table to identify
the highest counter value.

Remark: There are algorithms that find the majority element in Θ(n) time in the worst
case without making any assumptions. One such approach uses an auxiliary array aux.
For every 0 ≤ k < n/2, compare entries 2k and 2k+1 using the equals() method. If they
are equal, copy one of them to aux; otherwise, copy neither. The number of elements
copied to aux is at most n/2. Replace arr with aux and repeat the process to find the
majority element of the shorter array. This algorithm requires Θ(n) space and runs in
Θ(n) time, as the total work is proportional to n+ n

2 +
n
4 +⋅ ⋅ ⋅+1, which forms a geometric

sum summing to Θ(n).

Another Θ(n)-time algorithm is based on the Boyer–Moore majority vote algorithm. this
algorithm is in-place and scans the array only twice. Below is a Java implementation:



6 PRINCETON UNIVERSITY

static Object maj(Object[] arr) {

Object maj = null;

int count = 0;

for (int i = 1; i < arr.length; i++) {

if (count == 0) {

maj = arr[i];

count = 1;

}

else if (arr[i].equals(maj))

count++;

else

count--;

}

if ((maj != null) && isMaj(arr, maj))

return maj;

return null;

}

12. Design: reachability with even-length paths.

(a) yes: Consider the directed graph with the edges s → u → v → s → t. While there is
no simple even-length path from s to t, the path that includes all the edges forms a
(non-simple) even-length path from s to t.

(b) Full credit via reduction. A possible full-credit solution involves constructing a new
graph that contains an “even” and an “odd” copy of each vertex in the original graph
G. For every vertex v in G, the new graph includes two vertices, (v,even) and (v,odd).
For every edge u → v in G, the new graph includes the edges (u,even) → (v,odd) and
(u,odd) → (v,even). Notice that after taking on odd number of steps starting from
(s,even), one always ends up at an odd vertex. So, the algorithm then runs either
BFS or DFS on this new graph, starting from (s,even), to check whether (t,even)
is reachable. This approach is applicable to any graph (not just DAGs) and requires
Θ(E + V ) memory, as it involves creating two copies of the graph.

We note, however, that explicitly constructing the new graph is not strictly necessary.
For example, the DFS algorithm can be modified to take an additional parity bit as
input: dfs(v, parity). Instead of a standard marked array, a marked array indexed
by pairs (v, parity) is used. The algorithm starts with dfs(s, 0). When dfs(u, 0) is
called, it marks (u, 0) and recursively calls dfs(v, 1) for each vertex v connected by
an edge u → v. Similarly, when dfs(u, 1) is called, it marks (u, 1) and recursively
calls dfs(v, 0) for each vertex v connected by an edge u→ v.

Full credit via dynamic programming. An alternative full-credit approach leverages
the fact that G is a DAG. First, perform a topological sort starting from s, and maintain



COS 226 FINAL SOLUTIONS, FALL 2023 7

two arrays of length V : even[] and odd[]. Then, iterate over the vertices v in topological
order. For each vertex v with an incoming edge u → v, update the arrays as follows: if
even[u] = true, set odd[v] = true; if odd[u] = true, set even[v] = true.

This is effectively a dynamic programming solution, where the subproblem (i, even)

determines whether vertex i in the topological order has a path of even length from s,
and (i, odd) determines if vertex i in the topological order has a path of odd length
from s. Since the vertices are processed in topological order, the subproblems for vertex i
in the topological order depend only on the solutions to the subproblems for vertices 0
through i − 1. Moreover, by the time the algorithm processes vertex i, the subproblems
for vertices 0 through i − 1 have already been resolved.

Partial credit. While the graph contains at least one edge incident to s, run a BFS or
DFS from s to search for a path from s to t. If no path exists, return NO. If an even-length
path is found, return YES. Otherwise, if an odd-length path is found, remove all edges on
this path from the graph and restart the process. Since each iteration either terminates
the algorithm or removes at least one edge, the loop executes at most E times, with each
iteration running a BFS or DFS in Θ(E + V ) time.


