-

COS 217: Introduction to Programming Systems

WELCOME TO YOUR FINAL EXAM.
I

THE EXAM IS NOW OVER.

IM AFRAID ALL OF YOU FAILED

YOUR GRADES HAVE BEEN STORED
ON OUR DEPARTMENT SERVER AND
wWiLL BF SUBMITTED TOMORROW.

CLASS DISMISSED,

Buffer Overrun Vulnerabilities and
Assignment 6 (The ‘B’ Attack) k

CYBERSECURITY FINAL EXAMS
xkcd.com/2385

% PRINCETON UNIVERSITY

J

https://unsplash.com/@fridooh

Yet another character reading loop program ...

#include <stdio.h>
int main(void)
{
char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n")
name[i++] = c;
name[i] = '\0"';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "
"and everything is %d\n", magic);
return 0;
I3
$./a.out
What is your name?
John Smith

Thank you, John Smith.
The answer to life, the universe, and everything is 42

https://unsplash.com/@grakozy

-

Explanation: Stack Frame Layout

When there are too many characters,
program carelessly writes beyond

space “belonging” to name.
e Overwrites other variables
e This is a buffer overrun, or stack smash
* The program has a security bug!

#include <stdio.h>
int main(void)
{
char namel[12], c;
int i = @, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) !'= "\n")
name[i++] = c;
name[i] = '\0@';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "
"and everything is %d\n", magic);
return 0;

0]
SP >
Old SPp =——

Return addr

name

magic

-

It Gets Worse...

Buffer overrun can overwrite onto its 0
caller function's stack frame!

SP >
Return addr
name
#include <stdio.h> C
int callee(void) .
{ magicC
char name[12], c; 4
int 1 = @0, magic = 42;
printf("What is your name?\n"); Old SP > caller's
while ((c = getchar()) !'= '\n')
name [i++] = c: stack-saved
name[i] = '\0@'; contents
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "
"and everything is %d\n", magic);
return 0;
¥

-
It Gets Even Worse...

And somewhere on caller's stack frame is 0
the saved return address for that function ...

Buffer overrun can overwrite caller's return address!

* Replacement value can be an invalid address, SP >
leading to a segfault.

Return addr

nName

#include <stdio.h> C

int callee(void) :

{ magic
char namel[12], c; !)
int 1 = @0, magic = 42; 1 Overwntten
printf("What is your name?\n"); Old SP o old %30 with. e g
while ((c = getchar()) !'= '\n') roTrey

name[i++] = c; NULL
name[i] = '\0@';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "
"and everything is %d\n", magic);
10) return 0;

-

It Gets Much Worse...

And somewhere on caller's stack frame is 0
the saved return address for that function ...

Buffer overrun can overwrite caller's return address!

i i SP >
. Replgcement value can pe an invalid address, | S ——
leading to a segfault, or it can cleverly cause unintended mp—
control flow! :
#include <stdio.h> . text C
%nt callee(void) here magic
char namel[12], c; i
int i = 0, magic = 42; <::zil__
printf("What is your name?\n"); ld SP old x30
while ((c = getchar()) !'= '\n')
name[i++] = c;
name[i] = '\0@';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "
"and everything is %d\n", magic);
11) return 0;

-

It Gets Much, Much Worse...

And somewhere on caller's stack frame is 0
the saved return address for that function ...

Buffer overrun can overwrite caller's return address!

* Replacement value can be an invalid address, SP >
leading to a segfault, or it can cleverly cause unintended

Return addr

] o name
control flow, or even cause arbitrary malicious code to run! :
#include <stdio.h> - text C
int callee(void) :
[here magic
char namel[12], c; i
int 1 = @0, magic = 42;
printf("What is your name?\n"); Old SP g old %30
while ((c = getchar()) !'= '\n') .
name [i++] = c;
name[i] = '\0@';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, " b
"and everything is %d\n", magic); - 0SS
19) FEELIR 27 or here...

/

Attacking a Web Server

URLSs

for(i=0;pl[i]; i++)
search[il=pl[i];

Input in web forms

Crypto keys for SSL o
@)
etc. T 0
ﬁ
Client PC Web Server

€ > C fi [www.cs.princeton.edu < =

éOMPUTER SCIENCE (this is a really long|d€ateh] term that overflows a buffer

o RN AR VA g v
Internet Voting? Real y'?*ﬁ
Qv Andrew W. Appel >4

P

- .,
-~ s |
i1t .- {",[T’, \
W\ L\J 1\
h
TED even

(

Attacking Everything in Sight

Justin 2025 >100, including:
Adobe, Excel, FFmpeg, for(i=0;pli];i++)
GNU objdump, router software important [i]l=p[il;

Justin 11/25: Intel, GitHub, o
Chrome, Dell ControlVault o

Zoom (dozens, most recent 4/2025) —

The Internet

: : Client PC
webp image library (9/2023) ien @ badguy.com

C/C++ MP4 video library (4/2023) E-mail clients

OpenSSL crypto library (11/2022) PDF viewers

Smart UPS devices (3/2022) Operating-system kernels
VLC media player (1/2019) TCP/lP Stack

Nintendo Switch (4/2018) — Any application that ever sees input directly from the outside!

https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=stack-based+buffer+overflow&search_type=last3months&isCpeNameSearch=false
https://www.zoom.com/en/trust/security-bulletin/?pageSize=20&page=1&q=buffer&sort=newestupdated
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-29584
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-29584
https://thehackernews.com/2022/11/just-in-openssl-releases-patch-for-2.html
https://www.armis.com/research/tlstorm/
https://hackerone.com/reports/484398
https://fail0verflow.com/blog/2018/shofel2/

[

Defenses Against This Attack

Best: program in languages that make
array-out-of-bounds impossible (Java, python, C#, ML, ...)

But if you need to use C...

(/'

Defenses Against This Attack

In C: use discipline and software analysis tools to check bounds of array subscripts

DESCRIPTION
The strecpy() function copies the string pointed to by src, including
the terminating null byte ('\@'), to the buffer pointed to by dest.
The strings may not overlap, and the destination string dest must be
large enough to receive the copy. Beware of buffer overruns! (See
BUGS.)

BUGS
Never use gets(). Because it is impossible to tell without knowing the data in advance how many characters gets() will read, and
because gets() will continue to store characters past the end of the buffer, it is extremely dangerous to use. It has been used to
break computer security. Use fgets() instead.

‘\\

None of these
would have
prevented the

* Randomize initial stack pointer “Heartbleed”

> attack

Augmented by OS- or compiler-level mitigations:

* “No-execute” memory permission for sections other than .text

e “Canaries” at end of stack frames

-

Half a billion dollars worth of heartburn ...

17

QI@ Heartbeat - Normal usage

Server, send me S
this 4 letter word erver
if you are there: bird l

Client ~ "bird’

/

W Heartbeat - Malicious usage

Server, send me] Server
this 500 letter bird. Server
word ifyou are | Masterkeyis
Client there: "bird” 31431498531054.
[User Carol wants

to change
password to
"password 123",

-)

https://en.wikipedia.org/wiki/Heartbleed#/media/File:Simplified Heartbleed explanation.svg

k Wikipedian FenixFeather - Creative Commons Attribution-Share Alike 3.0 Unported

https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

-

Assignment 6: Attack the “Grader” Program

$./grader

What is your name?

Joe Student

D is your grade.

Thank you, Joe Student.
$./grader

What is your name?
Andrew Appel

B is your grade.

Thank you, Andrew Appel.

-
Assignment 6: Attack the “Grader” Program

-

Assignment 6: Attack the “Grader” Program

$./grader
What is your name?
Joe Student\O (#Q@&$%*#& (¥ 1@%x ! (£$
B is your grade.
Thank you, Joe Student.

20,

-

Memory Map of STACK Section

21

SP —
readString’s

stackframe

getName’s —
stackframe

main’'s —
stackframe

?77?77?
buf

buf
t;uf
?7??
??7?

272

Keep writing past end of buf

Get to getName'’s stackframe

What’s

S getName’s saved x30!

(somewhere on stack)

Overwrite 1it!

-

Assignment 6: Attack the “Grader” Program

$./grader
What is your name?
Joe Student\O (#Q@&$%*#& (¥ 1@%x ! (£$
B is your grade.
Thank you, Joe Student.

22

-

Memory Map of TEXT Section

readString —»

rS prolog

rS instrs..

rS instrs..

rS epilog (All of these instructions are actually

rS return machine code, not flattened C, of course!)

getName ——

checkappel:
if (strcmp(name, "Andrew Appel") != 0)
goto afterb
grade = 'B' <« HERE!
afterb:
print ...

main —

23

-

Construct Your Exploit String (createdataB. c)

1. Your name.

o After all, the grader program’s last

line of output must be:
“Thank you, [your name].”

2. A null byte.

e Otherwise, the grader program’s
last line of output will be corrupted.

3. Filler to overrun until x30.

 Presumably more null bytes are
easiest, but easter eggs are fine.

4. The address of the target
 The statement grade 'B’.

24

(=

fopen the file "dataB" and
write your name into that file
(e.g. with fprintf)

(=

See “Writing Binary Data”
precept handout. '\0"' is just
a single byte of binary data.

(=

Address is a 64-bit (little-endian)
unsigned integer: C unsigned long

-
Let’s Not Get Thrown In Jail, Please

OPEN ACCESS TO LAW SINCE 1992

Legal Information Institute [LHq

ABOUTLII» GETTHELAW)» LAWYER DIRECTORY LEGAL ENCYCLOPEDIA» HELP OUT)»

LII - U.S. Code - Title 18 ~ PARTI - CHAPTER 47 ~ §1030

18 U.S. Code § 1030 - Fraud and related activity in
connection with computers

U.S. Code Notes State Regulations

(a) Whoever—

Government pursuant to an Executive order or statute to require protection against unauthorized disclosure
for reasons of national defense or foreign relations, or any restricted data, as defined in paragraph y. of
25. . ~ - 414 SN | el D -~ 1: bl =~ o~ ~hn I aerwes mdelman o e o d
_ httos://www.Iaw.cornell.edu/j

https://www.law.cornell.edu/

-

Summary

26

e This lecture:

 Buffer overrun attacks in general
 Assignment 6 “B Attack” principles of operation

 Next precept:
 Assignment 6 “B Attack” recap
e Memory map using gdb
Writing binary data

* Final 2 lectures:
 Assignment 6 “A Attack” overview
« Machine language details needed for “A Attack”
* Finally finishing the 4-stage build process: the Linker!

 Final precept:

| e MiniAssembler and "A Attack” details

[

Final Exam Info

27

What: Final Exam!

When: 4 weeks from yesterdayf %,
Tuesday, Dec 16
8:30am - 11:30 am

Where: McCosh 28 (PO1-PO3) and 46 (PO4-P0O8)
How: On paper. Closed book, but 1 two-sided study sheet allowed.
Why: Cumulative assessment. You've learned a lot, so show us!

Info: https://www.cs.princeton.edu/courses/archive/fall25/cos217/exam2.php

J

https://www.cs.princeton.edu/courses/archive/fall25/cos217/exam2.php
https://www.cs.princeton.edu/courses/archive/fall25/cos217/exam2.php
https://www.cs.princeton.edu/courses/archive/fall25/cos217/exam2.php

