
COS 217: Introduction to Programming Systems

Buffer Overrun Vulnerabilities and
Assignment 6 (The ‘B’ Attack)

@fridooh
xkcd.com/2385

https://unsplash.com/@fridooh

Yet another character reading loop program …

$./a.out
What is your name?
John Smith
Thank you, John Smith.
The answer to life, the universe, and everything is 42

#include <stdio.h>
int main(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

@grakozy
3

(Relating the image on the
previous slide to this
program:
Did you know that if
a=1,
b=2,
…
z=26,
then x+k+c+d=42?)

https://unsplash.com/@grakozy

Explanation: Stack Frame Layout

#include <stdio.h>
int main(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

When there are too many characters,
program carelessly writes beyond
space “belonging” to name.

• Overwrites other variables
• This is a buffer overrun, or stack smash
• The program has a security bug!

6

It Gets Worse…

#include <stdio.h>
int callee(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

Buffer overrun can overwrite onto its
caller function's stack frame!

caller's
stack-saved
contents

9

It Gets Even Worse…

#include <stdio.h>
int callee(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

And somewhere on caller's stack frame is
the saved return address for that function …

Buffer overrun can overwrite caller's return address!
• Replacement value can be an invalid address,

leading to a segfault.

old x30

10

overwritten
with, e.g.,
NULL

And somewhere on caller's stack frame is
the saved return address for that function …

Buffer overrun can overwrite caller's return address!
• Replacement value can be an invalid address,

leading to a segfault, or it can cleverly cause unintended
control flow!

It Gets Much Worse…

#include <stdio.h>
int callee(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

here
.text

11

old x30

And somewhere on caller's stack frame is
the saved return address for that function …

Buffer overrun can overwrite caller's return address!
• Replacement value can be an invalid address,

leading to a segfault, or it can cleverly cause unintended
control flow, or even cause arbitrary malicious code to run!

It Gets Much, Much Worse…

#include <stdio.h>
int callee(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

or here...
.bss

here
.text

12

old x30

Attacking a Web Server

Web Server
Client PC

for(i=0;p[i];i++)
 search[i]=p[i];

URLs

 Input in web forms

 Crypto keys for SSL

 etc.

this is a really long search term that overflows a buffer

Attacking Everything in Sight

The Internet
@ badguy.com

Client PC

for(i=0;p[i];i++)
 important[i]=p[i];

 E-mail clients

 PDF viewers

 Operating-system kernels

 TCP/IP Stack

Any application that ever sees input directly from the outside!

Just in 2025 >100, including:
 Adobe, Excel, FFmpeg,
 GNU objdump, router software
 Just in 11/25: Intel, GitHub,
 Chrome, Dell ControlVault

Zoom (dozens, most recent 4/2025)

webp image library (9/2023)

C/C++ MP4 video library (4/2023)

OpenSSL crypto library (11/2022)

Smart UPS devices (3/2022)

VLC media player (1/2019)

Nintendo Switch (4/2018)
…

https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=stack-based+buffer+overflow&search_type=last3months&isCpeNameSearch=false
https://www.zoom.com/en/trust/security-bulletin/?pageSize=20&page=1&q=buffer&sort=newestupdated
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-29584
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-29584
https://thehackernews.com/2022/11/just-in-openssl-releases-patch-for-2.html
https://www.armis.com/research/tlstorm/
https://hackerone.com/reports/484398
https://fail0verflow.com/blog/2018/shofel2/

Defenses Against This Attack

Best: program in languages that make
array-out-of-bounds impossible (Java, python, C#, ML, ...)

But if you need to use C…

Defenses Against This Attack
In C: use discipline and software analysis tools to check bounds of array subscripts

Augmented by OS- or compiler-level mitigations:

• Randomize initial stack pointer

• “No-execute” memory permission for sections other than .text

• “Canaries” at end of stack frames
16

None of these
would have
prevented the
“Heartbleed”
attack

Half a billion dollars worth of heartburn …

17
https://en.wikipedia.org/wiki/Heartbleed#/media/File:Simplified_Heartbleed_explanation.svg
Wikipedian FenixFeather - Creative Commons Attribution-Share Alike 3.0 Unported

https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Assignment 6: Attack the “Grader” Program

$./grader
What is your name?
Joe Student
D is your grade.
Thank you, Joe Student.
$./grader
What is your name?
Andrew Appel
B is your grade.
Thank you, Andrew Appel.

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
...
int main(void)
{
 mprotect(...);
 getname();
 if (strcmp(name, "Andrew Appel") == 0)
 grade = 'B';
 printf("%c is your grade.\n", grade);
 printf("Thank you, %s.\n", name);
 return 0;
}

18

Assignment 6: Attack the “Grader” Program

/* Read a string into name */
void readString() {
 char buf[BUFSIZE];
 int i = 0;
 int c;

 /* Read string into buf[] */
 for (;;) {
 c = fgetc(stdin);
 if (c == EOF || c == '\n')
 break;
 buf[i] = c;
 i++;
 }
 buf[i] = '\0';

 /* Copy buf[] to name[] */
 for (i = 0; i < BUFSIZE; i++)
 name[i] = buf[i];
}

/* Prompt for name and read it */
void getName() {
 printf("What is your name?\n");
 readString();
}

Unchecked
write to
buffer!

19

Assignment 6: Attack the “Grader” Program

$./grader
What is your name?
Joe Student\0(#@&$%*#&(*^!@%*!(&$
B is your grade.
Thank you, Joe Student.

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
...
int main(void)
{
 mprotect(...);
 getname();
 if (strcmp(name, "Andrew Appel") == 0)
 grade = 'B';
 printf("%c is your grade.\n", grade);
 printf("Thank you, %s.\n", name);
 return 0;
}

20

Smash the
stack!

Memory Map of STACK Section

SP
readString’s
stackframe

???
buf
buf
…
buf
???

getName’s
stackframe ???

…
???

main’s
stackframe ???

…
???

Keep writing past end of buf

Get to getName’s stackframe

getName’s saved x30!
(somewhere on stack)

Overwrite it!

What’s
there?

With
what?

21

Assignment 6: Attack the “Grader” Program

$./grader
What is your name?
Joe Student\0(#@&$%*#&(*^!@%*!(&$
B is your grade.
Thank you, Joe Student.

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
...
int main(void)
{
 mprotect(...);
 getname();
 if (strcmp(name, "Andrew Appel") == 0)
 grade = 'B';
 printf("%c is your grade.\n", grade);
 printf("Thank you, %s.\n", name);
 return 0;
}

22

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
...
int main(void)
{
 mprotect(...);
 getname();
 if (strcmp(name, "Andrew Appel") == 0)
 grade = 'B';
 printf("%c is your grade.\n", grade);
 printf("Thank you, %s.\n", name);
 return 0;
}

Memory Map of TEXT Section

readString
rS prolog
rS instrs…
rS instrs…
…
rS epilog
rS return

getName
gN prolog
rS instrs…
rS instrs…
…
rS epilog
rS return

main
m prolog
m instrs…
m instrs…
…
m epilog
m return

...
checkappel:
 if (strcmp(name, "Andrew Appel") != 0)
 goto afterb
 grade = ‘B’
afterb:
 print ...
...

...
checkappel:
 if (strcmp(name, "Andrew Appel") != 0)
 goto afterb
 grade = 'B' ß HERE!
afterb:
 print ...
...

23

(All of these instructions are actually
machine code, not flattened C, of course!)

Construct Your Exploit String (createdataB.c)
1. Your name.

• After all, the grader program’s last
line of output must be:
“Thank you, [your name].”

2. A null byte.
• Otherwise, the grader program’s

last line of output will be corrupted.

3. Filler to overrun until x30.
• Presumably more null bytes are

easiest, but easter eggs are fine.

4. The address of the target
• The statement grade = ’B’.

24

fopen the file "dataB" and
write your name into that file
(e.g. with fprintf)

Address is a 64-bit (little-endian)
unsigned integer: C unsigned long

See “Writing Binary Data”
precept handout. '\0' is just
a single byte of binary data.

Let’s Not Get Thrown in Jail, Please

25
https://www.law.cornell.edu/

https://www.law.cornell.edu/

Summary
• This lecture:
• Buffer overrun attacks in general
• Assignment 6 “B Attack” principles of operation

• Next precept:
• Assignment 6 “B Attack” recap
• Memory map using gdb
• Writing binary data

• Final 2 lectures:
• Assignment 6 “A Attack” overview
• Machine language details needed for “A Attack”
• Finally finishing the 4-stage build process: the Linker!

• Final precept:
• MiniAssembler and ”A Attack” details26

What: Final Exam!

When: 4 weeks from yesterday⏳😱
 Tuesday, Dec 16
 8:30am – 11:30 am

Where: McCosh 28 (P01-P03) and 46 (P04-P08)

How: On paper. Closed book, but 1 two-sided study sheet allowed.

Why: Cumulative assessment. You've learned a lot, so show us!

Info: https://www.cs.princeton.edu/courses/archive/fall25/cos217/exam2.php

Final Exam Info

27

https://www.cs.princeton.edu/courses/archive/fall25/cos217/exam2.php
https://www.cs.princeton.edu/courses/archive/fall25/cos217/exam2.php
https://www.cs.princeton.edu/courses/archive/fall25/cos217/exam2.php

