
COS 217: Introduction to Programming Systems

Performance Improvement

Programming in the Large

Design & Implement
•Program & programming style (done)
•Common data structures and algorithms (done)
•Modularity (done)
•Building techniques & tools (done)

Debug
•Debugging techniques & tools (done)

Test
•Testing techniques (done)

Maintain
•Performance improvement techniques & tools ¬ we are here

2

Goals of this Lecture

Help you learn about:
• How to use profilers to identify code hot-spots
• How to make your programs run faster

Why?
• In a large program, typically a small fragment of the code consumes most of the CPU time

• Often referred to as an “80-20” rule
• Identifying that fragment is likely to identify the source of inadequate performance

• Part of “programming maturity” is being able to recognize common approaches for
improving the performance of such code fragments

• Part of “programming maturity” is also being able to recognize
what is worth your time to improve and what is already “good enough”

3

Agenda

Should you optimize?

What should you optimize?

Optimization techniques

4

Performance Improvement Pros

Techniques described in this lecture can answer:

Similar techniques (not discussed) can address:
• How can I make my program use less memory?

5
@chuttersnap @markuswinkler @emilymorter

How slow is my code? Where is it slow? Why is it slow?

https://unsplash.com/@chuttersnap
https://unsplash.com/@markuswinkler
https://unsplash.com/@emilymorter

Performance Improvement Cons

Techniques described in this lecture can yield code that:
•Is less clear/maintainable
•Might confuse debuggers
•Might contain bugs

• Requires regression testing

 Related: “Kernighan’s Lever”
• Debugging is twice as hard as coding
• Why make it harder?

6

https://www.linusakesson.net/programming/kernighans-lever/ ; https://plauger.com/

’65

https://www.linusakesson.net/programming/kernighans-lever/
https://www.linusakesson.net/programming/kernighans-lever/
https://www.linusakesson.net/programming/kernighans-lever/
https://plauger.com/

The First Principle of Optimization

Don’t

7

Is the program good enough already?
Knowing how a program will be used and the
environment it runs in, is there any benefit to

making it faster?”

-- Kernighan & Pike

“Premature optimization is the root of all evil.”
– Donald Knuth

“Rules of Optimization:
Rule 1: Don't do it.
Rule 2 (for experts only): Don't do it yet.”
 – Michael A. Jackson

Timing a Program

Run a tool to time program execution
•E.g., Unix time command

Output:
•Real: Wall-clock time between program invocation and termination
•User: CPU time spent executing the program
•System: CPU time spent within the OS on the program’s behalf
•Can user time be much higher than real time?

$ time sort < bigfile.txt > output.txt
real 0m12.977s
user 0m12.860s
sys 0m0.010s

8

Enabling Compiler Optimization
Enable compiler speed optimization
 gcc217 –Ox mysort.c –o mysort

•Compiler looks for ways to transform your code so that
result is the same but it runs faster

•x controls how many transformations the compiler tries –
see details with man gcc
• -O0: do not optimize (default if –O not specified)
• -O1: optimize (default if –O but no number is specified)
• -O2: optimize more (longer compile time)
• -O3: optimize yet more (including inlining)

Why not always use the highest level of optimization?
9

Now What?

So you’ve determined that your program is taking too long, even
with compiler optimization enabled (and NDEBUG defined, etc.)

Is it time to completely rewrite the program?

10 @mipavelk

https://unsplash.com/@mipavelk

Agenda

Should you optimize?

What should you optimize?

Optimization techniques

11

Identifying Hot Spots

Spend time optimizing only the parts of the program
that consume a lot of the time and can be sped up

Gather statistics about your program’s execution

•Coarse-grained: how much time did execution of a particular function call take?
• Time individual function calls or blocks of code

•Fine-grained: (next)

12

Timing Parts of a Program

Call a function to compute wall-clock time consumed
•Unix gettimeofday() returns time in seconds + microseconds

•Not defined by C90 standard – not portable (e.g., to Windows)

#include <sys/time.h>

struct timeval startTime;
struct timeval endTime;
double wallClockSecondsConsumed;

gettimeofday(&startTime, NULL);
<execute some code here>
gettimeofday(&endTime, NULL);
wallClockSecondsConsumed =
 endTime.tv_sec - startTime.tv_sec +
 1.0E-6 * (endTime.tv_usec - startTime.tv_usec);

13

Timing Parts of a Program (cont.)

Call a function to compute CPU time consumed
•clock() returns CPU times in CLOCKS_PER_SEC units

•Defined by C90 standard – portable

#include <time.h>

clock_t startClock;
clock_t endClock;
double cpuSecondsConsumed;

startClock = clock();
<execute some code here>
endClock = clock();
cpuSecondsConsumed =
 ((double)(endClock - startClock)) / CLOCKS_PER_SEC;

14

Identifying Hot Spots

Spend time optimizing only the parts of the program
that consume a lot of the time and can be sped up

Gather statistics about your program’s execution

•Coarse-grained: how much time did execution of a particular function call take?
• Time individual function calls or blocks of code

•Fine-grained: how many times was a particular function called?
How much time was taken by calls to that function from a certain call path?
• Use an execution profiler such as gprof

15

16

Optimization
You can optimize function A to save 1 second per call. It runs twice.

You can optimize function B to save 1 millisecond per call. It runs 100k times.

Which optimization should you prioritize?

A. A

B. B

C. Aren't you glad I didn't put
function A as option B and
function B as option A?

D. Well, it depends …

D is right (Of course. The answer is always "it
depends"), because the options aren't well-
specified: "you can optimize" …
but at what programmer cost /dev time cost?

B is the better bang for your buck if looking
only at program runtimes (2 vs 100 seconds)

GPROF Example Program
Example program for GPROF analysis

•Sort an array of 10 million random integers
•Artificial: consumes lots of CPU time, generates no output

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

enum { MAX_SIZE = 10000000 };
int a[MAX_SIZE];

void fillArray(int a[], int size)
{
 int i;
 for (i = 0; i < size; i++)
 a[i] = rand();
}

void swap(int a[], int i, int j)
{
 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
}

int part(int a[], int left, int right)
{
 int first = left-1;
 int last = right;
 for (;;) {
 while (a[++first] < a[right])
 ;
 while (a[right] < a[--last])
 if (last == left)
 break;
 if (first >= last)
 break;
 swap(a, first, last);
 }
 swap(a, first, right);
 return first;
}17

GPROF Example Program (cont.)

void quicksort(int a[], int left, int right)
{
 if (right > left) {
 int mid = part(a, left, right);
 quicksort(a, left, mid - 1);
 quicksort(a, mid + 1, right);
 }
}

int main(void)
{
 fillArray(a, MAX_SIZE);
 quicksort(a, 0, MAX_SIZE - 1);
 return 0;
}

18

Example program for GPROF analysis
•Sort an array of 10 million random integers
•Artificial: consumes lots of CPU time, generates no output

Using GPROF
Step 1: Instrument the program

 gcc217 –pg mysort.c –o mysort
• Adds profiling code to mysort, that is…
• “Instruments” mysort

Step 2: Run the program
 ./mysort

• Creates file gmon.out, containing statistics

Step 3: Create a report

 gprof mysort > myreport
• Uses mysort and gmon.out to create textual report (works like meminfo, in this regard)

Step 4: Examine the report
 more myreport19

gprof Design

What's going on behind the scenes?
•gprof works by sampling

•-pg generates code to interrupt program many times per second

•Every time, records where the code was when it was interrupted
• gprof uses symbol table to map back to function name

20

The GPROF Report

•Each line describes one function
• name: name of the function
• %time: percentage of time spent executing this function
• cumulative seconds: [skipping, as this isn’t all that useful]
• self seconds: time spent executing this function
• calls: number of times function was called (excluding recursive)
• self s/call: average time per execution (excluding descendants)
• total s/call: average time per execution (including descendants)

% cumulative self self total
 time seconds seconds calls s/call s/call name
 84.54 2.27 2.27 6665307 0.00 0.00 part
 9.33 2.53 0.25 54328749 0.00 0.00 swap
 2.99 2.61 0.08 1 0.08 2.61 quicksort
 2.61 2.68 0.07 1 0.07 0.07 fillArray

21

The GPROF Report (cont.)

Call graph profile
index % time self children called name
 <spontaneous>
[1] 100.0 0.00 2.68 main [1]
 0.08 2.53 1/1 quicksort [2]
 0.07 0.00 1/1 fillArray [5]

 13330614 quicksort [2]
 0.08 2.53 1/1 main [1]
[2] 97.4 0.08 2.53 1+13330614 quicksort [2]
 2.27 0.25 6665307/6665307 part [3]
 13330614 quicksort [2]

 2.27 0.25 6665307/6665307 quicksort [2]
[3] 94.4 2.27 0.25 6665307 part [3]
 0.25 0.00 54328749/54328749 swap [4]

 0.25 0.00 54328749/54328749 part [3]
[4] 9.4 0.25 0.00 54328749 swap [4]

 0.07 0.00 1/1 main [1]
[5] 2.6 0.07 0.00 1 fillArray [5]

22

The GPROF Report (cont.)

Call graph profile (cont.)
•Each section (node in the graph) describes one function

• Which functions called it, and how much time was consumed?
• Which functions it calls, how many times, and for how long?

•Usually overkill; we won’t look at this output in any detail

23

GPROF Report Analysis

Observations:
•swap() is called many times; every call consumes little time;

in all, swap() consumes only 9% of the time overall
•part() is called fewer times; each call consumes little time, but clearly

more than swap(), since part() consumes 85% of the time overall

Conclusions:
•To improve performance, try to make part() faster. Amdahl’s Law
•Don’t even think about trying to make fillArray() or quicksort() faster24

% cumulative self self total
 time seconds seconds calls s/call s/call name
 84.54 2.27 2.27 6665307 0.00 0.00 part
 9.33 2.53 0.25 54328749 0.00 0.00 swap
 2.99 2.61 0.08 1 0.08 2.61 quicksort
 2.61 2.68 0.07 1 0.07 0.07 fillArray

Agenda

Should you optimize?

What should you optimize?

Optimization techniques

25

Use Better Algorithms and Data Structures

E.g., would a different sorting algorithm work better?

#include COS 226
•But only where it would really help

•Keep it simple” is a good principle

•Not worth using asymptotically-efficient algorithms and data structures
that are complex, hard to understand, hard to debug, or hard to maintain
if they will not make any difference anyway26

Optimization Strategy: Avoid Repeated Computation

27

int g(int x)
{
 return f(x) + f(x) + f(x) + f(x);
}
int g(int x)
{
 return 4 * f(x);
}

Before:

After:

28

Multiplication is Repeated Addition, Right?
Q: Could a good compiler do this optimization for you?

A. Yes

B. Only sometimes

C. No Answer: only sometimes

int g(int x)
{
 return f(x) + f(x) + f(x) + f(x);
}
int g(int x)
{
 return 4 * f(x);
}

Before:

After:

Side Effects as Blockers

Suppose f() has side effects?

int g(int x)
{
 return f(x) + f(x) + f(x) + f(x);
}

int g(int x)
{
 return 4 * f(x);
}

int counter = 0;
...
int f(int x)
{
 return counter++;
}

And f() might be defined in another file
and not known until link-time

29

30

Q: Would a good compiler do this optimization for you?

A. Yes

B. Only sometimes

C. No

Likely A.

for (i = 0; i < n; i++) {
 int ni = n * i;
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
}

After:

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

Before:

Lift Your nis

Optimize This

for (i = 0; i < strlen(s); i++) {
 /* Do something with s[i] */
}

length = strlen(s);
for (i = 0; i < length; i++) {
 /* Do something with s[i] */
}

Could a good
compiler do this
for you?

Before:

After:

31

32

Multiplication is still Repeated Addition, Right?
Q: Could a good compiler do this optimization for you?

void twiddle(int *p1, int *p2)
{
 *p1 += *p2;
 *p1 += *p2;
}

void twiddle(int *p1, int *p2)
{
 *p1 += *p2 * 2;
}

Before:

After:
A. Yes

B. Only sometimes

C. No

C. … in fact, this "optimization"
might not even get the correct answer

Why?

Aliases as Optimization Blockers

What if p1 and p2 are aliases?
•p1 and p2 point to the same integer in memory
•First version: result is 4 times *p1
•Second version: result is 3 times *p1

C99 supports the restrict keyword to ensure this won’t happen
•e.g., int * restrict p1
• Tells compiler the int will only be accessed through p1 (enabling the optimization)

void twiddle(int *p1, int *p2)
{
 *p1 += *p2;
 *p1 += *p2;
}

void twiddle(int *p1, int *p2)
{
 *p1 += *p2 * 2;
}

33

Inlining Function Calls

void g(void)
{
 /* Some code */
}
void f(void)
{
 ...
 g();
 ...
}

void f(void)
{
 ...
 /* Some code */
 ...
}

Before:

After:

Beware: Can introduce redundant/cloned code, making maintenance more difficult
Some compilers support inline keyword in C99 and beyond (suggestion to compiler)

Could a good
compiler do that
for you?

34

Because they are expensive (stack save and restore, etc.)

Unrolling Loops

for (i = 0; i < 6; i++)
 a[i] = b[i] + c[i];

for (i = 0; i < 6; i += 2) {
 a[i] = b[i] + c[i];
 a[i+1] = b[i+1] + c[i+1];
}

a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];
a[i+4] = b[i+4] + c[i+4];
a[i+5] = b[i+5] + c[i+5];

Could a good
compiler do that
for you?

Original:

Some compilers provide option, e.g. –funroll-loops

Maybe
faster:

Maybe
even
faster:

35

Because loop iterations have overhead as well (compare and branch instructions,
branches limit hardware optimizations)

Using a Lower-Level Language

Rewrite code in a lower-level language
•Use registers instead of memory
•Use instructions (e.g. adc) that compiler doesn’t know
•E.g., write in assembly language

Beware: Modern optimizing compilers generate fast code
•Your hand-written assembly language code could be slower

36

Summary

Steps to improve execution (time) efficiency:
•Don't do it
•Don't do it yet
•Time the code to make sure it's necessary
•Enable compiler optimizations
•Identify hot spots using profiling
•Use a better algorithm or data structure
•Identify common inefficiencies and bad idioms
•Fine-tune the code

37

What: Final Exam

When: 4 weeks from tomorrow⏳😱
 Tuesday, Dec 16
 8:30am – 11:30 am (ouch)

Where: McCosh 50

How: On paper. Closed book, but 1 two-sided study sheet allowed.

What: Cumulative assessment. You've learned a lot, so show us

Info: https://www.cs.princeton.edu/courses/archive/spr25/cos217/exam2.php

Final Exam Info

38

https://www.cs.princeton.edu/courses/archive/spr25/cos217/exam2.php

