-

COS 217: Introduction to Programming Systems

Performance Improvement

% PRINCETON UNIVERSITY

Programming in the Large

Design & Implement
* Program & programming style (done)
e Common data structures and algorithms (done)
* Modularity (done)
* Building techniques & tools (done)

Debug
* Debugging techniques & tools (done)

Test
* Testing techniques (done)

Maintain
e Performance improvement techniques & tools <« we are here D

(

Goals of this Lecture

Help you learn about:
* How to use profilers to identify code hot-spots
* How to make your programs run faster

Why?
* In a large program, typically a small fragment of the code consumes most of the CPU time
e Often referred to as an “80-20” rule
* |dentifying that fragment is likely to identify the source of inadequate performance
* Part of “programming maturity” is being able to recognize common approaches for
improving the performance of such code fragments

* Part of “programming maturity” is also being able to recognize
what is worth your time to improve and what is already “good enough”

-

Agenda

Should you optimize?
What should you optimize?

Optimization techniques

Performance Improvement Pros

Technigues described in this lecture can answer:

How slow is my code? Where is it slow? Why is it slow?

Similar techniques (not discussed) can address:
e How can | make my program use less memory?

@chuttersnap @markuswinkler @emilymorter j

https://unsplash.com/@chuttersnap
https://unsplash.com/@markuswinkler
https://unsplash.com/@emilymorter

Performance Improvement Cons

Techniques described in this lecture can yield code that:
* |s less clear/maintainable

e Might confuse debuggers

* Might contain bugs
* Requires regression testing

Related: “Kernighan’s Lever”
 Debugging is twice as hard as coding
« Why make it harder?

https://www.linusakesson.net/programming/kernighans-lever/ ; https://plauger.com/ W,

https://www.linusakesson.net/programming/kernighans-lever/
https://www.linusakesson.net/programming/kernighans-lever/
https://www.linusakesson.net/programming/kernighans-lever/
https://plauger.com/

-

The First Principle of Optimization

“Premature optimization is the root of all evil.”
- Donald Knuth

“Rules of Optimization:
Rule 1: Don't do it.
Rule 2 (for experts only): Don't do it yet.”
- Michael A. Jackson

Don’t

Is the program good enough already?
Knowing how a program will be used and the
environment it runs in, is there any benefit to

making it faster?”

- Kernighan & Pike

-
Timing a Program

Run a tool to time program execution
e E.g., Unix time command

$ time sort < bigfile.txt > output.txt
real @ml12.977s
user Oml2.860s
Sys Omo.010s

Output:

* Real: Wall-clock time between program invocation and termination
» User: CPU time spent executing the program

e System: CPU time spent within the OS on the program’s behalf

e Can user time be much higher than real time?

-

Enabling Compiler Optimization

Enable compiler speed optimization

gcc2l7 —0x mysort.c —o mysort

e Compiler looks for ways to transform your code so that
result is the same but it runs faster

* X controls how many transformations the compiler tries -
see details with man gcc
* -00: do not optimize (default if -O not specified)
* -01: optimize (default if -O but no number is specified)
e -02: optimize more (longer compile time)
e -03: optimize yet more (including inlining)

Why not always use the highest level of optimization?

-

Now What?

10

So you’ve determined that your program is taking too long, even
with compiler optimization enabled (and NDEBUG defined, etc.)

Is it time to completely rewrite the program?

https://unsplash.com/@mipavelk

-

Agenda

Should you optimize?
What should you optimize?

Optimization techniques

dentifying Hot Spots

12

Spend time optimizing only the parts of the program
that consume a lot of the time and can be sped up
Gather statistics about your program’s execution

e Coarse-grained: how much time did execution of a particular function call take?
e Time individual function calls or blocks of code

e Fine-grained: (next)

-

Timing Parts of a Program

Call a function to compute wall-clock time consumed
e Unix gettimeofday () returns time in seconds + microseconds

#include <sys/time.h>

struct timeval startTime;
struct timeval endTime;
double wallClockSecondsConsumed;

gettimeofday(&startTime, NULL);
<execute some code here>
gettimeofday(&endTime, NULL);
wallClockSecondsConsumed =
endTime.tv_sec — startTime.tv_sec +
1.0E-6 x (endTime.tv_usec - startTime.tv_usec);

13

* Not defined by C90 standard - not portable (e.g., to Windows) y

-

Timing Parts of a Program (cont.)

14

Call a function to compute CPU time consumed
e clock() returns CPU times in CLOCKS_PER_SEC units

e Defined by C90 standard - portable

dentifying Hot Spots

15

Spend time optimizing only the parts of the program
that consume a lot of the time and can be sped up

Gather statistics about your program’s execution

* Fine-grained: how many times was a particular function called?

How much time was taken by calls to that function from a certain call path?
» Use an execution profiler such as gprof

-
I/ Optimization

You can optimize function A to save 1 second per call. It runs twice.

You can optimize function B to save 1 millisecond per call. It runs 100k times.

Which optimization should you prioritize?

A. A D is right (Of course. The answer is always "it
5 B depends"), because the options aren't well-
' specified: "you can optimize" ...
C. Aren'tyou glad I didn't put but at what programmer cost /dev time cost?
function A as option B and

function B as option A? B is the better bang for your buck if looking

only at program runtimes (2 vs 100 seconds)

16
D. Well, it depends ...
_ P Y,

-

GPROF Example Program

17

Example program for GPROF analysis
e Sort an array of 10 million random integers
e Artificial: consumes lots of CPU time, generates no output

-

GPROF Example Program (cont.)

Example program for GPROF analysis
e Sort an array of 10 million random integers
e Artificial: consumes lots of CPU time, generates no output

-

Using GPROF

19|

Step 1: Instrument the program

gcc21l7 —pg mysort.c —o mysort

» Adds profiling code to mysort, that is...
e “Instruments” mysort

Step 2: Run the program

./mysort
 Creates file gmon. out, containing statistics

Step 3: Create a report

gprof mysort > myreport
» Uses mysort and gmon. out to create textual report (works like meminfo, in this regard)

Step 4: Examine the report

more myreport

(

gprof Design

20

What's going on behind the scenes?
e gprof works by sampling

* —pg generates code to interrupt program many times per second

* Every time, records where the code was when it was interrupted
e gprof uses symbol table to map back to function name

-
The GPROF Report

% cumulative self self total
time seconds seconds calls s/call s/call
84.54 2.27 2.27 6665307 0.00 0.00

9.33 2.53 0.25 54328749 0.00 0.00

2.99 2.61 0.08 1 0.08 2.61

2.61 2.68 0.07 1 0.07 0.07

name
part
swap
quicksort
fillArray

e Each line describes one function

* name: name of the function
%time: percentage of time spent executing this function
cumulative seconds: [skipping, as this isn’t all that useful]
self seconds: time spent executing this function
calls: number of times function was called (excluding recursive)
self s/call: average time per execution (excluding descendants)
total s/call: average time per execution (including descendants)

21

-

The GPROF Report (cont.)

Call graph profile

-
The GPROF Report (cont.)

Call graph profile (cont.)

e Each section (node in the graph) describes one function
* Which functions called it, and how much time was consumed?
* Which functions it calls, how many times, and for how long?

» Usually overkill, we won't look at this output in any detalil

23

-

GPROF Report Analysis

24

% cumulative self self total
time seconds seconds calls s/call s/call name
84.54 2.27 2.27 6665307 0.00 0.00 part

9.33 2.53 0.25 54328749 0.00 0.00 swap

2.99 2.61 0.08 1 0.08 2.61 quicksort
2.61 2.68 0.07 1 0.07 0.07 fillArray

Observations:

e swap () is called many times; every call consumes little time;
in all, swap () consumes only 9% of the time overall

e part () is called fewer times; each call consumes little time, but clearly
more than swap (), since part () consumes 85% of the time overall

Conclusions:
* To improve performance, try to make part () faster. Amdahl’s Law
 Don’t even think about trying to make fillArray() or quicksort() faster

-
Agenda

Should you optimize?
What should you optimize?

Optimization techniques

-
Use Better Algorithms and Data Structures

E.g., would a different sorting algorithm work better?

#include COS 226

* But only where it would really help
» Keep it simple” is a good principle

* Not worth using asymptotically-efficient algorithms and data structures
that are complex, hard to understand, hard to debug, or hard to maintain

-6 if they will not make any difference anyway

-

Optimization Strategy: Avoid Repeated Computation

27

int g(int x)
R
Before: return f(x) + f(x) + f(x) + F(x);
}
int g(int x)
After: {
return 4 x f(x);
}

-
|> Multiplication is Repeated Addition, Right?

Q: Could a good compiler do this optimization for you?

int g(int x)
.4
Before: return f(x) + F(x) + f(x) + f(x);
¥
int g(int x)
After: {
return 4 x f(x);
¥

A. Yes

B. Only sometimes
C. No Answer: only sometimes

28

-

Side Effects as Blockers

29

int g(int x) int g(int x)
{ {

return f(x) + f(x) + f(x) + f(x); return 4 x f(x);
} }

int counter = 0;
int f(int x)

{
return counter++;

}

Suppose T () has side effects?

And f () might be defined in another file
and not known until link-time

[
N i
I/ Lift Your n1s

30

Q: Would a good compiler do this optimization for you?

for (i1 = 0; 1 < n; i++)
Before: for (j = 0; j < n; j++)
alnki + j1 = bljl;

A. Yes
B. Only sometimes

C. No

After:

for (i = 0; i < n; i++) {

int ni1 = n x 1i;
for (j =0; j < n; j++)
alni + jl1 = bljl;

Likely A.

-

Optimize This

Before:

b _

.
|> Multiplication is still Repeated Addition, Right?

32

Q: Could a good compiler do this optimization for you?

Before: {
*pl +=

*pl +=
}

void twiddle(int *pl, int *p2)

*p2;
*p2;

A. Yes

B. Only sometimes

C. No

After:

void twiddle(int *pl, int *p2)
{
*pl += *p2 * 2;

C. ... in fact, this "optimization"
might not even get the correct answer

Why?

-

Aliases as Optimization Blockers

33

void twiddle(int *pl, int *p2)
{
*pl += *p2; void twiddle(int *pl, int *p2)
*pl += *xp2; {
I *pl += *p2 * 2;
¥

What if p1l and p2 are aliases?
* pl and p2 point to the same integer in memory
e First version: result is 4 times *p1
e Second version: result is 3 times *p1l

C99 supports the restrict keyword to ensure this won’t happen

ee.g., int *x restrict pl
e Tells compiler the 1nt will only be accessed through p1l (enabling the optimization)

J

nlining Function Calls

Because they are expensive (stack save and restore, etc.)

Could a good

Before: compiler do that

void g(void) for you??
{ After:
7 SO s void f(void)
void f(void) {
{ /* Some code x/

g(); Y
)

Beware: Can introduce redundant/cloned code, making maintenance more difficult
Some compilers support inline keyword in C99 and beyond (suggestion to compiler)

-

Unrolling Loops

Because loop iterations have overhead as well (compare and branch instructions,
branches limit hardware optimizations)

for (i = 0; 1 < 6; i++)
alil = b[il + clil;

Original:

Could a good
compiler do that
for you?

for (1 =0; 1i<6; i+=2) {
Maybe alil = b[i] + clil;
faster:) ali+1] = b[i+1] + c[i+1];

alil = bl[i] + c[il;
Maybe ali+1] = b[i+1] + c[i+1];

even ali+2] - b[i+2] + cl[i+2];
. ali+3] = b[i+3] + cl[i+3];
faster: | J[i+a] = bli+d] + c[i+4]:
ali+5] = b[i+5] + cl[i+5];

\35 Some compilers provide option, e.g. —funroll-1loops Y,

-

Using a Lower-Level Language

36

Rewrite code in a lower-level language

* Use registers instead of memory
 Use instructions (e.g. adc) that compiler doesn’t know
e E.8., write in assembly language

Beware: Modern optimizing compilers generate fast code
* Your hand-written assembly language code could be slower

(

Summary

37

Steps to improve execution (time) efficiency:
e Don'tdo it
* Don't do it yet
* Time the code to make sure it's necessary
* Enable compiler optimizations
* |dentify hot spots using profiling
» Use a better algorithm or data structure
e |dentify common inefficiencies and bad idioms
* Fine-tune the code

~inal Exam Info

38

What: Final Exam

When: 4 weeks from tomorrow L @
Tuesday, Dec 16
8:30am - 11:30 am (ouch)

Where: McCosh 50

How: On paper. Closed book, but 1 two-sided study sheet allowed.

What: Cumulative assessment. You've learned a lot, so show us

Info: https://www.cs.princeton.edu/courses/archive/spr25/cos217/exam2.php

https://www.cs.princeton.edu/courses/archive/spr25/cos217/exam2.php

