-

COS 217: Introduction to Programming Systems

Assembly Language

Local Variables and Function Calls

® PRINCETON UNIVERSITY

-
This Lecture

We've learned about how the following are done in assembly:
* Arithmetic and logic operations
e Data Structures (Arrays)

* Control flow: GOTO a new location and resume executing there

Function calls are more complex:
« Have to go and come back: more complex control flow

* Functions can call other functions before they return: how to manage state

Goal: Learn how function calls are implemented in AARCHG64
2« Learn how indirection, abstraction, and data structures are used

Problems to Solve in Function Calls

(1) Control flow: Calling and returning
* How does caller function jump to callee function?
* How does callee function jump back to the right place in caller function?

(2) Passing arguments
* How does caller function pass arguments to callee function?

(3) Storing local variables
* Where does callee function store its local variables?

(4) Returning a value
e How does callee function send return value back to caller function?
e How does caller function access the return value?

(5) Optimization
* How do caller and callee function minimize memory access?

Running Example

}ong absadd(long a, long b)

long absA, absB, sum;
absA = labs(a);

absB = labs(b);

sum = absA + absB;
return sum;

absadd () calls C Labs () function, which returns absolute value of given long

CALLING AND RETURNING

https://en.wikipedia.org/wiki/File:Arrows.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Problem 1: Calling and Returning

How does caller call the callee?
i.e., jump to (goto) the address of the callee’s first instruction

How does callee get back to the right place in the caller?
i.e., jump to the instruction immediately following the most-recently-executed call

.. absadd(3L, -4L); _|

1
\ }ong absadd(long a, long b)

long absA, absB, sum;
absA = labs(a);
2 absB = labs(b);

sum = absA + absB;
}\retu rn sum;

e
|> IClicker Question

Q: Based on last lecture, what instructions would we use to “jump” into and back out

of the callee?
.~.--"“‘-._, }ong absadd(long a, long b)

long absA, absB, sum;
absA = labs(a);

absB = labs(b);

o sum = absA + absB;
A. 2 conditional branches }\return sum;

.. absadd(3L, -4L); _|

B. 1 conditional branch, then 1
unconditional branch

C. 1 unconditional branch, then 1
conditional branch

D. 2 unconditional branches

I E. Something more complicated

-

Attempted Solution: b Instruction

00

Attempted solution: caller and callee use b (unconditional branch) instruction

-

Attempted Solution: b Instruction

©

Problem: callee may be called by multiple callers

Partial Solution: Indirection

10

Put return address in a register. Value changes based on where it’s called from
br (branch register) instruction branches to address in X register operand

f1l:

adr x30, flReturnPoint
b g // Call g

f1ReturnPoint:

g:

// Return

f2:

adr x30, f2ReturnPoint
b g // Call g

f2ReturnPoint:

/

Correctly returns to either f1 or 2

adr instruction before every function call
Label after every function call
Caller and callee must use same register

Partial Solution: Abstraction with Auto-register (X30)

11

b1l (branch and link) instruction stores return point in X30
ret (return) instruction returns to address in X30, and it’'s always X30 (in hardware)

f1: g:
bl ¢ // Call g -
// Return
7 Correctly returns to either f1 or 2
bl g // Call g

Takes care of the three things on previous
slide under the hood

Aside: so ret is identical to b x30, right? Yes and no ...

https://www.mattkeeter.com/blog/2023-01-25-branch/ Y,

https://www.mattkeeter.com/blog/2023-01-25-branch/
https://www.mattkeeter.com/blog/2023-01-25-branch/
https://www.mattkeeter.com/blog/2023-01-25-branch/
https://www.mattkeeter.com/blog/2023-01-25-branch/
https://www.mattkeeter.com/blog/2023-01-25-branch/
https://www.mattkeeter.com/blog/2023-01-25-branch/
https://www.mattkeeter.com/blog/2023-01-25-branch/

-

Not quite there yet ...

Problem: Cannot handle nested function calls
Problem if () calls g ()
then g () callsh()

Return address g () — () is lost
g () returns to the middle of g () ...

How Do We Keep Track of Calls and Returns?

Observations:

* Every function call needs separate tracking of a return address
* We may need to store many return addresses
* The number of nested function calls is not known in advance
e Return address must be saved for as long as invocation of that function is live, then discarded

* Key: Stored return addresses are discarded in reverse order of creation
e £() callsg() = return addr for f is stored l
* g() calls h() = return addr for g is stored addr for h
e h() returnsto g() = return addr for g is discarded addr for g
e g() returnsto f() = return addr for f is discarded i Tor

* This is true for any call-return pattern. So LIFO data structure (stack) is appropriate

AARCHG4 solution:
* Use the STACK section of memory, usually accessed via SP
* We know about stackframes to manage temp space for functions. Put return addr (X30) there too)

-

Saving Link (Return) Addresses

14

Push X30 on stack when entering a function
Pop X30 from stack before returning from a function

-

Stack Operations

15

SP (stack pointer) register points to top of stack

e Points to beginning of active stack frame, i.e. stack
frame for currently active function

e If active function calls a function, latter’s stack frame

will be pushed above this point and SP moved to its top
* Etc.

e« SPcan be used in ldr and str instructions
« SP Can be used in arithmetic instructions SP
« AARCHG64 requirement: must be multiple of 16

-

Stack Operations

16

To create (push) a new stack frame:

 Decrement sp
sub sp, sp, 16

16 is the minimum size allowed, even for
just the return value of 8 bytes

New SP

Old SP

>

-

Stack Operations

17

Stack is in memory, so can load/store information
from and to it:

* Load/store X30 value at or offset from sp
str x30, [sp]

1Hr x30, [sp]

New SP

Old SP

Old x30

>

-

Stack Operations

18

To delete (pop) the current active stack frame:

* Increment sp
add sp, sp, 16

* Assumes size of frame is 16 bytes

 Need to restore value of X30 from the stackto ~ Old SP
the X30 register, since that may be used for
function calls and value may have changed, so
it’s not lost when stack frame goes away

* (Note: data above New SP are not erased, just
stay there. But not program data anymore.)

New SP

0ld x30

-unction Call Prolog and Epilog

Prolog: Make room on stack; Push X30 on stack. Then execute function code
Epilog: Pop X30 from stack; tear down stack frame. Then returning from function

19|

Running Example

PASSING ARGUMENTS

This Photo by tableatny is licensed under CC BY

https://www.flickr.com/photos/53370644@N06/4976497160
https://creativecommons.org/licenses/by/3.0/

Problem 2: Passing Arguments

22

Problem:
 How does caller pass arguments to callee?
* How does callee accept parameters from caller?

}ong absadd(long a, long b)

long absA, absB, sum;
absA = labs(a);

absB = labs(b);

sum = absA + absB;
return sum;

-

ARM Solution 1: Use the Stack

23

A realization of our understanding from C that these go on the stack

Observations (déja vu):

* May need to store many argument sets
* The number of argument sets is not known in advance

* |If this function calls any others, the argument set must be saved
for as long as the invocation of this function is live, and discarded thereafter

e Stored argument sets are destroyed in reverse order of creation
e LIFO data structure (stack) is appropriate

(

ARM Solution 2: Use Registers

24

AARCHG4 solution:
* Pass first 8 (integer or address) arguments in registers for efficiency
e X0..X7 and/or WO..W7
* More than 8 arguments = Pass arguments 9, 10, ... on the stack

* (Beyond scope of COS 217)
* Arguments are structures = Pass arguments on the stack

* (Beyond scope of COS 217)

Callee function then may save arguments to stack
e E.g. function calls it makes will use X0..X7 the same way and destroy values; or its code may
* Then, we can reference arguments as positive offsets from stack, like with return value at sp
* Or maybe not (See “optimization” later this lecture)

Running Example

25

0
SP >
Return addr
b
a
Old SP >

32 bytes for stack frame

Save parameters

Load param before call
(this one not necessary)

Load param before call
(this one necessary)

Tear down 32B frame

_/

26

— —_—
—_—

STORING LOCAL VARIABLES

— -

https://unsplash.com/@fotofyn

Problem 3: Storing Local Variables

27

Where does callee function store its local variables?

}ong absadd(long a, long b)

long absA, absB, sum;
absA = labs(a);

absB = labs(b);

sum = absA + absB;
return sum;

In C, we say they’re on the stack. But where are they really in ARM?

-

ARM Solution: Use the Stack

28

Observations (this is getting repetitive ...):

* May need to store many local variable sets
e The number of local variable sets is not known in advance

* Local variable sets must be saved
for as long as the invocation of this function is live, and discarded thereafter

e Stored local variable sets are destroyed in reverse order of creation
e LIFO data structure (stack) is appropriate

AARCH®G64 solution:

* Use the STACK section of memory
* Or maybe not (see later this lecture)

Running Example

29|

0
SP > Return addr

SP+8 > b
SP+16 — S
SP+24 >

. sum
SP+32 1 2bSB
SP+40 2bSA
Old SP >

48 bytes for stack frame

Load local variables
Do arithmetic operation
Store result back

Tear down 48B frame

_/

30

RETURNING A VALUE

@zsingle leng reflex

https://unsplash.com/@single_lens_reflex

Problem 4: Return Values

31

Problem:
e How does callee function send return value back to caller function?
e How does caller function access return value?

}ong absadd(long a, long b)

long absA, absB, sum;
absA = labs(a);

absB = labs(b);

sum = absA + absB;
return sum;

(

ARM Solution: Use XO / WO

32

In principle
* Like return address, store return value in stack frame of caller (so caller always has it)

Or, for efficiency, recognize return value is set just before return and used just after
* Known small size = store return value in register

* For unknown or large size = still store return value in stack frame of caller

AARCHG64 convention
* Integer or address = Store return value in XO / WO
* Floating-point number = Store return value in floating-point register

* (Beyond scope of COS 217)
e Structure = Store return value in memory pointed to by X8

* (Beyond scope of COS 217)

Running Example

33

SP
SP+8
SP+16
SP+24
SP+32
SP+40
Old SP

0]
: Return addr
b
—_—
a
>
sum
>
absB
>
absA
>

34

OPTIMIZATION

(More to come on this general topic in a later lecture)

-
Optimization: Using Registers More Than the Stack

Observation: Accessing memory is expensive
* Orders of magnitude more expensive than accessing registers. Stack is in main memory
* For efficiency, want to store and reuse parameters and local variables in registers if possible
» So far: Ldr from stack, use once, str to stack. Want to reduce use of stack, use registers instead

Observation: Registers are a finite resource
* Desired Abstraction: Every function has its own registers
* In reality: All functions share same small set of registers

Problem: How do caller and callee use the same set of registers without interference?
» Callee may use register that the caller also is using
* When callee returns control to caller, old register contents may have been lost
 Caller function cannot continue where it left off

Solution: carve off some registers for which you’re guaranteed any function you call
351 won’t corrupt them; for others, don’t assume that

-

ARM Solution: Register Conventions

36

Callee-saved registers (callee will ensure values aren’t corrupted)
e X19..X29 (or W19..W29)
» Callee function must preserve contents or restore them before returning
e Safe places for callee to put values, since it’s callees will also preserve them
* If necessary (e.g. if callee wants to modify these registers) ...
* Callee saves to stack near beginning
 Callee restores from stack near end. Caller’s register values are restored

-

ARM Solution: Register Conventions

37

Callee-saved registers (callee must ensure values aren’t corrupted)
e X19..X29 (or W19..W29)
» Callee function must preserve contents or restore them before returning
e Safe places for callee to put values, since its callees will also preserve them
* If necessary (e.g. if callee wants to modify these registers) ...
* Callee saves to stack near beginning
» Callee restores from stack near end. Callers register values are restored

Caller-saved registers (caller’s job to ensure values aren’t corrupted)
e X8..X18 (or W8..W18) - plus parameters in X0..X7
» Callee function can change contents and doesn’t have to restore them
e If necessary...
* Caller saves to stack before call
 Caller restores from stack after call

Running Example

38

Parameter handling in unoptimized version:
» absadd () accepts parameters (a and b) in X0 and X1
* At beginning, absadd () copies contents of X0 and X1 to stack
* Body of absadd () uses stack
e At end, absadd () pops parameters from stack

Parameter handling in optimized version:
» absadd () accepts parameters (a and b) in X0 and X1
* At beginning, copies contents of X0, X1 to callee-saved registers X19, X20, which will remain safe
* Body of absadd () uses X19 and X20
* Must be careful:
e absadd () itself cannot corrupt contents of X19 and X20
» So absadd () must save X19 and X20 near beginning, and restore near end
* But it knows every other function it calls will also ensure the safety of X19 and X20

Running Example

39

Local variable handling in unoptimized version:
* At beginning, absadd () allocates space for local variables (absA, absB, sum) on stack
* Body of absadd () uses stack
e At end, absadd () pops local variables from stack

Local variable handling in optimized version:
» absadd () keeps local variables in callee-saved registers X21, X22, X23
* Body of absadd () uses X21, X22, X23
* Must be careful:
» absadd () cannot change contents of X21, X22, or X23
* So absadd () must save X21, X22, and X23 near beginning, and restore near end

Running Example

absadd() stores parameters
and local vars in X19..X23, not in

memory

absadd() cannot destroy
contents of X19..X23

So absadd () must save
X19..X23 near beginning and
restore near end

-

Eliminating Redundant Copies

// long absadd(long a, long b)
absadd:
éﬁblggg 2SSA§ZabSB' sum Further optimization: remove redundant ‘mov’
str x30, Esp] : // Save x30 instructions between registers
str x19, [sp, 8] // Save x19, use for b “ -
str x20, [sp, 16] // Save x20, use for absA * “Hybrid” pattern that uses both caller- and
mov x19, x1 // Save b in x19 .
7/ absA = labs(a) callee-saved registers
bl labs // a already in x@ ° ing-
mov x20, x0 // Save absA Can be confusing:))
// absB = labs(b) no longer systematic mapping between
0, x19 Load b . .
e s variables and registers
// sum = absA + absB :
add x0, x20, x0 // x0 held absB, now holds sum ° Attempt Only after you have worklng code
// return sum — already in x0 ° i i i
lar 30, Tep] Py Save working versions for easy comparison
ldr x19, [sp, 8] // Restore x19
ldr x20, [sp, 16] // Restore x20
add sp, sp, 32
ret

41

(

Non-Optimized vs. Optimized Patterns

42

Unoptimized pattern
* Parameters and local variables strictly in memory (stack) during function execution
* Pro: Always possible
* Con: Inefficient
* gcc compiler uses this pattern when invoked without -0 option

Optimized pattern
* Parameters and local variables mostly in registers during function execution
* Pro: Efficient
e Con: Sometimes impossible
* Too many local variables
* Local variable is a structure or array
* Function computes address of parameter or local variable
* gcc compiler uses this pattern when invoked with -0 option, when it can

WRITING READABLE CODE

-

Writing Readable Code

Problem

* Hardcoded sizes, offsets, registers are
difficult to read, understand, debug

-

Writing Readable Code

45

Problem

* Hardcoded sizes, offsets, registers are
difficult to read, understand, debug

Using .equ and .req

* To define a symbolic name for a constant:
.equ SOMENAME, nnn

* To define a symbolic name for a register
(e.g. what variable it holds):
SOMENAME .req Xnn

-

Writing Readable Code

46

Problem

* Hardcoded sizes, offsets, registers are
difficult to read, understand, debug

Using .equ and .req

* To define a symbolic name for a constant:
.equ SOMENAME, nnn

* To define a symbolic name for a register
(e.g. what variable it holds):
SOMENAME .req Xnn

-

Writing Readable Code

a7

Problem

* Hardcoded sizes, offsets, registers are
difficult to read, understand, debug

Using .equ and .req

* To define a symbolic name for a constant:
.equ SOMENAME, nnn

* To define a symbolic name for a register
(e.g. what variable it holds):
SOMENAME .req Xnn

-

Writing Readable Code

48

Problem

* Hardcoded sizes, offsets, registers are
difficult to read, understand, debug

Using .equ and .req

* To define a symbolic name for a constant:
.equ SOMENAME, nnn

* To define a symbolic name for a register
(e.g. what variable it holds):
SOMENAME .req Xnn

(

Summary

49

Function calls in AARCHG64 assembly language

Calling and returning
e bl instruction saves return address in X30 and jumps
* ret instruction jumps back to address in X30

Passing arguments
 Caller copies args to caller-saved registers (in prescribed order)
* Unoptimized pattern:
e Callee pushes args to stack
* Callee uses args as positive offsets from SP
* Callee pops args from stack
* Optimized pattern:
* Callee keeps args in callee-saved registers
e Be careful ...

(

Summary (cont.)

50

Storing local variables
* Unoptimized pattern:
» Callee pushes local vars onto stack
» Callee uses local vars as positive offsets from SP
» Callee pops local vars from stack
* Optimized pattern:
* Callee keeps local vars in callee-saved registers

Returning values
» Callee places return value in XO
» Caller accesses return value in XO

