-

COS 217: Introduction to Programming Systems

Assembly Language

Part 2

% PRINCETON UNIVERSITY

-

Goals of this Lecture

Help you learn intermediate aspects of AARCH64 assembly
e Control flow (basics here, rest in precept)
* Arrays
e Structures (in precept)

4
o\ ?
I/ What goeS where”

m o O W »

Q: Which section(s) would (globals) power, base, exp, 1 go into?

int power = 1;

int base;
int exp;
int 1i;

All on stack

power in .data and rest in .rodata

All in .data
power in .bss and rest in .data

power in .data and rest in .bss

E

none are string literals: not RODATA

all are file scope, process
duration: not STACK

none are dynamic mem: not HEAP
power is initialized (to non-0): DATA

the rest are not: BSS

Agenda

Getting C control structures ready for translation (a.k.a. “flattening”)
Arrays

Structures

-

Unsavory Things

C has nicer, high-level control constructs (conditionals, loops)
An alternative is to use gotos to jump to labeled locations in code

But “GOTO Statement Considered Harmful”
* Dijkstra, 1968

However, assembly language looks more like gotos
* Unconditional or conditional branches to labels in code
» Easier to convert and test gotos at C level, and then translate easily

* Now errors will be translation errors, not logical errors

-rom Conditionals to gotos

()]

C Transformed C

1T flow is “if condition
satisfied, do this next code”

goto flow is “don’t do this
next code but go to this label”

So, general approach to
conditional code: invert the
condition and jump to the end
of the if block.

For if—-else, if reach end of
if block, go to end of else
block (i.e. skip else block)

-rom Loops to GOTOs

~l

C

Transformed C

Same principle for loops

if condition fails for first
iteration, skip itand goto
outside the loop

At end of loop, jump
(goto) back to beginning
and test condition again

for loop is just like
while, if you put update
step at end of body

-

The Process to Follow

To translate C code to assembly code:
1. Translate from C to “flattened C” (to use gotos)

2. Build and run the flattened C code, and make sure it does same thing as original
A form of regression testing: used to work, does it still work?

3. Translate from flattened C to assembly, instruction by instruction, linearly

4. Build and run the assembly code, and make sure it does same thing as original C
A form of regression testing: used to work, does it still work?

-

1f Example

C

Transformed C

-

1T Example
Transformed C Assembly
int l; . Sectlon " . bSS" Sklp to allocate the
50 i: .skip 4 space. Not word since

if (i >= @) goto endifil; we don’t know initial
i= -i; .section ".text" sl

endifl:

adr x0, i

Note X register for
address (8B) and w for
value of 1 (here 4B)

ldr wl, [x0]
., cmp wl, 0
bge endifl
neg wl, wl
endifl:

Assembler shorthand for
subs wzr, wl, 0

Notes:
cmp instruction: compares operands, sets condition flags
bge instruction (conditional branch if greater than or equal):

10 Examines condition flags in PSTATE register

-

if..else Example

C

Transformed C

-

if..else Example

12

Transformed C

cmp: compares operands, sets condition flags

bge (conditional branch if greater than or equal):
* Examines condition flags in PSTATE register

b: unconditional branch

Assembly

-

while Example

C Transformed C

-

while Example

Flattened C Assembly

Note:
ble instruction (conditional branch if less than or equal)

14

-

for Example

C

Flattened C

-

for Example

Flattened C

Assembly

-

for Example

Flattened C

Assembly

-
Control Flow with Signed Integers

Unconditional branch

b label Branch to label
Compare

cmp Xm, Xn Compare Xm to Xn

cmp Wm, Wn Compare Wm to Wn

* Set condition flags in PSTATE register

Conditional branches after comparing signed integers

beq label Branch to label if equal

bne label Branch to label if not equal

blt label Branch to label if less than

ble label Branch to label if less or equal
bgt label Branch to label if greater than

bge label Branch to label if greater or equal

18
e Examine condition flags in PSTATE register
\ & & Y,

-

Signed vs. Unsigned Integers

19

In C

* Integers are signed or unsigned
e Compiler generates assembly language instructions accordingly

In assembly language
* Integers are neither signed nor unsigned
e Distinction is in the instructions used to manipulate them

Distinction matters for
* Division (sdiv vs. udiv)

* Control flow (Yes, there are 32 bits
* Which is the larger 32-bit integer value? there. You don’t have to

11111111111111111111111111111111 count)

' 00000000000000000000000000000000

-
Control Flow with Unsigned Integers

Unconditional branch

b label b label Branch to label
Compare

cmp Xm, Xn cmp Xm, Xn Compare Xm to Xn

cmp Wm, Wn cmp Wm, Wn Compare Wm to Wn

e Set condition flags in PSTATE register

Conditional branches after comparing unsigned integers

beq label beq label Branch to label if equal

bne label bne label Branch to label if not equal

blt label blo label Branch to label if lower

ble label bls label Branch to label if lower or same
bgt label bhi label Branch to label if higher

bge 1abel bhs label Branch to label if higher or same

20
e Examine condition flags in PSTATE register
_ - - Y,

-

while Example

Flattened C

Note:

Assembly: Signed > Unsigned

bls instruction (instead of ble)

-

Alternative Control Flow: CBZ, CBNZ

Special-case, all-in-one compare-and-branch instructions
* DO NOT examine condition flags in PSTATE register

cbz Xn, label Branch to label if Xn is zero
cbz Wn, label Branch to label if Wn is zero
cbnz Xn, label Branch to label if Xn is nonzero
cbnz Wn, label Branch to label if Wn is nonzero

22

Agenda

23

Getting C control structures ready for translation (a.k.a. “flattening)
Arrays

Structures

-
Arrays: Brute Force (Setup)

C Assembly
int al100]; .section ".bss"
size_t i; a: .skip 400 Memory
int n: i: .skip 8 —
int.n n: .skip 4 1000
1=99; . .section ".text" 1004
n = alil ”.mov x1, 99 a 1008
adr x0, a
1sl x1, x1, 2
add x0, x0, x1 42 | 1396
ldr w2, [x0] —
To do array lookup, nee_d to | Y | 1400
compute address of a[i] = *(a+i) str w2, [x0] 1
Let’s take it one step at a time...
Ny P i 1408
g _J

-
Arrays: Brute Force (Initialize 1)

Assembly
.section ".bss"
a: .skip 400 Registers Memory
i: .skip 8 —
n: .skip 4 X0 1000
.section ".text" x1 = 1004
. 5 1008
mov x1, 99
adr x0, a
1sl x1, x1, 2
add x0, x0, x1 42 | 1396
ldr w2, [x0] —
adr x0, n . 1400
str w2, [x0] 1
25 n 1408

-
Arrays: Brute Force (Get a's base address)

Assembly
.section ".bss"
a: .skip 400 Registers Memory
i: .skip 8 —
n: .skip 4 x0@ | 1000 1000
.section ".text" x1 £ 1004
W2 3 1008
mov x1, 99
adr x0, a
1sl x1, x1, 2
add x0, x0, x1 42 | 1396
ldr w2, [x0] —
adr x0, n . 1400
str w2, [x0] 1
26 n 1408

-
Arrays: Brute Force (Calculate byte-offset of 1)

Assembly
.section ".bss"
a: .skip 400 Registers Memory
i: .skip 8 —
n: .skip 4 x@ | 1000 1000
.section ".text" x1 | 396 1004
W2 3 1008
mov x1, 99
adr x0, a
sl x1, x1, 2
add x0, x0, x1 42 | 1396
ldr w2, [x0] —
adr x0, n . 1400
str w2, [x0] 1
. n 1408

-
Arrays: Brute Force (Calculate address of a[i])

Assembly
.section ".bss"
a: .skip 400 Registers Memory
i: .skip 8 —
n: .skip 4 X0 | 1396 1000
.section ".text" x1 | 396 1004
W2 3 1008
mov x1, 99
adr x0, a
1sl x1, x1, 2
add x0, x0, x1 42 | 1396
ldr w2, [x0] —
adr x0, n . 1400
str w2, [x0] 1
28 n 1408

p
Arrays: Brute Force (Load value at a[i] into w2)

Assembly
.section ".bss"
a: .skip 400 Registers Memory
i: .skip 8 —
n: .skip 4 X0 | 1396 1000
.section ".text" x1 | 396 1004
w2 | 42 3 1008
mov x1, 99
adr x0, a
1sl x1, x1, 2
add x0, x0, x1 42 | 1396
ldr w2, [x0] -
adr x0, n . 1400
str w2, [x0] 1
29| n 1408

-

Arrays: Brute Force (Get n's address)

Assembly
.section ".bss"
a: .skip 400 Registers Memory
i: .skip 8 —
n: .skip 4 x@ | 1408 1000
.section ".text" x1 | 396 1004
: w2 | 42 3 1008
mov x1, 99
adr x0, a
1sl x1, x1, 2
add x0, x0, x1 42 | 1396
ldr w2, [xo] Reuse register x0O since -
dr x0, n . 1400
T address of a[99] is no '
str w2, [x0] 1
longer needed
30 n 1408

-
Arrays: Brute Force (Store value into n)

Assembly
.section ".bss"

a: .skip 400 Registers Memory

i: .skip 8 —

n: .skip 4 X0 | 1408 1000
.section ".text" x1 | 396 1004
; w2 | 42 5 1008
mov x1, 99
adr x0, a
1sl x1, x1, 2
add x0, x0, x1 42 | 1396
ldr w2, [x0] —
adr x0, n . 1400
str w2, [x0] 1

31 n 40 | 1408

-

Arrays: Register Offset Addressing

C Brute-Force Scaled Register Offset

}

This uses a different addressing mode for the load

-

Memory Addressing Modes

Address loaded:

ldr Wt, [Xn, offset] Xn+offset (-28< offset < 214)

ldr Wt, [Xn] Xn (shortcut for offset=0)

ldr Wt, [Xn, Xm] Xn+Xm

ldr Wt, [Xn, Xm, LSL n] Xn+(Xm<<n) (n =2 for32-bit elements, 1 for 16-bit elements using ldrh)

All these addressing modes are also available for 64-bit loads:

ldr Xt, [Xn, offset] Xn+offset

etc. (n = 3 for 64-bit elements in scaled register offset mode)
33

All these addressing modes are also available for stores from either x or w sources.)

Agenda

34

Getting C control structures ready for translation (a.k.a. “flattening)
Arrays

Structures

-

Structures: Brute Force

C Assembly

X0 RAM

CIN
I) Which mode is a la mode?

36

Q: Which addressing mode is most -section T bsst
] . myStruct: .skip 8
appropriate to store myStruct.j? | .
.section ".text" X0 RAM
('} .—
adr x0, myStruct —|—> 2
mov wl, 2 17

o 0w »

str wl, [x0]

str W1, [XO, offset] mov wl, 17

str 777

str W1, [XO]

str W1, [XO, Xm, LSL 2] A 'is the simplest option:

the only one that requires
str W1, [XO, Xm] no additional setup.

-

Structures: Offset Addressing

Brute-Force Immediate Offset
'__I_, >
37
17
_ _J

-

Structures: Padding

38

C Assembly

Three-byte
pad here

Still 8, not 5

Still 4, not 1

Beware:
As we've seen, the Compiler sometimes inserts padding after fields

So now that you're the "Compiler" ...

-

Structures: Padding

39

AARCH®G4 rules:

Data type Within a struct, field must
begin at address that is evenly
divisible by:

unsigned) char 1

unsigned) short

()
()
(unsigned) int
()

2
4
unsigned) long 8
4
8

float

double

long double 16
any pointer 8

e Compiler may add padding after last field if struct is within an array,
. so that first field of next element is aligned

-

Summary

Intermediate aspects of AARCHG64 assembly language...
Getting C control structures ready for translation
Control transfer with signed integers

Control transfer with unsigned integers

Arrays
* Addressing modes

Structures
* Padding
40

(

Appendix

Setting and using condition flags in PSTATE register

-
Setting Condition Flags

Question

* How does cmp (or an arithmetic instruction with “s” suffix)
set condition flags?

42

-
Condition Flags

Condition flags
* N: negative flag: set to 1 iff result is negative
e Z: zero flag: set to 1 iff result is zero
e C: carry flag: set to 1 iff carry/borrow from msb (unsigned overflow)
 V: overflow flag: set to 1 iff signed overflow occurred

43

-

Condition Flags

44

Example: adds dest, srcl, src?2
e Compute sum (srcl+src?2)
 Assign sum to dest
eN:setto1liffsum<0O
e /Z:setto 1iff sum ==
e C: set to 1 iff unsigned overflow: sum < srcl || sum<src2

* V:set to 1 iff signed overflow:
(srcl>0&&src2>0&&sum<0) ||
(Srcl<0&&src2<0&&sum>=0)

-
Condition Flags

Example: cmp srcl, src2
* Recall that this is a shorthand for subs xzr, srcl, src?2
e Compute sum (srcl+(-src2))
* Throw away result
eN:setto1iffsum<0O
e /Z:setto 1iff sum==0 (i.e., srcl ==src2)
e C: set to 1 iff unsigned overflow (i.e., src1l >= src2)

e V:setto 1 iff signed overflow:
(Srcl>0&&src2<0&&sum<0) ||
(Srcl<0&&src2>0&&sum >=0)

45

-

Unsigned comparison

Why is carry bit set if src1 >= src2? Informal explanation:

(1) largenum - smallnum

e largenum + (two’s complement of smallnum) does cause carry
° @ C:l

(2) smallnum - largenum (below)

e smallnum + (two’s complement of largenum) does not cause carry
0: C:O

(

Using Condition Flags

a7

Question
* How do conditional branch instructions use the condition flags?

Answer
* (See following slides)

-

Conditional Branches: Unsigned

After comparing unsigned data

Branch Use of condition flags
instruction

beq label Z

bne label ~Z

blo label ~C

bhs label C

bls label (~C) | Z
bhi label C&(~2)

Note:
e If you can understand why blo branches iff ~C
e ... then the others follow

48

-

Conditional Branches: Unsigned

Why does blo branch iff ~C? Informal explanation:

(1) largenum - smallnum (not below)

e largenum + (two’s complement of smallnum) does cause carry
= C=1 = don’t branch

(2) smallnum - largenum (below)

e smallnum + (two’s complement of largenum) does not cause carry
10! *= C=0 = branch

-

Conditional Branches: Sighed

50

After comparing sighed data

Branch Use of condition flags
instruction

beq label Z

bne label ~Z

blt label VAN

bge label ~(V~N)

ble label (VAN) | Z
bgt label ~(V~N) | 2)

Note:
e [f you can understand why b1t branches iff VAN
e ... then the others follow

-

Conditional Branches: Sighed

Why does blt branch iff VAN?
Informal explanation:

(1) largeposnum -
smallposnum (not less than)

(2) smallposnum -
largeposnum (less than)

(3) largenegnum -
smallnegnum (less than)

(4) smallnegnum -
largenegnum (not less than)

e Certainly correct result
e = V=0, N=0, V*"N==0 = don’t branch

e Certainly correct result
e = V=0, N=1, V*N==1 = branch

e Certainly correct result
e = V=0, N=1= (V*N)==1 = branch

e Certainly correct result
= V=0,N=0 = (V*N)==0 = don't branch

-

Conditional Branches: Sighed

(9) posnum - negnum
(not less than)

(6) posnum - negnum
(not less than)

(7) negnum - posnum
(less than)

(8) negnum - posnum
(less than)

e Suppose correct result

*= V=0,N=0 = (V*N)==0 = don't branch

e Suppose incorrect result

*= V=1, N=1 = (V*N)==0 = don't branch

e Suppose correct result

*= V=0,N=1 = (V*N)==1 = branch

e Suppose incorrect result

R V=1, N=0 = (V*N)==1 = branch

