
COS 217: Introduction to Programming Systems

Assembly Language

Part 1

“Under the hood”

Context of this Lecture

C Language

Assembly Language

Machine Language

2

Agenda

Language Levels

Architecture

Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

3

High-Level Languages

Characteristics
•Portable (to varying degrees)
•Complex

• One statement can do a lot of work –
good ratio of functionality to code size

•Human readable
• Structured: if(), for(), while(), etc.
• Variable names can hide details of

where data is stored (stack, heap, etc.)
• Type system allows compiler to check

usage details without burdening reader

4

int collatz(int n)
{
 int count = 0;
 while (n > 1) {
 count++;
 if (n & 1)
 n = 3 * n + 1;
 else
 n /= 2;
 }
 return count;
}

Machine Languages

Characteristics
•Not portable (hardware-specific)
•Simple

• Every instruction does a
simple task – low expressivity (ratio of
functionality to code size)

•Not human readable
• Not structured
• Requires a lot of effort
• Requires tool support

5

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
9222 9120 1121 A120 1121 A121 7211 0000
0000 0001 0002 0003 0004 0005 0006 0007
0008 0009 000A 000B 000C 000D 000E 000F
0000 0000 0000 FE10 FACE CAFE ACED CEDE

1234 5678 9ABC DEF0 0000 0000 F00D 0000
0000 0000 EEEE 1111 EEEE 1111 0000 0000
B1B2 F1F5 0000 0000 0000 0000 0000 0000

Assembly Languages

Characteristics
•Not portable

• Every assembly language instruction
maps to one machine instruction

•Simple
• Every instruction does a simple task

•Human readable …

6

ands wzr, w0, #1
 beq else

b endif
else:

endif:
asr w0, w0, 1

add w2, w0, w0
 add w0, w0, w2
 add w0, w0, 1

add w1, w1, #1

loop:
 cmp w0, 1
 ble endloop

b loop
endloop:

mov w1, 0

Why Learn Assembly Language?

Knowing assembly language helps you:
•Write faster code

• In assembly language
• Potentially even in a high-level language

•Write safer code
• Understanding mechanism of potential security problems helps you avoid them –

even in high-level languages
•Understand what’s happening under the hood

• Someone needs to develop future computer systems
•Become more comfortable with levels of abstraction

• Become a better programmer at all language levels

7

Why Learn ARMv8 Assembly Language?

Pros of learning ARMv8 (a.k.a. AARCH64 or A64) assembly
•ARM is the most widely used processor architecture in the world

(in your phone, in your Mac, in your Chromebook, in Armlab, IoT devices)
•ARM has a modern and (relatively) elegant instruction set (“RISC” – Reduced

Instruction Set Computer) with each instruction being the same size (4 bytes).
C.f., the expansive but overwhelming x86-64 instruction set

Cons
•x86-64 still has a huge presence in desktop/laptop/cloud

8

Lectures vs. Precepts

Lectures Precepts

Study partial programs Study complete programs

Begin with simple constructs;
proceed to complex ones

Begin with small programs;
proceed to large ones

Emphasis on reading code Emphasis on writing code

Approach to studying assembly language:

9

Agenda

Language Levels

Architecture

Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

10

John von Neumann (1903-1957)
In computing

• Stored program computers
• Cellular automata, self-replication,
• Game theory
• mergesort

Other interests
• Mathematics, statistics
• Nuclear physics

Princeton connection
• Princeton University & IAS, 1930-1957
• https://paw.princeton.edu/article/early-history-computing-princeton

Known for the “Von Neumann architecture”
• In which (machine-language) programs are just data in memory
• a.k.a. “Princeton architecture” – contrast to the now-mostly-obsolete “Harvard architecture”

11

https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton

Von Neumann Architecture

RAM

Control
Unit

CPU

Registers

Data bus

ALU

Instructions (encoded within words)
are fetched from RAM

Control unit interprets instructions:

• to shuffle data between registers
and RAM

• to move data from registers to ALU
(arithmetic+logic unit) where
operations are performed

12

Von Neumann Architecture

13

Registers
Small amount of storage on the CPU
•Top of the “storage hierarchy”
•Very {small, expensive, fast}

ALU instructions operate on registers

RAM

Control
Unit

CPU

Registers

Data bus

ALU

Von Neumann Architecture

RAM (Random Access Memory)
Conceptually: large array of bytes
(gigabytes+ in modern machines)
(registers are ~512 bytes)

•Contains data (variables, data structures)
•And the program itself, in machine code

Instructions are fetched from RAM

15
RAM

Control
Unit

CPU

Registers

Data bus

ALU

16

Time to reminisce about old TOYs

Thinking back to COS 126,
how did you feel about TOY?

A. Loved it

B. Wasn't a fan.

C. I took ECE115, so I have no idea
what you’re talking about

D. I placed out, so I have no idea
what you're talking about

Yuri Shirota

https://unsplash.com/@itshoobastank

Time to reminisce about old TOYs

17 https://introcs.cs.princeton.edu/java/62toy/

https://introcs.cs.princeton.edu/java/62toy/

Registers and RAM

Typical pattern:
•Load data from RAM to registers
•Manipulate data in registers
•Store data from registers to RAM

On AARCH64, this pattern is enforced
•“Manipulation” instructions can only access registers
•This is known as a load-store architecture

(as opposed to “register-memory” architectures)
•Characteristic of RISC architectures (vs.“CISC” or Complex Instruction Set

Computer, e.g. x86)

Even RISC compilers don’t use all their instructions
• We’ll use this fact to “beat the compiler” in Assignment A5. CISC is much worse

18

Registers (ARM-64 architecture)

19

x0 w0

63 31 0

x1 w1

…

x29 (FP) w29

x30 (LR) w30

xzr (all zeros) wzr

sp (stack pointer)

pc (program counter)

n z c v pstate

General-Purpose 64-bit Registers

X0 ... X30
•Scratch space for instructions, parameter passing to/from functions,

return address for function calls, etc.
•Some have special roles defined in hardware (e.g. X30)

or defined by software convention (e.g. X29)
•Also available as 32-bit versions: W0 ... W30

XZR
•On read: all zeros
•On write: data thrown away
•Also available as 32-bit version: WZR

20

SP Register

Special-purpose register…
•SP (Stack Pointer):

Contains address of top (low memory address)
of current function’s stack frame

Allows use of the STACK section of memory

(See Assembly Language: Function Calls lecture later)

(inactive)
(current)

…

SP

st
ac

k
fr

am
es

low address

high address

21

PC Register
Special-purpose register…

•PC (Program Counter)
•Stores the location of the next instruction

•Address (in TEXT section) of machine-language instruction to be executed next
•Its value is changed either:

•Automatically to implement sequential control flow (increment by 4 bytes)
•By branch instructions to implement selection, repetition

PC
TE

XT
 s

ec
tio

n
22

PSTATE Register

Special-purpose register…
•Contains condition flags:
 n (Negative), z (Zero), c (Carry), v (oVerflow)
•Affected by compare (cmp) instruction

•And many others, if requested (e.g. with s suffix on arithmetic instructions)
•Used by conditional branch instructions
• beq, bne, blo, bhi, ble, bge, …
•(See Assembly Language: Part 2 lecture)

23

n z c v (rest of pstate)

Agenda

Language Levels

Architecture

Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

24

ALU Arithmetic Example

25

ALU

src1 src2

dest

operation ALU flags

RAM

Control
Unit

CPU

Registers

Data bus

ALU

add dest, src1, src2

Instruction Format
Many instructions have this format:

•name: mnemonic name of the instruction (add, sub, mul, and, etc.)
•s: if present, specifies that condition flags should be Set

•dest and src1,src2 are x registers: 64-bit operation
•dest and src1,src2 are w registers: 32-bit operation

•No mixing and matching between x and w registers

•src2 may be a constant (“immediate” value) instead of a register

name{,s} dest, src1, src2
name{,s} dest, src1, immed

26

ALU

src1 src2

dest

operation ALU PSTATE

64-bit Arithmetic

27

static long length;
static long width;
static long perim;
...
perim =
 (length + width) * 2;

Assume that…
•length held in x1
•width held in x2
•perim held in x3
•they’re not local variables (we’ll see those

later)

C code:

add x3, x1, x2
lsl x3, x3, 1

Assembly code:

Recall use of left
shift by 1 bit to
multiply by 2

You’ll see #1 instead of 1 in book.
Also works, but not necessary.

More Arithmetic
static long x;
static long y;
static long z;
...
z = x - y;
z = x * y;
z = x / y;
z = x & y;
z = x | y;
z = x ^ y;
z = x >> y;

sub x3, x1, x2
 mul x3, x1, x2
 sdiv x3, x1, x2
 and x3, x1, x2
 orr x3, x1, x2
 eor x3, x1, x2
 asr x3, x1, x2

28

Assume that…
•x held in x1
•y held in x2
•z held in x3

Assembly code: Not xor!

Note: unlike C, separate
instructions for arithmetic

and logical shifts

More Arithmetic: Shortcuts

static long x;
static long y;
static long z;
...
z = x;
z = -x;

mov x3, x1
 neg x3, x1

29

orr x3, xzr, x1
 sub x3, xzr, x1

Assume that…
•x held in x1
•y held in x2
•z held in x3

Assembly code:

These are actually
assembler shortcuts
for instructions that

use XZR.

Abstraction

Precepts will cover signed/unsigned arithmetic and handling smaller operand sizes

Signed vs Unsigned?

static long x;
static unsigned long y;
...
x++;
y--;

add x1, x1, 1
sub x2, x2, 1

30

Mostly the same algorithms, same instructions
•Can set different condition flags in PSTATE
•But some exceptions…

Assume that…
•x held in x1
•y held in x2

Assembly code:

Signed vs Unsigned: Exceptions

sdiv x1, x1, 17
udiv x2, x2, 42
asr x1, x1, 1
lsr x2, x2, 2

31

static long x;
static unsigned long y;
...
x /= 17;
y /= 42;
x >>= 1;
y >>= 2;

Assume that…
•x held in x1
•y held in x2

Assembly code:

Division needs different
algorithms for signed

and unsigned, and
hence different

instructions

“Arithmetic” right shift
(shift in sign bit on left)
vs. “logical” right shift
(shift in zeros on left)

32-bit Arithmetic using “w” registers

32

static int length;
static int width;
static int perim;
...
perim =
 (length + width) * 2;

Assume that…
•length held in w1
•width held in w2
•perim held in w3

C code:

add w3, w1, w2
lsl w3, w3, 1

Assembly code:

8- and 16-bit Arithmetic?

static char x;
static short y;
...
x++;
y--;

33

No specialized arithmetic instructions
•Just use the “w” registers
•Corresponds to C language semantics: all arithmetic is implicitly done

on (at least) ints, values are implicitly promoted to 32 bit
•Specialized “load” and “store” instructions for transfer of shorter data

types from / to memory – we’ll see these next

Agenda

Language Levels

Architecture

Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

34

Loads and Stores

Most basic way to load (from RAM) and store (to RAM):

•dest, src are registers. The memory operand always comes second
•Memory addressing must be via registers (not literal addresses as in TOY)

• Every memory access effectively dereferences a ‘pointer’ (the register)
•Contents of registers in [brackets] must be memory addresses

• Note how this represents memory as a C array with the addresses being its indices

•The memory addresses (src for ldr, dest for str) must be x-flavored
•Other (register) operands (dest for ldr, src for str) can be x-flavored or w-

flavored
35

ldr dest, [src]
str src, [dest]

Signed vs Unsigned, 8- and 16-bit
ldrb dest, [src]
ldrh dest, [src]
strb src, [dest]
strh src, [dest]

ldrsb dest, [src]
ldrsh dest, [src]
ldrsw dest, [src]

36

Special instructions for reading/writing Bytes (8 bit) and shorts (“Half-words”: 16 bit)
•See appendix of these slides for ordering information: little-endian vs. big-endian

Special instructions for signed loads (tell how to fill in leftmost bits in register)
•“Sign-extend” byte, half-word, or word to 32 or 64 bits

A Note on Loads and Stores

•How to get correct memory address into register?
•Depends on whether data are on stack (local variables), on

heap (dynamically-allocated memory), or global / static
•For today, we’ll look only at the global / static data case
• adr instruction puts the address of a given label into a given register

• The load/store then uses the register as a pointer (its value as a memory address)

37

ldr dest, [src]
str src, [dest]

Making a “Pointer”
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

38

Generating addresses
adr: puts address of
a label in a register

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Our First Full Program (Perimeter)*
static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

.section .data
length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

39

* You’ll see the more typical, “Hello, World!” program in precept …

Memory Sections
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

40

Sections (Stack/heap are different!)
.rodata: read-only
.data: read-write
.bss: read-write (uninit or init to 0)
.text: read-only, program code

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Variable Definitions and Usage
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

41

Declaring data
“Labels” for locations in memory
.word: 32-bit int and initial value

See appendix for variables in other sections, with other types.

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

We have variables in
assembly language
• Abstraction

main()
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

42

Global visibility
.global: Declare “main” to be a
globally-visible label

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

In C external linkage
is default.
In ARM, internal
linkage is default

main function is called
by _start, so must be
globally visible

Make a “Pointer”
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

43

Generating addresses
adr: puts address of
a label in a register

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Loads and Stores
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

44

Load and store
Use x0 as a “pointer” to load
from and store to memory

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Return
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

45

Return a value
ret: return to the caller, with
register 0* holding the return value

* w0 for int, x0 for long

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Tracing Our Program
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

46

x0

w1

w2

1
2
0

length

width

perim

Registers

Memory

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Tracing Our Program
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

1

x0

w1

w2

1
2
0

length

width

perim

Registers Memory

47

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Registers

Tracing Our Program
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

48

1

x0

w1

w2

1
2
0

length

width

perim

Registers Memory

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Registers

Tracing Our Program
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

49

1

2

x0

w1

w2

1
2
0

length

width

perim

Registers Memory

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Registers

Tracing Our Program
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

50

3

2

x0

w1

w2

1
2
0

length

width

perim

Registers Memory

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Registers

Tracing Our Program
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

51

6

2

x0

w1

w2

1
2
0

length

width

perim

Registers Memory

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Registers

Tracing Our Program
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

52

6

2

x0

w1

w2

1
2
0

length

width

perim

Registers Memory

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Registers

Tracing Our Program
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

53

6

2

x0

w1

w2

1
2
6

length

width

perim

Registers Memory

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Registers

Tracing Our Program
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

54

Return value
Passed back in register w0

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Tracing Our Program
.section .data

length: .word 1
width: .word 2
perim: .word 0
 .section .text
 .global main
main:
adr x0, length
ldr w1, [x0]
adr x0, width
ldr w2, [x0]
add w1, w1, w2
lsl w1, w1, 1
adr x0, perim
str w1, [x0]
mov w0, 0
ret

55

Return to caller
ret instruction

static int length = 1;
static int width = 2;
static int perim = 0;

int main()
{
 perim =
 (length + width) * 2;
 return 0;
}

Summary
Language levels: High-level language, assembly language, machine language

The basics of computer architecture
• Enough to understand AARCH64 assembly language

The basics of AARCH64 assembly language
• Instructions to perform arithmetic
• Instructions to define global data and perform data transfer

To learn more
• Study more assembly language examples

• Chapters 2-5 of Pyeatt and Ughetta book
• Study compiler-generated assembly language code (though it will be challenging!)

• gcc217 –S somefile.c
• We will have three more lectures and four precepts on AARCH64

56

DEFINING DATA:
OTHER SECTIONS AND SIZES

Appendix 1

57

Defining Data: DATA Section 1
static char c = 'a';
static short s = 12;
static int i = 345;
static long l = 6789;

.section ".data"
c:
 .byte 'a'
s:
 .short 12
i:
 .word 345
l:
 .quad 6789

Notes:
.section directive
 (to announce DATA section)
label definition
 (marks a spot in RAM)
.byte directive (1 byte)
.short directive (2 bytes)
.word directive (4 bytes)
.quad directive (8 bytes)58

Defining Data: DATA Section 2
char c = 'a';
short s = 12;
int i = 345;
long l = 6789;

.section ".data"
 .global c
c: .byte 'a'
 .global s
s: .short 12
 .global i
i: .word 345
 .global l
l: .quad 6789

Notes:
Can place label on same line
 as next instruction
 or directive

.global directive can also apply
 to variables, not just functions

59

Defining Data: BSS Section
static char c;
static short s;
static int i;
static long l;

.section ".bss"
c:
 .skip 1
s:
 .skip 2
i:
 .skip 4
l:
 .skip 8

Notes:
.section directive
 (to announce BSS section)
.skip directive
 (to specify number of bytes)

60

Defining Data: RODATA Section
…
…"hello\n"…;
…

.section ".rodata"
helloLabel:
 .string "hello\n"

Notes:
.section directive (to announce RODATA section)
.string directive

61

BYTE ORDER:
BIG-ENDIAN VS LITTLE-ENDIAN

Appendix 2

62

Byte Order
AARCH64 is a little endian architecture

• Least significant byte of multi-byte entity
is stored at lowest memory address

• “Little end goes first”

Some other systems use big endian
• Most significant byte of multi-byte entity

is stored at lowest memory address
• “Big end goes first”

00000101
00000000
00000000
00000000

1000
1001
1002
1003

The int (four bytes) 5 at address 1000 :

00000000
00000000
00000000
00000101

1000
1001
1002
1003

The int (four bytes) 5 at address 1000:

63

Byte Order Example 1

Byte 0: ff
Byte 1: 77
Byte 2: 33
Byte 3: 00

#include <stdio.h>
int main(void)
{ unsigned int i = 0x003377ff;
 unsigned char *p;
 int j;
 p = (unsigned char *)&i;
 for (j = 0; j < 4; j++)
 printf("Byte %d: %2x\n", j, p[j]);
}

Output on a
little-endian

machine

Byte 0: 00
Byte 1: 33
Byte 2: 77
Byte 3: ff

Output on a
big-endian

machine
64

Byte Order Example 2
.section ".data"

foo: .word 7
 .section ".text”
 .global “main”

main:
adr x0, foo
ldrb w0, [x0]
ret

Note:
Flawed code; uses “b”
instructions to load from
a four-byte memory area

What would be the value
returned from w0 if
AARCH64 were big endian?

AARCH64 is little endian,
so what will be the value
returned from w0?

65

