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Context of this Lecture

“Under the hood”

C Language

Assembly

Language

Machine Language
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Agenda

Language Levels
Architecture
Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data




High-Level Languages

Characteristics

* Portable (to varying degrees)

e Complex
* One statement can do a lot of work -
good ratio of functionality to code size
e Human readable
e Structured: if(), for(), while(), etc.

* Variable names can hide details of
where data is stored (stack, heap, etc.)

* Type system allows compiler to check
usage details without burdening reader
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Machine Languages

Characteristics

* Not portable (hardware-specific)
e Simple
* Every instruction does a
simple task - low expressivity (ratio of
functionality to code size)
* Not human readable
* Not structured
* Requires a lot of effort
* Requires tool support
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Assembly Languages

Characteristics

* Not portable

» Every assembly language instruction
maps to one machine instruction

e Simple
* Every instruction does a simple task
e Human readable ...
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Why Learn Assembly Language?

Knowing assembly language helps you:

* Write faster code
* |[n assembly language
* Potentially even in a high-level language

* Write safer code

* Understanding mechanism of potential security problems helps you avoid them -
even in high-level languages

* Understand what’s happening under the hood
e Someone needs to develop future computer systems

e Become more comfortable with levels of abstraction
* Become a better programmer at all language levels
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Why Learn ARMv8 Assembly Language”?

Pros of learning ARMvS8 (a.k.a. AARCH64 or A64) assembly

* ARM is the most widely used processor architecture in the world
(in your phone, in your Mac, in your Chromebook, in Armlab, loT devices)

* ARM has a modern and (relatively) elegant instruction set (“RISC” - Reduced
Instruction Set Computer) with each instruction being the same size (4 bytes).
C.f., the expansive but overwhelming x86-64 instruction set

Cons
* x86-64 still has a huge presence in desktop/laptop/cloud




Lectures vs. Precepts

Approach to studying assembly language:

Study partial programs Study complete programs

Begin with simple constructs; Begin with small programs;
proceed to complex ones proceed to large ones

Emphasis on reading code Emphasis on writing code
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Agenda

Language Levels
Architecture
Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data
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John von Neumann (1903-1957)
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In computing
e Stored program computers
* Cellular automata, self-replication,
* Game theory
* mergesort

Other interests
e Mathematics, statistics
* Nuclear physics

Princeton connection
* Princeton University & IAS, 1930-1957
e https://paw.princeton.edu/article/early-history-computing-princeton

Known for the “Von Neumann architecture”

* In which (machine-language) programs are just data in memory
* a.k.a. “Princeton architecture” - contrast to the now-mostly-obsolete “Harvard architecture”

o Rl
Bx
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Von Neumann Architecture

12

Instructions (encoded within words)
are fetched from RAM

Control unit interprets instructions:

* to shuffle data between registers
and RAM

* to move data from registers to ALU
(arithmetic+logic unit) where
operations are performed

Unit

Control

CPU

1

Registers

A

Data bus

RAM
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Von Neumann Architecture
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Registers
Small amount of storage on the CPU
e Top of the “storage hierarchy”
* Very {small, expensive, fast}

ALU instructions operate on registers

Control
Unit

1

CPU

Registers

A

Data bus

RAM
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Von Neumann Architecture
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RAM (Random Access Memory)
Conceptually: large array of bytes
(gigabytes+ in modern machines)
(registers are ~512 bytes)

e Contains data (variables, data structures)
* And the program itself, in machine code

Instructions are fetched from RAM

Control
Unit

1

CPU

Registers

A

Data bus

RAM




-
|> Time to reminisce about old TOYs

Thinking back to COS 126,
how did you feel about TOY?

¥ 59 -
\ Vil o 1S
= T iy

A. Loved it

B. Wasn't a fan.

C. |Itook ECE115, so | have no idea

what you're talking about Yuri Shirota

D. I placed out, so | have no idea

what you're talking about
16



https://unsplash.com/@itshoobastank
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Time to reminisce about old TOYs
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TOY REFERENCE CARD

INSTRUCTION FORMATS

Format RR: | opcode | d | s | t | (0-6, A-B)
Format A: | opcode | d | addr | (7-9, c-F)
Word size. The TOY machine has two types of storage: main memory and registers. Each entity stores one word
ARITHMETIC and LOGICAL O (f information. On the TOY machine, a word is a sequence of 16 bits. Typically, we interpret these 16 bits as a

1: add |
2: :ubtract | hexadecimal integer in the range 0000 through FFFF. Using two's complement notation, we can also interpret it
3: and | as a decimal integer in the range -32,768 to +32,767. See Section 5.1 for a refresher on number representations
4: xor |

5: shift left : and two's complement integers.

6: shift right ' Main memory. The TOY machine has 256 words of main memory. Each memory location is labeled with a
TRANSFER between registe Unique memory address. By convention, we use the 256 hexadecimal integers in the range 00 through F¥. Think
7: load address of a memory location as a mailbox, and a memory address as a postal address. Main memory is used to store

8: load » "
9: store | instructions and data.
g: ]s':ggel?iéﬁzz M Registers. The TOY machine has 16 registers, indexed from 0 through . Registers are much like main memory:

each register stores one 16-bit word. However, registers provide a faster form of storage than main memory.

CONT??Lhalt Registers are used as scratch space during computation and play the role of variables in the TOY language.
C: branch zero Register O is a special register whose output value is always 0.
D: branch positive . . . .
E: jump register - Program counter. The program counter or pc is an extra register that keeps track of the next instruction to be
F: jump and link | executed. It stores 8 bits, corresponding to a hexadecimal integer in the range 00 through FF. This integer stores

the memorv address of the next instruction to execute.

Register 0 always reads 0.
Loads from M[FF] come from stdin.
Stores to M[FF] go to stdout.

https://introcs.cs.princeton.edu/java/62toy/

16-bit registers (two's complement)
16-bit memory locations
8-bit program counter



https://introcs.cs.princeton.edu/java/62toy/

Registers and RAM

18

Typical pattern:
e Load data from RAM to registers
* Manipulate data in registers
» Store data from registers to RAM

On AARCHG4, this pattern is enforced
* “Manipulation” instructions can only access registers

* This is known as a load-store architecture
(as opposed to “register-memory” architectures)

e Characteristic of RISC architectures (vs.“CISC” or Complex Instruction Set
Computer, e.g. x86)

Even RISC compilers don’t use all their instructions
« We'll use this fact to “beat the compiler” in Assignment A5. CISC is much worse )




Registers (ARM-64 architecture)

19|

63 31
X0 w@
x1 wl
x29 (FP) w29
x30 (LR) w30
xzr (all zeros) wzr
sp (stack pointer)
pc (program counter)

pstate
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General-Purpose 64-bit Registers

X0 ... X30

e Scratch space for instructions, parameter passing to/from functions,
return address for function calls, etc.

* Some have special roles defined in hardware (e.g. X30)
or defined by software convention (e.g. X29)

e Also available as 32-bit versions: WO ... W30

XZR

* On read: all zeros
* On write: data thrown away
* Also available as 32-bit version: WZR

20
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SP Register
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Special-purpose register...

e SP (Stack Pointer):
Contains address of top (low memory address)
of current function’s stack frame

Allows use of the STACK section of memory

(See Assembly Language: Function Calls lecture later)

SP

low address

iractive

(current)

high address

stack frames




PC Register

Special-purpose register...
e PC (Program Counter)
e Stores the location of the next instruction
* Address (in TEXT section) of machine-language instruction to be executed next

* |ts value is changed either:
e Automatically to implement sequential control flow (increment by 4 bytes)

* By branch instructions to implement selection, repetition

PC

TEXT section




PSTATE Register

nizlclv| (rest of pstate)

Special-purpose register...
e Contains condition flags:
n (Negative), z (Zero), c (Carry), v (oVerflow)
» Affected by compare (Cmp) instruction
* And many others, if requested (e.g. with s suffix on arithmetic instructions)
» Used by conditional branch instructions
* beq, bne, blo, bhi, ble, bge, ...
e (See Assembly Language: Part 2 lecture)
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Agenda

Language Levels
Architecture
Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data
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ALU Arithmetic Example

25

srcl src2

operation —» — flags

dest

add dest, srcl, src?2

Unit

Control

1

Registers

A

Data bus

RAM




nstruction Format
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Many instructions have this format:

srcl src2

\ A /
name{,s} dest, srcl, src2 |

. operation = PSTATE
name{,s} dest, srcl, immed

dest

ename: mnemonic hame of the instruction (add, sub, mul, and, etc.)
*S: if present, specifies that condition flags should be Set

e dest and srcl,src2 are X registers: 64-bit operation
e dest and srcl,src2 are w registers: 32-bit operation

* No mixing and matching between x and w registers

e src2 may be a constant (“immediate” value) instead of a register
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o4-bit Arithmetic

C code:

static long length;
static long width;
static long perim;

Assume that...
e length held in x1
e width held in x2
e perim held in x3
perim = * they’re not local variables (we’ll see those
(length + width) * 2; later)

Recall use of left
shift by 1 bit to

Assembly code: multiply by 2

27 sl x3, x3, 1 You'll see #1 instead of 1 in book.

\ Also works, but not necessary.

J
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More Arithmetic

Assume that...
e x held in x1
ey held in x2
ez held in x3

Assembly code:

28
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More Arithmetic: Shortcuts

static long x; Assume that...
static long vy; * X held in x1
static long z; *y held in x2
ez held in x3
Z = X;
Z = —X; Assembly code: Abstraction

mov X3, X1
neg x3, x1

These are actually
assembler shortcuts
for instructions that
use XZR.

orr x3, xzr, X1
sub x3, xzr, x1

29|

Precepts will cover signed/unsigned arithmetic and handling smaller operand sizes
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Signed vs Unsigned?

Assume that...

static long x;

static unsigned long y; *x held in x1
*y held in x2
X++

Y=

Assembly code:

add x1, x1, 1
sub x2, x2, 1

Mostly the same algorithms, same instructions
» Can set different condition flags in PSTATE

30 * But some exceptions...
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Signed vs Unsigned: Exceptions
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Assume that...

static long x;

static unsigned long vy; * x held in x1

. e ey held in x2

x /= 17;

y /= 42;

X >>= 1;

y >>= 2; Assembly code:

sdiv x1, x1, 17
udiv x2, x2, 42
asr x1, x1, 1 |
lsr x2, x2, 2

Division needs different
algorithms for signed
and unsigned, and
hence different
instructions

“Arithmetic” right shift
(shift in sign bit on left)
vs. “logical” right shift
(shift in zeros on left)
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32-bit Arithmetic using “w” registers

32

C codle: I Assume that...
static int tength; + length held in w1
static int width; _ :

.. : e width held in w2
static int perim; _ _

e perim held in w3
perim =
(length + width) * 2;

Assembly code:

add w3, wl, w2
sl w3, w3, 1
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8- and 16-bit Arithmetic?

33

static char x;
static short y;

No specialized arithmetic instructions
* Just use the “w” registers

e Corresponds to C language semantics: all arithmetic is implicitly done
on (at least) ints, values are implicitly promoted to 32 bit

e Specialized “load” and “store” instructions for transfer of shorter data
types from / to memory - we’ll see these next
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Agenda

Language Levels
Architecture
Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

34




_oads and Stores
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Most basic way to load (from RAM) and store (to RAM):

ldr dest, [src]
str src, [dest]

e dest, src are registers. The memory operand always comes second

» Memory addressing must be via registers (not literal addresses as in TOY)
* Every memory access effectively dereferences a ‘pointer’ (the register)

* Contents of registers in [brackets] must be memory addresses
* Note how this represents memory as a C array with the addresses being its indices

* The memory addresses (src for Ldr, dest for str) must be x-flavored

 Other (register) operands (dest for Ldr, src for str) can be x-flavored or w-
flavored
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Signed vs Unsignhed, 8- and 16-bit
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Udrb dest, [src]
ldrh dest, [src]
strb src, [dest]
strh src, [dest]

ldrsb dest, [src]
ldrsh dest, [src]
ldrsw dest, [src]

Special instructions for reading/writing Bytes (8 bit) and shorts (“Half-words”: 16 bit)
* See appendix of these slides for ordering information: little-endian vs. big-endian

Special instructions for signed loads (tell how to fill in leftmost bits in register)
e “Sign-extend” byte, half-word, or word to 32 or 64 bits
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A Note on Loads and Stores

ldr dest, [src]
str src, [dest]

* How to get correct memory address into register?

* Depends on whether data are on stack (local variables), on
heap (dynamically-allocated memory), or global / static

* For today, we’ll look only at the global / static data case

e adr instruction puts the address of a given label into a given register
* The load/store then uses the register as a pointer (its value as a memory address)

37
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Making a “Pointer”

38

Generating addresses

adr: puts address of
a label in a register
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Our First Full Program (Perimeter)*

39

* You’ll see the more typical, “Hello, World!” program in precept ...
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Memory Sections

40

Sections (Stack/heap are different!)
.rodata: read-only
.data: read-write
.bss: read-write (uninit or init to O)
text: read-only, program code
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Variable Definitions and Usage

41

We have variables in
assembly language
* Abstraction

Declaring data

“Labels” for locations in memory
.word: 32-bit int and initial value

See appendix for variables in other sections, with other types.




main()
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Global visibility
.global: Declare “main” to be a
globally-visible label

In C external linkage
is default.
In ARM, internal

linkage is default

main function is called
by _start, so must be
globally visible
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Make a “Pointer”

43

Generating addresses

adr: puts address of
a label in a register




_oads and Stores
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Load and store

Use x0 as a “pointer” to load
from and store to memory




Return
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Return a value

ret: return to the caller, with
register O* holding the return value

* wO for int, xO for long
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Tracing Our Program
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X0
Registers wil

w2

Memory

— length | 1

width | 2

perim | QO
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Tracing Our Program

a7

X0
Registers wil

w2

Memory

— length | 1

width | 2

perim | QO
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Tracing Our Program
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X0
Registers wil

w2

Memory
length | 1
Bt width | 2
perim | QO
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Tracing Our Program

Memory
X0 ~__ length | 1
Registers w1 | 1 T width | 2
49| w2 | 2 perim | Q
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Tracing Our Program

Memory
X0 ~__ length | 1
Registers w1 | 3 T width | 2
50 w2 | 2 perim | Q
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Tracing Our Program

Memory
X0 ~__ length | 1
Registers w1 | 6 T width | 2
51 w2 | 2 perim | Q
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Tracing Our Program
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X0
Registers wil

w2

Memory
length | 1
\ width | 2
perim | QO
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Tracing Our Program
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X0
Registers wil

w2

Memory
length | 1
\ width | 2
perim | 6
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Tracing Our Program

54

Return value
Passed back in register wO
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Tracing Our Program

55

Return to caller
ret instruction
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Summary
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Language levels: High-level language, assembly language, machine language

The basics of computer architecture
* Enough to understand AARCHG64 assembly language

The basics of AARCH64 assembly language
* Instructions to perform arithmetic
* Instructions to define global data and perform data transfer

To learn more
e Study more assembly language examples
e Chapters 2-5 of Pyeatt and Ughetta book
» Study compiler-generated assembly language code (though it will be challenging!)
e gcc2l7 =S somefile.c
* We will have three more lectures and four precepts on AARCH64




Appendix 1

DEFINING DATA:
OTHER SECTIONS AND SIZES




Defining Data: DATA Section 1
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Notes:
.section directive
(to announce DATA section)

label definition

(marks a spot in RAM)
.byte directive (1 byte)
. short directive (2 bytes)
.word directive (4 bytes)
.quad directive (8 bytes)




Defining Data: DATA Section 2

Notes:
Can place label on same line
as next instruction
or directive

.global directive can also apply
to variables, not just functions

59|




Defining Data: BSS Section

60

Notes:
.section directive
(to announce BSS section)
. Skip directive
(to specify number of bytes)




Defining Data: RODATA Section
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.''"hello\n"..;

.section ".rodata"
helloLabel:
.string "hello\n"

Notes:

. section directive (to announce RODATA section)

.string directive




Appendix 2

BYTE ORDER:
BIG-ENDIAN VS LITTLE-ENDIAN
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Byte Order

63

AARCH®GA4 is a little endian architecture

* Least significant byte of multi-byte entity
is stored at lowest memory address

 “Little end goes first”

The int (four bytes) 5 at address 1000 :

Some other systems use big endian

* Most significant byte of multi-byte entity
is stored at lowest memory address

» “Big end goes first”

The int (four bytes) 5 at address 1000:

1000
1001
1002
1003

1000
1001
1002
1003

00000101

00000000

00000000

00000000

00000000

00000000

00000000

00000101
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Byte Order Example 1

64

Byte 0: ff
Output on a Byte 1: 77

little-endian <

Byte 2: 33
machine Y

Byte 3: 00

Output on a
big-endian <
machine

Byte 0:
Byte 1:
Byte 2:
Byte 3:

00
33
77
ff
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Byte Order Example 2

.section ".data"

Note: - foo: .word 7
Flawed code; uses b : " ”
_ _ .section ".text
instructions to load from .global “main”
a four-byte memory area main:

adr x0, foo
ldrb w0, [x0]
ret

AARCH®G4 is little endian,
so what will be the value
returned from wQO?

What would be the value
returned from wO if

AARCHG4 were big endian?
65




