-

COS 217: Introduction to Programming Systems

Assembly Language

Part 1

® PRINCETON UNIVERSITY

-

Context of this Lecture

“Under the hood”

C Language

Assembly

Language

Machine Language

(

Agenda

Language Levels
Architecture
Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

High-Level Languages

Characteristics

* Portable (to varying degrees)

e Complex
* One statement can do a lot of work -
good ratio of functionality to code size
e Human readable
e Structured: if(), for(), while(), etc.

* Variable names can hide details of
where data is stored (stack, heap, etc.)

* Type system allows compiler to check
usage details without burdening reader

-

Machine Languages

Characteristics

* Not portable (hardware-specific)
e Simple
* Every instruction does a
simple task - low expressivity (ratio of
functionality to code size)
* Not human readable
* Not structured
* Requires a lot of effort
* Requires tool support

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

9222

9120

1121

A120

1121

A121

7211

0000

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

000B

000C

000D

000E

000F

0000

0000

0000

FE10

FACE

CAFE

ACED

CEDE

1234

5678

9ABC

DEF@

0000

0000

FooD

0000

0000

0000

EEEE

1111

EEEE

1111

0000

0000

B1B2

F1F5

0000

0000

0000

0000

0000

0000

-

Assembly Languages

Characteristics

* Not portable

» Every assembly language instruction
maps to one machine instruction

e Simple
* Every instruction does a simple task
e Human readable ...

(

Why Learn Assembly Language?

Knowing assembly language helps you:

* Write faster code
* |[n assembly language
* Potentially even in a high-level language

* Write safer code

* Understanding mechanism of potential security problems helps you avoid them -
even in high-level languages

* Understand what’s happening under the hood
e Someone needs to develop future computer systems

e Become more comfortable with levels of abstraction
* Become a better programmer at all language levels

-

Why Learn ARMv8 Assembly Language”?

Pros of learning ARMvS8 (a.k.a. AARCH64 or A64) assembly

* ARM is the most widely used processor architecture in the world
(in your phone, in your Mac, in your Chromebook, in Armlab, loT devices)

* ARM has a modern and (relatively) elegant instruction set (“RISC” - Reduced
Instruction Set Computer) with each instruction being the same size (4 bytes).
C.f., the expansive but overwhelming x86-64 instruction set

Cons
* x86-64 still has a huge presence in desktop/laptop/cloud

Lectures vs. Precepts

Approach to studying assembly language:

Study partial programs Study complete programs

Begin with simple constructs; Begin with small programs;
proceed to complex ones proceed to large ones

Emphasis on reading code Emphasis on writing code

(

Agenda

Language Levels
Architecture
Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

10

-

John von Neumann (1903-1957)

11

In computing
e Stored program computers
* Cellular automata, self-replication,
* Game theory
* mergesort

Other interests
e Mathematics, statistics
* Nuclear physics

Princeton connection
* Princeton University & IAS, 1930-1957
e https://paw.princeton.edu/article/early-history-computing-princeton

Known for the “Von Neumann architecture”

* In which (machine-language) programs are just data in memory
* a.k.a. “Princeton architecture” - contrast to the now-mostly-obsolete “Harvard architecture”

o Rl
Bx

https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton
https://paw.princeton.edu/article/early-history-computing-princeton

-

Von Neumann Architecture

12

Instructions (encoded within words)
are fetched from RAM

Control unit interprets instructions:

* to shuffle data between registers
and RAM

* to move data from registers to ALU
(arithmetic+logic unit) where
operations are performed

Unit

Control

CPU

1

Registers

A

Data bus

RAM

-

Von Neumann Architecture

13

Registers
Small amount of storage on the CPU
e Top of the “storage hierarchy”
* Very {small, expensive, fast}

ALU instructions operate on registers

Control
Unit

1

CPU

Registers

A

Data bus

RAM

-

Von Neumann Architecture

15

RAM (Random Access Memory)
Conceptually: large array of bytes
(gigabytes+ in modern machines)
(registers are ~512 bytes)

e Contains data (variables, data structures)
* And the program itself, in machine code

Instructions are fetched from RAM

Control
Unit

1

CPU

Registers

A

Data bus

RAM

-
|> Time to reminisce about old TOYs

Thinking back to COS 126,
how did you feel about TOY?

¥ 59 -
\ Vil o 1S
= T iy

A. Loved it

B. Wasn't a fan.

C. |Itook ECE115, so | have no idea

what you're talking about Yuri Shirota

D. I placed out, so | have no idea

what you're talking about
16

https://unsplash.com/@itshoobastank

-

Time to reminisce about old TOYs

17

TOY REFERENCE CARD

INSTRUCTION FORMATS

Format RR: | opcode | d | s | t | (0-6, A-B)
Format A: | opcode | d | addr | (7-9, c-F)
Word size. The TOY machine has two types of storage: main memory and registers. Each entity stores one word
ARITHMETIC and LOGICAL O (f information. On the TOY machine, a word is a sequence of 16 bits. Typically, we interpret these 16 bits as a

1: add |
2: :ubtract | hexadecimal integer in the range 0000 through FFFF. Using two's complement notation, we can also interpret it
3: and | as a decimal integer in the range -32,768 to +32,767. See Section 5.1 for a refresher on number representations
4: xor |

5: shift left : and two's complement integers.

6: shift right ' Main memory. The TOY machine has 256 words of main memory. Each memory location is labeled with a
TRANSFER between registe Unique memory address. By convention, we use the 256 hexadecimal integers in the range 00 through F¥. Think
7: load address of a memory location as a mailbox, and a memory address as a postal address. Main memory is used to store

8: load » "
9: store | instructions and data.
g:]s':ggel?iéﬁzz M Registers. The TOY machine has 16 registers, indexed from 0 through . Registers are much like main memory:

each register stores one 16-bit word. However, registers provide a faster form of storage than main memory.

CONT??Lhalt Registers are used as scratch space during computation and play the role of variables in the TOY language.
C: branch zero Register O is a special register whose output value is always 0.
D: branch positive
E: jump register - Program counter. The program counter or pc is an extra register that keeps track of the next instruction to be
F: jump and link | executed. It stores 8 bits, corresponding to a hexadecimal integer in the range 00 through FF. This integer stores

the memorv address of the next instruction to execute.

Register 0 always reads 0.
Loads from M[FF] come from stdin.
Stores to M[FF] go to stdout.

https://introcs.cs.princeton.edu/java/62toy/

16-bit registers (two's complement)
16-bit memory locations
8-bit program counter

https://introcs.cs.princeton.edu/java/62toy/

Registers and RAM

18

Typical pattern:
e Load data from RAM to registers
* Manipulate data in registers
» Store data from registers to RAM

On AARCHG4, this pattern is enforced
* “Manipulation” instructions can only access registers

* This is known as a load-store architecture
(as opposed to “register-memory” architectures)

e Characteristic of RISC architectures (vs.“CISC” or Complex Instruction Set
Computer, e.g. x86)

Even RISC compilers don’t use all their instructions
« We'll use this fact to “beat the compiler” in Assignment A5. CISC is much worse)

Registers (ARM-64 architecture)

19|

63 31
X0 w@
x1 wl
x29 (FP) w29
x30 (LR) w30
xzr (all zeros) wzr
sp (stack pointer)
pc (program counter)

pstate

-
General-Purpose 64-bit Registers

X0 ... X30

e Scratch space for instructions, parameter passing to/from functions,
return address for function calls, etc.

* Some have special roles defined in hardware (e.g. X30)
or defined by software convention (e.g. X29)

e Also available as 32-bit versions: WO ... W30

XZR

* On read: all zeros
* On write: data thrown away
* Also available as 32-bit version: WZR

20

-

SP Register

21

Special-purpose register...

e SP (Stack Pointer):
Contains address of top (low memory address)
of current function’s stack frame

Allows use of the STACK section of memory

(See Assembly Language: Function Calls lecture later)

SP

low address

iractive

(current)

high address

stack frames

PC Register

Special-purpose register...
e PC (Program Counter)
e Stores the location of the next instruction
* Address (in TEXT section) of machine-language instruction to be executed next

* |ts value is changed either:
e Automatically to implement sequential control flow (increment by 4 bytes)

* By branch instructions to implement selection, repetition

PC

TEXT section

PSTATE Register

nizlclv| (rest of pstate)

Special-purpose register...
e Contains condition flags:
n (Negative), z (Zero), c (Carry), v (oVerflow)
» Affected by compare (Cmp) instruction
* And many others, if requested (e.g. with s suffix on arithmetic instructions)
» Used by conditional branch instructions
* beq, bne, blo, bhi, ble, bge, ...
e (See Assembly Language: Part 2 lecture)

(

Agenda

Language Levels
Architecture
Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

24

[

ALU Arithmetic Example

25

srcl src2

operation —» — flags

dest

add dest, srcl, src?2

Unit

Control

1

Registers

A

Data bus

RAM

nstruction Format

26

Many instructions have this format:

srcl src2

\ A /
name{,s} dest, srcl, src2 |

. operation = PSTATE
name{,s} dest, srcl, immed

dest

ename: mnemonic hame of the instruction (add, sub, mul, and, etc.)
*S: if present, specifies that condition flags should be Set

e dest and srcl,src2 are X registers: 64-bit operation
e dest and srcl,src2 are w registers: 32-bit operation

* No mixing and matching between x and w registers

e src2 may be a constant (“immediate” value) instead of a register

-
o4-bit Arithmetic

C code:

static long length;
static long width;
static long perim;

Assume that...
e length held in x1
e width held in x2
e perim held in x3
perim = * they’re not local variables (we’ll see those
(length + width) * 2; later)

Recall use of left
shift by 1 bit to

Assembly code: multiply by 2

27 sl x3, x3, 1 You'll see #1 instead of 1 in book.

\ Also works, but not necessary.

J

-
More Arithmetic

Assume that...
e x held in x1
ey held in x2
ez held in x3

Assembly code:

28

-
More Arithmetic: Shortcuts

static long x; Assume that...
static long vy; * X held in x1
static long z; *y held in x2
ez held in x3
Z = X;
Z = —X; Assembly code: Abstraction

mov X3, X1
neg x3, x1

These are actually
assembler shortcuts
for instructions that
use XZR.

orr x3, xzr, X1
sub x3, xzr, x1

29|

Precepts will cover signed/unsigned arithmetic and handling smaller operand sizes

-

Signed vs Unsigned?

Assume that...

static long x;

static unsigned long y; *x held in x1
*y held in x2
X++

Y=

Assembly code:

add x1, x1, 1
sub x2, x2, 1

Mostly the same algorithms, same instructions
» Can set different condition flags in PSTATE

30 * But some exceptions...

-

Signed vs Unsigned: Exceptions

31

Assume that...

static long x;

static unsigned long vy; * x held in x1

. e ey held in x2

x /= 17;

y /= 42;

X >>= 1;

y >>= 2; Assembly code:

sdiv x1, x1, 17
udiv x2, x2, 42
asr x1, x1, 1 |
lsr x2, x2, 2

Division needs different
algorithms for signed
and unsigned, and
hence different
instructions

“Arithmetic” right shift
(shift in sign bit on left)
vs. “logical” right shift
(shift in zeros on left)

-

32-bit Arithmetic using “w” registers

32

C codle: I Assume that...
static int tength; + length held in w1
static int width; _ :

.. : e width held in w2
static int perim; _ _

e perim held in w3
perim =
(length + width) * 2;

Assembly code:

add w3, wl, w2
sl w3, w3, 1

-

8- and 16-bit Arithmetic?

33

static char x;
static short y;

No specialized arithmetic instructions
* Just use the “w” registers

e Corresponds to C language semantics: all arithmetic is implicitly done
on (at least) ints, values are implicitly promoted to 32 bit

e Specialized “load” and “store” instructions for transfer of shorter data
types from / to memory - we’ll see these next

(

Agenda

Language Levels
Architecture
Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

34

_oads and Stores

35

Most basic way to load (from RAM) and store (to RAM):

ldr dest, [src]
str src, [dest]

e dest, src are registers. The memory operand always comes second

» Memory addressing must be via registers (not literal addresses as in TOY)
* Every memory access effectively dereferences a ‘pointer’ (the register)

* Contents of registers in [brackets] must be memory addresses
* Note how this represents memory as a C array with the addresses being its indices

* The memory addresses (src for Ldr, dest for str) must be x-flavored

 Other (register) operands (dest for Ldr, src for str) can be x-flavored or w-
flavored

-

Signed vs Unsignhed, 8- and 16-bit

36

Udrb dest, [src]
ldrh dest, [src]
strb src, [dest]
strh src, [dest]

ldrsb dest, [src]
ldrsh dest, [src]
ldrsw dest, [src]

Special instructions for reading/writing Bytes (8 bit) and shorts (“Half-words”: 16 bit)
* See appendix of these slides for ordering information: little-endian vs. big-endian

Special instructions for signed loads (tell how to fill in leftmost bits in register)
e “Sign-extend” byte, half-word, or word to 32 or 64 bits

-
A Note on Loads and Stores

ldr dest, [src]
str src, [dest]

* How to get correct memory address into register?

* Depends on whether data are on stack (local variables), on
heap (dynamically-allocated memory), or global / static

* For today, we’ll look only at the global / static data case

e adr instruction puts the address of a given label into a given register
* The load/store then uses the register as a pointer (its value as a memory address)

37

-

Making a “Pointer”

38

Generating addresses

adr: puts address of
a label in a register

-

Our First Full Program (Perimeter)*

39

* You’ll see the more typical, “Hello, World!” program in precept ...

-

Memory Sections

40

Sections (Stack/heap are different!)
.rodata: read-only
.data: read-write
.bss: read-write (uninit or init to O)
text: read-only, program code

-

Variable Definitions and Usage

41

We have variables in
assembly language
* Abstraction

Declaring data

“Labels” for locations in memory
.word: 32-bit int and initial value

See appendix for variables in other sections, with other types.

main()

42

Global visibility
.global: Declare “main” to be a
globally-visible label

In C external linkage
is default.
In ARM, internal

linkage is default

main function is called
by _start, so must be
globally visible

-

Make a “Pointer”

43

Generating addresses

adr: puts address of
a label in a register

_oads and Stores

44

Load and store

Use x0 as a “pointer” to load
from and store to memory

Return

45

Return a value

ret: return to the caller, with
register O* holding the return value

* wO for int, xO for long

-

Tracing Our Program

46

X0
Registers wil

w2

Memory

— length | 1

width | 2

perim | QO

-

Tracing Our Program

a7

X0
Registers wil

w2

Memory

— length | 1

width | 2

perim | QO

-

Tracing Our Program

48

X0
Registers wil

w2

Memory
length | 1
Bt width | 2
perim | QO

-
Tracing Our Program

Memory
X0 ~__ length | 1
Registers w1 | 1 T width | 2
49| w2 | 2 perim | Q

-
Tracing Our Program

Memory
X0 ~__ length | 1
Registers w1 | 3 T width | 2
50 w2 | 2 perim | Q

-
Tracing Our Program

Memory
X0 ~__ length | 1
Registers w1 | 6 T width | 2
51 w2 | 2 perim | Q

-

Tracing Our Program

52

X0
Registers wil

w2

Memory
length | 1
\ width | 2
perim | QO

-

Tracing Our Program

53

X0
Registers wil

w2

Memory
length | 1
\ width | 2
perim | 6

-

Tracing Our Program

54

Return value
Passed back in register wO

-

Tracing Our Program

55

Return to caller
ret instruction

(

Summary

56

Language levels: High-level language, assembly language, machine language

The basics of computer architecture
* Enough to understand AARCHG64 assembly language

The basics of AARCH64 assembly language
* Instructions to perform arithmetic
* Instructions to define global data and perform data transfer

To learn more
e Study more assembly language examples
e Chapters 2-5 of Pyeatt and Ughetta book
» Study compiler-generated assembly language code (though it will be challenging!)
e gcc2l7 =S somefile.c
* We will have three more lectures and four precepts on AARCH64

Appendix 1

DEFINING DATA:
OTHER SECTIONS AND SIZES

Defining Data: DATA Section 1

58

Notes:
.section directive
(to announce DATA section)

label definition

(marks a spot in RAM)
.byte directive (1 byte)
. short directive (2 bytes)
.word directive (4 bytes)
.quad directive (8 bytes)

Defining Data: DATA Section 2

Notes:
Can place label on same line
as next instruction
or directive

.global directive can also apply
to variables, not just functions

59|

Defining Data: BSS Section

60

Notes:
.section directive
(to announce BSS section)
. Skip directive
(to specify number of bytes)

Defining Data: RODATA Section

61

.''"hello\n"..;

.section ".rodata"
helloLabel:
.string "hello\n"

Notes:

. section directive (to announce RODATA section)

.string directive

Appendix 2

BYTE ORDER:
BIG-ENDIAN VS LITTLE-ENDIAN

-

Byte Order

63

AARCH®GA4 is a little endian architecture

* Least significant byte of multi-byte entity
is stored at lowest memory address

 “Little end goes first”

The int (four bytes) 5 at address 1000 :

Some other systems use big endian

* Most significant byte of multi-byte entity
is stored at lowest memory address

» “Big end goes first”

The int (four bytes) 5 at address 1000:

1000
1001
1002
1003

1000
1001
1002
1003

00000101

00000000

00000000

00000000

00000000

00000000

00000000

00000101

-

Byte Order Example 1

64

Byte 0: ff
Output on a Byte 1: 77

little-endian <

Byte 2: 33
machine Y

Byte 3: 00

Output on a
big-endian <
machine

Byte 0:
Byte 1:
Byte 2:
Byte 3:

00
33
77
ff

-

Byte Order Example 2

.section ".data"

Note: - foo: .word 7
Flawed code; uses b : " ”
_ _ .section ".text
instructions to load from .global “main”
a four-byte memory area main:

adr x0, foo
ldrb w0, [x0]
ret

AARCH®G4 is little endian,
so what will be the value
returned from wQO?

What would be the value
returned from wO if

AARCHG4 were big endian?
65

