-

COS 217: Introduction to Programming Systems

The Process and Virtual Memory Abstractions

% PRINCETON UNIVERSITY

(

Agenda

The process abstraction

The memory abstraction and memory management

* Virtual Memory
 The Storage Hierarchy, Locality and Caching

 (Cache Management

Processes

Program
* Executable code
* A static entity

Process
* An instance of a program in execution
* A dynamic entity: Has state at any point in time
* Where am | in the code, values of registers, values in memory, ...

* A process runs ('steps through’) a program
e E.g. the process with Process ID 12345 might be running emacs
* Multiple processes may be running the same program
e E.8. PIDs 12345 and 23456 might both be running emacs - even for the same user

[

Every Process is Given Two Key lllusions

1. That it owns the whole CPU, the whole time it runs

2. That it owns all the memory the machine has (or could have)

This is a form of Abstraction

A process is a profound abstraction in computer science

-

The Address Space lllusion

Process X

0000000000000000

Memory
for

Process
X

FFFFFFFFFFFFFFFF

Every process sees memory as
Huge: 264 = 16 EB (16 exabytes) ~ 101? bytes
Uniform: contiguous memory locations from O to 264-1

Problem 1

Process X
0000000000000000
Memory
for Physical
Process Memory
X
FFFFFFFFFFFFFFFF

But physical memory is *much* smaller (16GB?)

Problem 2

Process X Process Y
0000000000000000 0000000000000000
Memory Memory
for Physical for
Process Memory Process
X Y
FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF

There are *many* processes, each with the address space of 24 bytes
But only the same one little physical memory

-

The Solution: Virtual Memory

Process references a virtual address (any address in its O to 2°4 - 1 range)
OS + hardware translate (map) it to a physical address (say O to 224 - 1)

Process 12345’s virtual 5213 will translate to a different physical address than
process 23456’s virtual address 5213

Even if the processes are both running emacs

OS and hardware make sure data that are not in physical memory are kept on disk
“Swap” data in and out of physical memory, to/from disk, as needed

OS and hardware make sure my data can’t clobber yours (provide protection)

Keeping mappings for every virtual address would be a huge amount of storage

How Virtual Memory is Implemented

9

Process X VM Physical Memory Process Y VM
..00000000 ..00000000

<
<«

unmapped

FrFFFFFF | UNMapped .FFFFFFFF

Disk

Memory is divided into pages

At any time, some pages are in physical memory, some on disk
OS and hardware swap pages between physical memory and disk as needed

Multiple processes share the machine’s physical memory

-
Virtual & Physical Addresses (cont.)

Virtual address virtual page # offset

* |dentifies a location in a particular process’s virtual memory
* Independent of size of physical memory
* Independent of other concurrent processes

* Consists of virtual page number & offset

* Used by application programs

Physical address physical page #| offset
* |dentifies a location in physical memory
* Consists of physical page number & offset
* Known only to OS and hardware

Note: To allow mappings to be maintained at larger granularity (that of pages):
10 * The offset is the same in virtual address and corresponding physical address

-
ArmLab Virtual & Physical Addresses

virtual |yirtual page num offset
addr | I |
48 bits 16 bits
physical physical page num |offset
addr
On ArmLab:

e Avirtual address is 64 bits long (264 bytes of virtual memory per process)
* The offset is 16 bits long (A page has 216 bytes)

 Avirtual page number is 64 - 16 = 48 bits long (248 virtual pages per process)

11

-

ArmLab Virtual & Physical Addresses

12

virtual | yirtual page num offset
addr | N |
48 bits 16 bits
physical physical page num | offset
addr ‘ | |
21 bits 16 bits
On ArmLab:

e A physical address is 37 bits long (237 bytes, or 128GB of physical memory in every computer)
* The offset is 16 bits long (A page has 216 bytes, same as a virtual page)

* A physical page number is 37 - 16 = 21 bits long (221 physical pages in every computer)

How Is the Mapping Maintained: Page Tables

13

A page table per process

Page Table for Process 1234

Virtual Page Num | Physical Page Num
or Disk Addr

Page 5 in phys mem

(unmapped)

Page X on disk

W N~k |O

Page 8 in hys mem

Page table maps each in-use
virtual page to:

* A page in physical memory, or
* A page on disk

Page tables for active processes are in main memory

(

Storing Page Tables

14

Page tables (mappings) are stored in memory
Process looks up mappings there
If the mapping isn’t there, it can be painful for performance

OS manages this
« Special logic in 0S “pins” active page tables to physical memory, so they aren’t swapped to disk

15

Anatomy of a Memory Reference

Process executes instruction that references virtual memory

CPU determines virtual page

CPU looks up page table (let’s assume it is in memory)

CPU checks if required virtual page is in physical memory: no

« CPU generates

« 0S gains control of CPU

« 0S (potentially) evicts some page from physical memory to
disk, loads required page from disk to physical memory

« 0S returns control of CPU to process — to

Process executes instruction that references virtual memory

CPU checks if required virtual page is in physical memory: yes

CPU does load/store from/to physical memory

-
|> VM Effects on Security and Speed

Q: What effect does virtual memory have on the security and speed of processes?

Security Speed

Let’s start by considering security...

«d @an
«aenn

16

(

Virtual Memory also Provides Protection

17

Memory protection among processes
* Process’s page table references only physical memory pages that the process currently owns
* Process can’t accidentally/maliciously affect physical memory used by another process

Memory protection within processes
* Permission bits in page-table entries indicate whether page is read-only, etc.
* Allows CPU to prohibit
e Writing to RODATA & TEXT sections

* Access to protected (OS owned) virtual memory

-
|> VM Effects on Security and Speed

Q: What effect does virtual memory have on the security and speed of processes?

Security Speed

OK, so part of the answer is:
Security

1)

But what about speed?

«d @an
«aenn

18

Revisiting Page Tables...

19|

Question

* Doesn’t every logical memory access require two physical memory accesses: one to access the
page table, and one to access the desired page?

Answer

e Conceptually, yes
(And page tables are big, and stored hierarchically as trees, so it can be worse than 2)

Question
e Isn’t that inefficient?

Answer
e Conceptually: yes, but actually not so much ...

(

Agenda

The process abstraction

The memory abstraction and memory management
* Virtual Memory

 The Storage Hierarchy, Locality and Caching

 (Cache Management

-
Typical Storage Hierarchy

A
CPU registers hold words retrieved from

Smaller L1/L2/L3 cache

Faster registers

Expensive / \ A
storage L1 cache
devices / Level 2 cache \ L1/L2/L3 cache holds cache lines
> retrieved from main memory
/ Level 3 cache
J
. Main memory holds disk
main memory (RAM) blocks retrieved from local
disks
Local disks hold files

Larger local secondary storage retrieved from disks on
Slower (local disks, SSDs) remote network servers
Cheaper

storage

devices

remote secondary storage
21 v (distributed file systems, Web servers)

-
Typical Storage Hierarchy

Factors to consider:
* Capacity
* Latency (how long to do a read)
e Bandwidth (how many bytes/sec can be read)
» After first byte is read, how fast are subsequent bytes read
e Generally, reading a reasonable amount of data is not much slower than reading one byte
* Volatility
* Do data persist in the absence of power?

22

-
Typical Storage Hierarchy

Registers
* Latency: O cycles
» Capacity: 8-256 registers (31 8-byte general purpose registers in AArch64)

L1/L2/L3 Cache
* Latency: 1 to 40 cycles
» Capacity: 32KB to 32MB

Main memory (RAM)
e Latency: ~ 50-100 cycles
e 100 times slower than registers
» Capacity: 10s of GB, can be larger

23
_ @christianw , @harrisonbroadbent)

https://unsplash.com/@christianw
https://unsplash.com/@harrisonbroadbent

-

Typical Storage Hierarchy

24

Local secondary storage: disk drives

* Solid-State Disk (SSD):
* Flash memory (nonvolatile)
e Latency: 0.1 ms (~ 300k cycles)
e Capacity: 128 GB - several TB

* Hard Disk:
e Spinning magnetic platters, moving heads
e Latency: 10 ms (~ 30M cycles)
e Capacity: 1 - tens of TB

@benjaminlehman , Samsung Belgium

https://unsplash.com/@benjaminlehman
https://www.flickr.com/people/60952012@N06

(

Cache / RAM Latency

Memory Latency vs. Access Range (Sandra 2013 SP3)

120

100

Latency in Clocks - Lower is Better
g

20

2K aK 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 256M 1G
Data Access Range

=#=Core i7-3770K (DDR3-1600) =i=Core i7-4950HQ (CRW + DDR3-1600) ““=Core i7-4770K (DDR3-1600)

25
k 1 clock = 3-10'10 SeC https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hg-tested/3 j

https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3

Disks

26

1 ms

1ns st T L SEEEE
K b.w 3770K (0ORS-1600) l)

-

Typical Storage Hierarchy

27

Remote secondary storage (a.k.a. “the cloud”)
* Latency: tens of milliseconds
* Limited by the speed of light (and network bandwidth)
» Capacity: essentially unlimited

@TheDigitalArtist

https://pixabay.com/users/thedigitalartist-202249/

(

Storage Device Speed vs. Size

28

Facts:
* CPU needs sub-nanosecond access to data to run instructions at full speed
* Fast storage (sub-nanosecond) is small (100-1000 bytes)
* Big storage (gigabytes) is slow (15 nanoseconds)
* Huge storage (terabytes) is glacially slow (milliseconds)

The illusion we want:
* Many, many gigabytes of memory
* And fast (sub-nanosecond) average access time

Solution: caching
* Most of the time, data accesses are satisfied in fast, small levels of memory hierarchy
e But why, if accesses are random or uniform?
* Answer: they are not. Most programs exhibit good locality of access to data
* Such programs benefit from caching, which enables good average performance

_ocality

29|

Two kinds of locality
* Temporal locality
* |f a program references item X now, then it probably will reference X again soon
e So once X is accessed, keep X in the fast, small memory for a little while
e Spatial locality
* |If a program references item X now, then it probably will reference item at address X=*1 soon
e So fetch more than just X into the fast, small memory when X is brought in

Most programs exhibit very good temporal and spatial locality, on code and on data

_ocality Example

30

Locality example

sum = 0;
for (i = 0; 1 < n; i++)
sum += alil;

Temporal locality

Typical code
(good overall locality)

* Data: When CPU accesses sum, it accesses sum again shortly thereafter
e Instructions: When CPU executes sum += a[il], it does that again shortly thereafter

Spatial locality

 Data: When CPU accesses a[1], it accesses a[1+1] shortly thereafter
e Instructions: When CPU executes sum += a[1i], it executes i++ (the next machine

language instructions) shortly thereafter

(

This is Amazing, for Caching

31

Cache
* Fast access, small capacity storage device
* Acts as a staging area for items in a slow access, large capacity storage device

* ltems are brought in when they or nearby items are accessed, and kicked out when needed due to
limited cache capacity

Good locality + proper caching
= Most storage accesses can be satisfied by cache
= Overall storage performance improved

-
Caching in a Storage Hierarchy

Level k:

Smaller, faster device at
4 9 10 3 level k caches a subset of
Y the blocks from level k+1

Blocks copied
between levels

Level k+1.: '
0 1 2 3
4 5 6 7 Larger, slower device at
level k+1 is partitioned
8 9 10 11 into blocks
12 13 14 15

32

e
Cache Hits and Misses

Cache hit

e E.g., request for block 10 Level k:
* Access block 10 at level k 4
* Fast

9 10 3

Cache miss
e E.g., request for block 8
e Evict some block from level k

Level k is a cache
for level k+1

e Load block 8 from level k+1 to level k Level k+1:
e Access block 8 at level k
e Slow 0 1 2 3
e But hopefully next time block 8 is accessed it 4 5 6 7
will still be in cache
8 9 10 11
Caching goal: 19 13 14 15
33 e Maximize cache hits

_ e Minimize cache misses YV,

-
|> VM Effects on Security and Speed

Q: What effect does virtual memory have on the security and speed of processes?

Security Speed

So, with caching, we finally
arrive at the answer:

Security Speed

f not so much

«d @an
«aenn

34

-
|> Do Exam Questions Exhibit Temporal Locality?

35

Here’s a real question from an old exam:

For caching in a memory hierarchy, what is the best motivation for a larger cache
block size?

A. Temporal Locality B

. . Spatial locality makes use of
B. Spatial Locality subsequent data after a given
C. Both read, so having more data to
D. Neither keep reading is a win.

-

Agenda

The process abstraction

The memory abstraction and memory management

* Virtual Memory
 The Storage Hierarchy, Locality and Caching

 (Cache Management

-

Cache Management

Managed by:

Registers Compiler, using complex code-

(cache of L1/L2/L3 cache and analysis techniques

main memory) Assembly lang programmer

L1/L2/L3 cache Hardware, using simple

(cache of main memory) algorithms

Main memory Hardware and OS, using virtual

(cache of local sec storage) memory with complex algorithms
(since accessing disk is
expensive)

Local secondary storage (cache End user, by deciding which files
of remote sec storage) to download

37

-

Cache Block Size

38

Large block size:
+ do data transfer less often
+ take advantage of spatial locality
- longer time to complete data transfer
- can hurt temporal locality, since more data have to be evicted

Small block size: the opposite
Typical: further away memory = slower data transfer = larger block sizes

Block Size

Register 8 bytes

L1/L2/L3 cache line 128 bytes

Main memory page 4KB or 64KB

Disk block 512 bytes to 4KB

Disk transfer block 4KB (4096 bytes) to
64MB (67108864 bytes)

(

Cache Eviction Policies

39

Best eviction policy: “oracle”
* Always evict a block that is never accessed again, or...
* Always evict the block accessed the furthest in the future
* Impossible to know in the general case

Worst eviction policy
* Always evict the block that will be accessed next
* Causes thrashing

* Also doesn’t happen in general case

(

Cache Eviction Policies

40

Reasonable eviction policy: LRU policy

* Evict the “Least Recently Used” (LRU) block
* With the assumption that it will not be used again (soon)
e Future behavior will look kind of like recent behavior

* Good for straight-line code

* (Can be) bad for (large) loops

* Expensive to implement
* Often simpler approximations are used
« See Wikipedia “Page replacement algorithm” topic

(

Ordering Operations and Spatial Locality

41

Matrix multiplication example
* Matrix = two-dimensional array
* Multiply n-by-n matrices A and B
e Store product in matrix C

Performance depends upon
* Effective use of caching (as implemented by system)
* Good locality (as implemented by you)

-

Spatial Locality Example: Matrix Multiplication

42

Two-dimensional arrays are stored in either row-major or column-major order

row-major col-major

a[0][0] | 18 a[0][0] | 18
a 0 1 2

a[0][1] | 19 a[1][0] | 21
0 18 [19 | 20

a[0][2] | 20 a[2][0] | 24
1 21 |22 | 23

a[1][0] | 21 a[0][1] | 19
2 24 | 25 | 26

a[1][1] | 22 a[1][1] | 22

a[1][2] | 23 a[2][1] | 25

a[2][0] | 24 a[0][2] | 20

a[2][1] | 25 a[1][2] | 23

a[2][2] | 26 a[2][2] | 26

C uses row-major order
* Access in row order = good spatial locality
* Access in column order = poor spatial locality

-

Spatial Locality Example: Matrix Multiplication

43

for (i=0; i<n; i++)
for (j=0; j<n; j++)
for (k=0; k<n; k++)
clil [j]1 += alil [K] * b[k][j];

Reasonable cache effects
* Good locality for A
* Bad locality for B
e Good locality for C

]|

.

a

-

Spatial Locality Example: Matrix Multiplication

for (j=0; j<n; j++)
for (k=0; k<n; k++)
for (i=0; i<n; i++)
clil [j]1 += alil [K] * b[k][j];

Poor cache effects i Kk i
e Bad locality for A l K l l_
 Bad locality for B j)

e Bad locality for C a b c

44

-

Spatial Locality Example: Matrix Multiplication

45

for (i=0; i<n; i++)
for (k=0; k<n; k++)
for (j=0; j<n; j++)
clil [j]1 += alil [K] * b[k][j];

Good cache effects

e Good locality for A l_h_ l l _
 Good locality for B] J
e Good locality for C

CIN
I) Another Ghost of Exams Past ...

46

Suppose that C laid out arrays in column-major order instead of row-major order.
What would be the most efficient loop ordering for matrix multiplication
to maximize performance through good locality?

for (i=0; i<n; i++)
for (k=0; k<n; k++)

for (j=0; j<n; j++)

A. ikj(Same as row-major)

B iik clil[j1 += alil[k] * b[kI[j1;
' Cijki
C. jKi .
Exactly what makes this bad
D. jik for all three in row-major
. makes it ideal for column-major:
E. Kij)
a and c have good spatial
F. kji b has good temporal, spatial

(

Next time ...

Getting started with ARM assembly language

Q<3O XTImO woO<x

https://commons.wikimedia.org/wiki/User:Lobsterthermidor
https://commons.wikimedia.org/wiki/User:Raysonho

