
COS 217: Introduction to Programming Systems

The Process and Virtual Memory Abstractions

Agenda

The process abstraction

The memory abstraction and memory management

• Virtual Memory

• The Storage Hierarchy, Locality and Caching

• Cache Management

2

Processes

Program
•Executable code
•A static entity

Process
•An instance of a program in execution
•A dynamic entity: Has state at any point in time

• Where am I in the code, values of registers, values in memory, …
•A process runs (’steps through’) a program

• E.g. the process with Process ID 12345 might be running emacs
•Multiple processes may be running the same program

• E.g. PIDs 12345 and 23456 might both be running emacs – even for the same user

3

Every Process is Given Two Key Illusions

1. That it owns the whole CPU, the whole time it runs

2. That it owns all the memory the machine has (or could have)

This is a form of Abstraction

A process is a profound abstraction in computer science

4

The Address Space Illusion

Every process sees memory as
Huge: 264 = 16 EB (16 exabytes) ≈	1019 bytes
Uniform: contiguous memory locations from 0 to 264-1

Process X

Memory
for

Process
X

0000000000000000

FFFFFFFFFFFFFFFF

5

Problem 1

But physical memory is *much* smaller (16GB?)

Process X

Memory
for

Process
X

0000000000000000

FFFFFFFFFFFFFFFF

6

Physical
Memory

Problem 2

There are *many* processes, each with the address space of 264 bytes
But only the same one little physical memory

Process X

Memory
for

Process
X

0000000000000000

FFFFFFFFFFFFFFFF

7

Physical
Memory

Process Y

Memory
for

Process
Y

0000000000000000

FFFFFFFFFFFFFFFF

The Solution: Virtual Memory

Process references a virtual address (any address in its 0 to 264 - 1 range)

OS + hardware translate (map) it to a physical address (say 0 to 224 – 1)

Process 12345’s virtual 5213 will translate to a different physical address than
process 23456’s virtual address 5213
• Even if the processes are both running emacs

OS and hardware make sure data that are not in physical memory are kept on disk
• “Swap” data in and out of physical memory, to/from disk, as needed

OS and hardware make sure my data can’t clobber yours (provide protection)

Keeping mappings for every virtual address would be a huge amount of storage
8

How Virtual Memory is Implemented

9

Process X VM Process Y VM

…FFFFFFFF unmapped

unmapped

Physical Memory

Disk

…00000000 …00000000

…FFFFFFFF

Memory is divided into pages
• At any time, some pages are in physical memory, some on disk
• OS and hardware swap pages between physical memory and disk as needed
• Multiple processes share the machine’s physical memory

Virtual & Physical Addresses (cont.)

Virtual address
• Identifies a location in a particular process’s virtual memory

• Independent of size of physical memory
• Independent of other concurrent processes

• Consists of virtual page number & offset
• Used by application programs

Physical address
• Identifies a location in physical memory
• Consists of physical page number & offset
• Known only to OS and hardware

Note: To allow mappings to be maintained at larger granularity (that of pages):
• The offset is the same in virtual address and corresponding physical address

virtual page # offset

physical page # offset

10

ArmLab Virtual & Physical Addresses

On ArmLab:
• A virtual address is 64 bits long (264 bytes of virtual memory per process)
• The offset is 16 bits long (A page has 216 bytes)
• A virtual page number is 64 – 16 = 48 bits long (248 virtual pages per process)

virtual page num offset

48 bits 16 bits

virtual
addr

physical page num offsetphysical
addr

11

ArmLab Virtual & Physical Addresses

On ArmLab:
• A physical address is 37 bits long (237 bytes, or 128GB of physical memory in every computer)
• The offset is 16 bits long (A page has 216 bytes, same as a virtual page)
• A physical page number is 37 – 16 = 21 bits long (221 physical pages in every computer)

virtual page num offset

48 bits 16 bits

virtual
addr

physical page num offsetphysical
addr

16 bits21 bits

12

How is the Mapping Maintained: Page Tables

Page table maps each in-use
virtual page to:
• A page in physical memory, or
• A page on disk

Virtual Page Num Physical Page Num
or Disk Addr

0 Page 5 in phys mem

1 (unmapped)

2 Page X on disk

Page Table for Process 1234

… …
3 Page 8 in hys mem

13

A page table per process

Page tables for active processes are in main memory

Storing Page Tables
Page tables (mappings) are stored in memory

Process looks up mappings there

If the mapping isn’t there, it can be painful for performance

OS manages this
• Special logic in OS “pins” active page tables to physical memory, so they aren’t swapped to disk

14

Anatomy of a Memory Reference

• Process executes instruction that references virtual memory
• CPU determines virtual page
• CPU looks up page table (let’s assume it is in memory)
• CPU checks if required virtual page is in physical memory: no

• CPU generates page fault
• OS gains control of CPU
• OS (potentially) evicts some page from physical memory to

disk, loads required page from disk to physical memory
• OS returns control of CPU to process – to same instruction

• Process executes instruction that references virtual memory
• CPU checks if required virtual page is in physical memory: yes
• CPU does load/store from/to physical memory

15

Let’s start by considering security…

16

VM Effects on Security and Speed
Q: What effect does virtual memory have on the security and speed of processes?

 Security Speed

A.

B.

C.

D.

Virtual Memory also Provides Protection

Memory protection among processes
• Process’s page table references only physical memory pages that the process currently owns
• Process can’t accidentally/maliciously affect physical memory used by another process

Memory protection within processes
• Permission bits in page-table entries indicate whether page is read-only, etc.
• Allows CPU to prohibit

• Writing to RODATA & TEXT sections
• Access to protected (OS owned) virtual memory

17

18

VM Effects on Security and Speed
Q: What effect does virtual memory have on the security and speed of processes?

 Security Speed

A.

B.

C.

D.

OK, so part of the answer is:

 Security

But what about speed?

Revisiting Page Tables…
Question

• Doesn’t every logical memory access require two physical memory accesses: one to access the
page table, and one to access the desired page?

Answer
• Conceptually, yes

(And page tables are big, and stored hierarchically as trees, so it can be worse than 2)

Question
• Isn’t that inefficient?

Answer
• Conceptually: yes, but actually not so much …

19

Agenda

The process abstraction

The memory abstraction and memory management

• Virtual Memory

• The Storage Hierarchy, Locality and Caching

• Cache Management

20

Typical Storage Hierarchy

registers

main memory (RAM)

local secondary storage
(local disks, SSDs)

Larger
Slower

Cheaper
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk
blocks retrieved from local
disks

L1 cache

CPU registers hold words retrieved from
L1/L2/L3 cache

L1/L2/L3 cache holds cache lines
retrieved from main memory

Smaller
Faster

Expensive
storage
devices Level 2 cache

Level 3 cache

21

Typical Storage Hierarchy

Factors to consider:
• Capacity
• Latency (how long to do a read)
• Bandwidth (how many bytes/sec can be read)

• After first byte is read, how fast are subsequent bytes read
• Generally, reading a reasonable amount of data is not much slower than reading one byte

• Volatility
• Do data persist in the absence of power?

22

Typical Storage Hierarchy

Registers
• Latency: 0 cycles
• Capacity: 8-256 registers (31 8-byte general purpose registers in AArch64)

L1/L2/L3 Cache
• Latency: 1 to 40 cycles
• Capacity: 32KB to 32MB

Main memory (RAM)
• Latency: ~ 50-100 cycles

• 100 times slower than registers
• Capacity: 10s of GB, can be larger

23
@christianw , @harrisonbroadbent

https://unsplash.com/@christianw
https://unsplash.com/@harrisonbroadbent

Typical Storage Hierarchy

Local secondary storage: disk drives

• Solid-State Disk (SSD):
• Flash memory (nonvolatile)
• Latency: 0.1 ms (~ 300k cycles)
• Capacity: 128 GB – several TB

• Hard Disk:
• Spinning magnetic platters, moving heads
• Latency: 10 ms (~ 30M cycles)
• Capacity: 1 – tens of TB

24
@benjaminlehman , Samsung Belgium

https://unsplash.com/@benjaminlehman
https://www.flickr.com/people/60952012@N06

Cache / RAM Latency

https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3

L1
L2

L3

DRAM

(L4)

1 clock = 3·10-10 sec
25

https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3
https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3

Disks

1 ns

1 µs

1 ms

Kb Mb Gb Tb

DRAM

HDD

SSD

26

Typical Storage Hierarchy

Remote secondary storage (a.k.a. “the cloud”)
• Latency: tens of milliseconds

• Limited by the speed of light (and network bandwidth)
• Capacity: essentially unlimited

27
@TheDigitalArtist

https://pixabay.com/users/thedigitalartist-202249/

Storage Device Speed vs. Size

Facts:
• CPU needs sub-nanosecond access to data to run instructions at full speed
• Fast storage (sub-nanosecond) is small (100-1000 bytes)
• Big storage (gigabytes) is slow (15 nanoseconds)
• Huge storage (terabytes) is glacially slow (milliseconds)

The illusion we want:
• Many, many gigabytes of memory
• And fast (sub-nanosecond) average access time

Solution: caching
• Most of the time, data accesses are satisfied in fast, small levels of memory hierarchy
• But why, if accesses are random or uniform?
• Answer: they are not. Most programs exhibit good locality of access to data

• Such programs benefit from caching, which enables good average performance
28

Locality

Two kinds of locality
• Temporal locality

• If a program references item X now, then it probably will reference X again soon
• So once X is accessed, keep X in the fast, small memory for a little while

• Spatial locality
• If a program references item X now, then it probably will reference item at address X±1 soon
• So fetch more than just X into the fast, small memory when X is brought in

Most programs exhibit very good temporal and spatial locality, on code and on data

29

Locality Example
Locality example

Temporal locality
• Data: When CPU accesses sum, it accesses sum again shortly thereafter
• Instructions: When CPU executes sum += a[i], it does that again shortly thereafter

Spatial locality
• Data: When CPU accesses a[i], it accesses a[i+1] shortly thereafter
• Instructions: When CPU executes sum += a[i], it executes i++ (the next machine

language instructions) shortly thereafter

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];

Typical code
(good overall locality)

30

This is Amazing, for Caching

Cache
• Fast access, small capacity storage device
• Acts as a staging area for items in a slow access, large capacity storage device
• Items are brought in when they or nearby items are accessed, and kicked out when needed due to

limited cache capacity

Good locality + proper caching
⇒ Most storage accesses can be satisfied by cache
⇒ Overall storage performance improved

31

Caching in a Storage Hierarchy

32

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower device at
level k+1 is partitioned
into blocks

Level k+1:

4

Blocks copied
between levels

9 3
Smaller, faster device at
level k caches a subset of
the blocks from level k+1

Level k:

4 10

10

Cache Hits and Misses
Cache hit

• E.g., request for block 10
• Access block 10 at level k
• Fast

Cache miss
• E.g., request for block 8
• Evict some block from level k
• Load block 8 from level k+1 to level k
• Access block 8 at level k
• Slow
• But hopefully next time block 8 is accessed it

will still be in cache

Caching goal:
• Maximize cache hits
• Minimize cache misses

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Level k:

Level k+1:

4

4 10

10

Level k is a cache
for level k+1

33

34

VM Effects on Security and Speed
Q: What effect does virtual memory have on the security and speed of processes?

 Security Speed

A.

B.

C.

D.

So, with caching, we finally
arrive at the answer:

Security Speed

 not so much

35

Do Exam Questions Exhibit Temporal Locality?
Here’s a real question from an old exam:

For caching in a memory hierarchy, what is the best motivation for a larger cache
block size?

A. Temporal Locality

B. Spatial Locality

C. Both

D. Neither

B
Spatial locality makes use of
subsequent data after a given
read, so having more data to
keep reading is a win.

Agenda

The process abstraction

The memory abstraction and memory management

• Virtual Memory

• The Storage Hierarchy, Locality and Caching

• Cache Management

36

Cache Management

37

Device Managed by:
Registers
(cache of L1/L2/L3 cache and
main memory)

Compiler, using complex code-
analysis techniques
Assembly lang programmer

L1/L2/L3 cache
(cache of main memory)

Hardware, using simple
algorithms

Main memory
(cache of local sec storage)

Hardware and OS, using virtual
memory with complex algorithms
(since accessing disk is
expensive)

Local secondary storage (cache
of remote sec storage)

End user, by deciding which files
to download

Cache Block Size
Large block size:

+ do data transfer less often
+ take advantage of spatial locality
- longer time to complete data transfer
- can hurt temporal locality, since more data have to be evicted

Small block size: the opposite
Typical: further away memory ⇒ slower data transfer ⇒ larger block sizes

Device Block Size
Register 8 bytes
L1/L2/L3 cache line 128 bytes
Main memory page 4KB or 64KB
Disk block 512 bytes to 4KB
Disk transfer block 4KB (4096 bytes) to

64MB (67108864 bytes)
38

Cache Eviction Policies

Best eviction policy: “oracle”
• Always evict a block that is never accessed again, or…
• Always evict the block accessed the furthest in the future
• Impossible to know in the general case

Worst eviction policy
• Always evict the block that will be accessed next
• Causes thrashing
• Also doesn’t happen in general case

39

Cache Eviction Policies

Reasonable eviction policy: LRU policy
• Evict the “Least Recently Used” (LRU) block

• With the assumption that it will not be used again (soon)
• Future behavior will look kind of like recent behavior

• Good for straight-line code
• (Can be) bad for (large) loops
• Expensive to implement

• Often simpler approximations are used
• See Wikipedia “Page replacement algorithm” topic

40

Ordering Operations and Spatial Locality

Matrix multiplication example
• Matrix = two-dimensional array
• Multiply n-by-n matrices A and B
• Store product in matrix C

Performance depends upon
• Effective use of caching (as implemented by system)
• Good locality (as implemented by you)

41

Two-dimensional arrays are stored in either row-major or column-major order

C uses row-major order
• Access in row order ⇒ good spatial locality
• Access in column order ⇒ poor spatial locality

Spatial Locality Example: Matrix Multiplication

18 19

21 22

20

23

24 25 26

0 1 2

0

1

2

18

19

21

22

20

23

24

25

26

a[0][0]

a[0][1]

a[0][2]

a[1][0]

a[1][1]

a[1][2]

a[2][0]

a[2][1]

a[2][2]

18

21

19

22

24

25

20

23

26

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

row-major col-major

a

42

Spatial Locality Example: Matrix Multiplication

for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 for (k=0; k<n; k++)
 c[i][j] += a[i][k] * b[k][j];

Reasonable cache effects
• Good locality for A
• Bad locality for B
• Good locality for C

43

a b c

i
k

k

j

i

j

Spatial Locality Example: Matrix Multiplication

Poor cache effects
• Bad locality for A
• Bad locality for B
• Bad locality for C

for (j=0; j<n; j++)
 for (k=0; k<n; k++)
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * b[k][j];

44

a b c

i
k

k

j

i

j

Spatial Locality Example: Matrix Multiplication

Good cache effects
• Good locality for A
• Good locality for B
• Good locality for C

for (i=0; i<n; i++)
 for (k=0; k<n; k++)
 for (j=0; j<n; j++)
 c[i][j] += a[i][k] * b[k][j];

45

a b c

k

j

i

j

i
k

46

Another Ghost of Exams Past …
Suppose that C laid out arrays in column-major order instead of row-major order.

What would be the most efficient loop ordering for matrix multiplication
to maximize performance through good locality?

A. i k j (Same as row-major)

B. i j k

C. j k i

D. j i k

E. k i j

F. k j i

C: j k i

Exactly what makes this bad
for all three in row-major
makes it ideal for column-major:
a and c have good spatial
b has good temporal, spatial

for (i=0; i<n; i++)

 for (k=0; k<n; k++)

 for (j=0; j<n; j++)

 c[i][j] += a[i][k] * b[k][j];

Next time …
Getting started with ARM assembly language

47
Lobsterthermidor , Raysonho

https://commons.wikimedia.org/wiki/User:Lobsterthermidor
https://commons.wikimedia.org/wiki/User:Raysonho

