-

COS 217: Introduction to Programming Systems

Assignment 4.
Directory and File Trees

% PRINCETON UNIVERSITY




-
Assignment 4 Goals

1. Gain more familiarity with data structures (lecture 10, precepts 10-15)
« Beyond the simplest linked lists: trees
 [ntroduce the Abstract Object (AO) model
 Similar to Abstract Data Type (ADT), but there's only one of them
« Don't pass an "object" to functions - they implicitly use the appropriate static variables

Abstract Data Type Abstract Object
struct myADT {
int varl, var2; static int myAO_varl, myAO_var2;
}i
typedef struct myADT *myADT_T;
void myADT_funcl(myADT_T obj, int param) void myAO_funcl(int param)
{...1} { ...}




-

Assignment 4 Goals

1. Gain more familiarity with data structures (lecture 10, precepts 10-15)

2. Practice debugging (lecture 12, precepts 5 and 9)

* Especially using gdb and, to a lesser extent, MemInfo




(

Assignment 4 Goals

1. Gain more familiarity with data structures (lecture 10, precepts 10-15)
2. Practice debugging (lecture 12, precepts 5 and 9)

3. Take responsibility for your own testing (lectures 9 and 13)
« Some of the testing cases/code may not be written for you (eep!)
* You will write a "checker" that verifies an AO's internal state to make sure it's sound




(

Assignment 4 Goals

R

Gain more familiarity with data structures (lecture 10, precepts 10-15)
Practice debugging (lecture 12, precepts 5 and 9)
Take responsibility for your own testing (lectures 9 and 13)

Design your own modules and interfaces (lecture 13)
We will give you a high-level interface and client code
You will decide what other modules to write, and what interfaces they have




-

Assignment 4 Goals

o & W bh F

Gain more familiarity with data structures (lecture 10, precepts 10-15)
Practice debugging (lecture 12, precepts 5 and 9)

Take responsibility for your own testing (lectures 9 and 13)

Design your own modules and interfaces (lecture 13)

Read code that you didn't write
Unusual assignment: large parts of it don't involve writing code
Mimics the real world: you won't re-write fa&NG from scratch on day 1




The Sting (1973)




Trees

10

stockio.com




-

Trees (as seen by computer scientists)

11




-
Trees (as implemented by computer scientists)

root

12




-

Trees (as implemented by computer scientists)

13

parent

children




-
Trees and Filesystems

* Trees encode hierarchical relationships

* So do filesystems

 Adirectory can hold files or other directories (folders, if you must ...
e All directories and files are reachable from the root

14




(/"

Filesystems as Trees

 Small extension of plain trees

e All interior nodes are directories
e Some leaves are files, with associated contents

*
4 #include <stdio.h>
int main(void) {

i..

Lorem ipsum dolor
sit amet,
consectetur
adipiscing elit ...

15,
J




-

Filesystems as Trees

 Our naming convention: each node has a path name
 Path name of a node has the path of parent, plus a'/', plus the name of node

e Root node has its own name

d

A

ﬂ a/c

Lorem ipsum dolor

‘Q

#include <stdio.h>
sit amet,
consectetur

int main(void) {
"Iilililiill" |
adipiscing elit ...

16
J




(/"

Filesystems as Trees

 Our naming convention: each node has a path name
* Names need not be globally unique, but siblings must have distinct names

A

ﬂ a/c

Lorem ipsum dolor

‘Q

#include <stdio.h>
sit amet,
consectetur

int main(void) {
“|=ii|%!i|%|’ |
adipiscing elit ...

17
J




[

A4 Premise

e Someone has created a filesystem-as-tree API
... plus some not-so-great implementations of simpler versions of this data structure

You have access to the API, and client code

You do not have access to all the implementations

Parts 1 and 2: figure out why the implementations are buggy

Part 3: refactor, rework, and extend a partial implementation to match new API

18|




19

PART 1




-

Part 1 Simplifications

20,

Simplification #1: no files - everything's a directory. (Also for part 2.)

Simplification #2: binary trees - no more than 2 children per node.

Put these together, and we have Binary Directory Trees (BDTs).




/

Part 1 API

Summary of APl in bdt. h (but read it yourself for details, including error handling!)

int BDT _init(void); Sets the data structure to initialized status.

Removes all contents and returns data structure to

int BDT_destroy(void); o
uninitialized status.

Inserts a new path into the tree, if possible.

int BDT _insert(const charx pcPath); ) _
! 1 ( P ) (Like mkdir -p)

Returns TRUE if the tree contains a Node with

boolean BDT _contains(const charx pcPath);
- P absolute path pcPath?

Removes the directory hierarchy rooted at path.

int BDT_rm(const charx pcPath); _
—rm( P ) (Like rm -r)

Returns a string representation of

charx BDT_toString(void);
the data structure.

21




-
Part 1 Functionality

So, how does this work? Let's look at some (renamed) excerpts from bdt_client.c
assert(BDT_init() == SUCCESS);
assert(BDT_insert("a") == SUCCESS);
assert(BDT_insert("a/b/c") == SUCCESS);
assert(BDT_contains ("a") == TRUE);
assert(BDT_contains ("a/b") == TRUE);
assert(BDT_contains ("a/b/c") == TRUE);
assert((temp = BDT_toString()) '= NULL);
fprintf(stderr, "%s\n", temp);

a
o a/b

\_ a/b/c W,




-
Part 1 - Behind the Scenes: ad4def. h Definitions

/* Return statuses *x/

enum { SUCCESS,
INITIALIZATION_ERROR,
ALREADY_IN_TREE,
NO_SUCH_PATH, CONFLICTING_PATH, BAD_PATH,
NOT_A_DIRECTORY, NOT_A_FILE,
MEMORY_ERROR

¥

/* In lieu of a proper boolean datatype *x/
enum bool { FALSE, TRUE };

/* Make enumeration "feel" more like a builtin type %/
23

typedef enum bool boolean;




-
Part 1 - Behind the Scenes: bdt. ¢ Definitions

BDT Abstract Object static variable declarations:

/* 1. a flag for being in an initialized state (TRUE) or not (FALSE) x/
static boolean bIsInitialized;

/* 2. a pointer to the root node in the hierarchy x/

static struct node *psRroot;

/* 3. a counter of the number of nodes in the hierarchy x/

static size_t ulCount;

24




-

Part 1 - Behind the Scenes: Trace (at program start)

bIsInitialized psRoot ulCount

FALSE ° 0

N

How do we know that these are
the initial values, given that we
did not initialize them explicitly?

(Hint: what section of memory
are they in?)




[

Part 1 - Behind the Scenes: Trace (after initialization)

26

bIsInitialized

psRoot

ulCount

TRUE

0

BDT_init();




[

Part 1 - Behind the Scenes: Trace (one-node insert)

27

bIsInitialized psRoot ulCount
TRUE \ 1
\ / psParent field BDT insert(llall) .
— ’
@
(a) «~—T opPath field (a pointer to a Path_T object)
@ ‘N‘

psChildl, psChild?2 fields




[

Part 1 - Behind the Scenes: Trace (multi-node insert)

28|

bIsInitialized psRoot ulCount

TRUE \ 3

BDT _insert("a/b/c");




-
Part 1 - Behind the Scenes: Trace (second child)

bIsInitialized psRoot ulCount
TRUE \ 4
\ |
(a)
/[ ° BDT _insert ("a/b/d");
(a/b)
/SN
(a/b/c (a/b/d)
@ @ @ @
29
\_ J




-
Part 1 -Error Statuses (duplicate, bad root, 3" child)

bIsInitialized psRoot ulCount
TRUE 1 4
assert(BDT_insertPath("a/b/c")
\ == ALREADY_IN_TREE);
o assert(BDT_insertPath("d/e/f")
(a) == CONFLICTING_PATH);
[ ° assert(BDT_insertPath("a/b/e")
== CONFLICTING_PATH);
(a/b)
7N
(a/b/c (a/b/d)
@ @ @ @
30|
\_ )




-
Part 1 - Special Case: Promotion

bIsInitialized psRoot ulCount

TRUE \ 3

/[ BDT _rm("a/b/c");
(a/b)

®
Invariant: if there is .

only one child, it must be (a/b/d)
childl ® o

31




-
Part 1 - What to Do

Great! So... we need to implement the bdt.h APl. No problem.

Nope - we've done that for you!

$ make $ ./bdtGood
gcc217 —g —c dynarray.c Checkpoint 1:
gcc2l7 —g —c path.c lroot _
gcc217 —-g —c bdt_client.c 1I’00t/2Ch:!.1d :
- lroot/2child/3grandchild
gcc217 -g dynarray.o path.o bdtGood.o bdt_client.o -o bdtGood 1root/2second
gcc217 —-g dynarray.o path.o bdtBadl.o bdt_client.o -0 bdtBadl
gcc2l7 —g dynarray.o path.o bdtBad2.o0 bdt_client.o —o bdtBad2 .
gcc217 —-g dynarray.o path.o bdtBad3.o0 bdt_client.o -o bdtBad3

gcc2l7m —-g —-c dynarray.c —-o dynarrayM.o

gcc2l7m —-g —-c path.c —-o pathM.o

gcc217m —g —-c bdt_client.c -o bdt_clientM.o

32/ gcc2l7m —-g dynarrayM.o pathM.o bdtBad4.o bdt_clientM.o -o bdtBad4

\_ gcc21l7m —-g dynarrayM.o pathM.o bdtBad5.o0 bdt_clientM.o -o bdtBad5 )




-
Part 1 - What to Do

OK, so what's there for us to do?

(z002) 11 @posid3 siep Jeis

3\
[visible confusion]

$ ./bdtBadl

bdtBadl: bdt_client.c:24: main: Assertion
"BDT_insert("1root/2child/3grandchild") == INITIALIZATION_ERROR'
failed.

Aborted (core dumped)

33




-
Part 1 - What to Do

Ah. OK, no problem. Let's just take a look at bdtBadl.c and ...

$ cat bdtBadl.c
cat: bdtBadl.c: No such file or directory

$ 1ls bdtx

bdt.h bdtBadl.o bdtBad2.o0 bdtBad3.o0
bdtBad4.0 bdtBad5.0 bdtGood.o bdt_client.o
bdtBadl bdtBad?2 bdtBad3 bdtBad4

bdtBad5 bdtGood bdt_client.c bdt _clientM.o

34



https://unsplash.com/@saif71

-

Part 1 - What to Do

35|

Wait, you mean we don't get to see the source? That's cruel...

| didn't say that.

So then what do you expect us to do?

Or, more likely if following our course materials,
run gdb from within emacs

$ gdb bdtBadl -

... and the fun begins!




(

Part 1 - What to Do

36|

What you must do: debug.

* You do not have to identify the bug itself, only its location (function granularity).

e But, this must be the location of the underlying error, which is not
necessarily where the error manifests itself or is "noticed" by the client.

S g o



https://unsplash.com/@pluyar

37

PART 2




-

Part 2 Simplifications

38|

Simplification: no files - everything's a directory.

But now, trees of arbitrary branching factor are allowed.

So now we have Directory Trees (DTSs).




-

Part 2 - Behind the Scenes: Node T

New / repurposed code: nodeDT.h, dynarray.h and dynarray.c

Node definition:
typedef struct node *Node_T;

struct node {
/* this directory's absolute pathx/
Path_T oPPath;

/* this node's parent, NULL for the root of the directory tree x/
Node T oNParent;

/* this directory's children (subdirectories) stored in sorted order by pathname x/

DynArray_T oDChildren;




-

Part 2 - Behind the Scenes: DynArray_T

DynArrays implement dynamically resizable arrays
« We've implemented them for you. Correctly, even. Aren't we nice?

DynArray definition:
typedef struct DynArray *DynArray_T;
struct DynArray {
/* The number of elements in the DynArray from the client's point of view. x/

size_t ulLength;

/* The number of elements in the array that underlies the DynArray. */

size_t uPhysLength;

/* The array that underlies the DynArray. x/

const void sxppVvArray;
1 $\\\\\\\\“‘*\\\\\\\\\_ Pointer to array of voidx

(allows resizing)




[

Part 2 - Behind the Scenes: Trace (initialize, insert)

41

bIsInitialized psRoot ulCount
TRUE \ 1
DT _init();
/ oNParent field DT_insert("a") .
@
(a) «~—T oPPath field (a pointer to a Path_T object)
I "~ opChildren field

T~ struct DynArray




[

Part 2 - Behind the Scenes: Trace (insert a child)

42

bIsInitialized

psRoot

ulCount

TRUE

A\

2

(a/b)

DT _insert("a/b");




[

Part 2 - Behind the Scenes: Trace (insert 2"9 child)

43

bIsInitialized

psRoot

ulCount

TRUE \ 3
(;)
|
Y
/
(a/b) (a/c)
! I

DT _insert("a/c");




-
Part 2 - Behind the Scenes: Trace (insert 3™ child)

bIsInitialized psRoot ulCount

TRUE \ 4
°

| . (a)
Invariant: children

in sorted order I

DT _insert ("a/a");

(a/b) (a/c) (a/a)

44




[

Part 2 - What to Do

45

Great! So *now* do we go implement the dt.h API?

Nope - we've done that for you! (Again.)

$ make

gcc2l1l7 —-g —-c dynarray.c
gcc2l1l7 -g —-c path.c
gcc217 -g —-c checkerDT.c
gcc217 -g —c nodeDTGood.c
gcc2l7 —-g —c dtGood.c
gcc2l7 —-g —c dt_client.c

gcc2l1l7 —-g dynarray.o path.o checkerDT.o nodeDTGood.o dtGood.o dt_client.o -o dtGood
gcc21l7 —-g dynarray.o path.o checkerDT.o nodeDTBadla.o dtBadla.o dt_client.o -0 dtBadla
gcc2l1l7 —-g dynarray.o path.o checkerDT.o nodeDTBadlb.o dtBadlb.o dt_client.o -o dtBadlb
gcc2l1l7 —-g dynarray.o path.o checkerDT.o nodeDTBad2.0 dtBad2.o0 dt_client.o -o dtBad2
gcc2l1l7 —-g dynarray.o path.o checkerDT.o nodeDTBad3.0 dtBad3.o0 dt_client.o -o dtBad3
gcc2l1l7 —-g dynarray.o path.o checkerDT.o nodeDTBad4.0 dtBad4.o0 dt_client.o -o dtBad4




-
Part 2 - What to Do

And there are still broken implementations!

$ ./dtBad?2

dtBad2: dt_client.c:67: main: Assertion
"DT_insert("1lroot/2child/3grandchild") == ALREADY_IN_TREE' failed.

Aborted (core dumped)

40|




-

a7

Ah. Sigh. We'll just fire up gdb and. ...

$ gdb dtBad2

(gdb) b 67
Breakpoint 1 at 0x4044c4: file dt_client.c, line 67.
(gdb) run
Breakpoint 1, main () at dt_client.c:67
67 assert(DT_insert("1root/2child/3grandchild") == ALREADY_IN_TREE);
(gdb) step

dtBad2: dt_client.c:67: main: Assertion
"DT_insert("1lroot/2child/3grandchild") == ALREADY_IN_TREE'
failed.

Program received signal SIGABRT, Aborted.

(@dudewheresmycode Y,



https://www.tiktok.com/@dudewheresmycode

-

Part 2 - What to Do

48|

Ummm... why don't we see info about / why can't we step into these functions?

We didn't compile with "-g" to include debugging info.

Wait, you mean we don't get to see the source? That's cruel...

Sorry.

So then what do you expect us to do?




-
Part 2 - What to Do

What you must do: write a checker for the data structure(s).

« Each mutator function calls CheckerDT_isValid before returning.

« checkerDT. c has the beginnings of an implementation for you to fill in,
including a full tree traversal and a couple of demonstration check implementations:

$ ./dtBadla

Not initialized, but count is not 0

dtBadla: dtBadla.c:320: DT_destroy: Assertion

"CheckerDT _isValid(bIsInitialized, oNRoot, ulCount)' failed.
Aborted (core dumped)

$ ./dtBadlb

P-C nodes don't have P-C paths: (1lroot) (1lroot/2child/3grandchild)
dtBadlb: nodeDTBadlb.c:165: Node_new: Assertion
"CheckerDT_Node_isValid(xpoNResult)' failed.

19 Aborted (core dumped)




-

Part 2 - Step 2.5

50,

Now examine our allegedly-good implementation in dtGood. c and nodeDTGood. c
and contrast with how an A+ COS 217 student would write it. Write a critiqgue.

» Pay special attention to the principles from the modularity lecture.
 Are the interfaces what you need?
Do you see ways to make the implementation better?

Less complex? More efficient? Clearer?
More extensible? (Hint, hint.)




51

PART 3




-
Part 3 Simplifications

Simplification: none.

Trees can now contain both directories and files.
* Files can't have children, but do have contents - a sequence of bytes of any size.

So now we have File Trees (FTs).

52




/

Part 3 API

53

Summary of APl in Tt.h (but read it yourself for details, including error handling!)
These functions are similar to what we had before:

int FT_init(void);

int FT_destroy(void);

int FT_insertDir(const charx pcPath);

boolean FT_containsDir(const charx pcPath);

int FT_rmDir(const charx pcPath);

charx FT_toString(void);

Sets the data structure to initialized status.
Removes all contents and returns data structure to
uninitialized status.

Inserts a new directory into the tree, if possible.
(Like mkdir -p)

Returns TRUE if the tree contains a directory with
absolute path pcPath.

Removes the hierarchy rooted at directory pcPath.
(Like rm -r)

Returns a string representation of
the data structure.




-

Part 3 API (cont.)

54

Summary of APl in Tt.h (but read it yourself for details, including error handling!)

* And these functions are new-ish:

int FT_insertFile(const char *xpcPath,
void *pvContents, size_t ulLength);

boolean FT_containsFile(const char xpcPath);

int FT_rmFile(const char xpcPath);

int FT_stat(const char xpcPath,
boolean *pbIsFile, size_t xpulSize);

void *FT_getFileContents(const char *pcPath);

void *FT_replaceFileContents(const char xpcPath,
void *pvNewContents, size_t ulNewLength);

Inserts a new file with absolute path pcPath,
with the given contents and given length.

Returns TRUE if the tree contains a file with absolute
path pcPath.

Removes the file at absolute path pcPath.

Does pcPath exist in the hierarchy?
If so, pass back whether it's a file & its length, if so.

Returns the contents of the file at abs. path pcPath.

Replaces current contents of the file at abs. path pcPath
with pvNewContents and returns the old contents.




-

Part 3 - What to Do

OK, so what broken implementations have you got for us this time?

Good news: no broken code. The catch: a blank editor isn’t technically broken code...

Great! We'll just quickly hack up dtGood.c from part 2...

Great! We'll sit back and watch while you create an
impenetrable web of conflicting dependencies and K
broken contracts. Good luck spending the next ‘
17 days continuously on gab.

So then what do you expect us to do?
o5




-
Part 3 - What to Do

What you must do: design and write high-quality code for the interface in ft.h

 Think before you code
 Learn from the lessons in part 2.5 (note, though, that you don't have to fix everything!)
* Design the appropriate interfaces you'll need
e Compose a Makefile
e Write supporting modules
 Implement the FT interface

* Likely borrowing ideas / code from dtGood.c
 Testyour FT implementation

* Definitely using ft_client.c

* Possibly adding more tests that you think up

(which you can verify against our sampleft.o)

 Probably using ideas from your checkerDT (though you’re not required to write one for FT)

57 e Critigue your FT implementation




-

Parthnered Assignment

58

For this assignment, you should partner with one (1) partner.

* Solo efforts are grudgingly acceptable, but strongly discouraged.

 Work together, mostly at the same time. We aren't as strict as COS 126,
but it's not OK for you to each do some work, and then cat it together.

* You may work with anyone in the class - not just from your own precept.
 To find a partner, hang out after precept / lecture, post on Ed, etc.



https://unsplash.com/@bamagal

-
|> Your First COS217 Partnered Assignment

Using a binary classification into bins "generally working" and "complete disaster”, how
do you think (on average) COS 217 students have done on this assignment in past
semesters?

A. Partnerships "generally working’,
Solo efforts "generally working" Partnerships' ratio is 11:1

B. Partnerships "generally working", Solo efforts' ratio is 1:1
Solo efforts "complete disaster”

C. Partnerships "complete disaster”,
Solo efforts "generally working"

D. Partnerships "complete disaster”,

> Solo efforts "complete disaster”,




