-

COS 217: Introduction to Programming Systems

Principles for Module Design

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike)
Chapter 4

https://unsplash.com/@slgoetz

-

Goals of this Lecture

Help you learn:
* How to create high-quality modules in C

Why?
* Abstraction is a powerful (the only?)

technique available for understanding
large, complex systems

 Modularity is a key manifestation of abstraction
* A mature programmer knows how to identify good abstractions in large programs

* A mature programmer knows how to convey a large program’s abstractions
via its modularity, including the separation from interface from implementation

-

Agenda

A good module:
* Provides encapsulation and establishes a contract
* Manages resources
* Provides a consistent interface
* Provides a minimal interface
* Detects and handles/reports errors
* Has strong cohesion and weak coupling

We will use the List, String, and
Symbol Table modules as examples

@danigtO7

https://unsplash.com/@danist07

-

A Good Module Establishes a Clear Contract

Here is what you know about me (e.g., | am a list)
Here are the operations you can ask me to perform

There is nothing else | will do for you, or you can know about me or
do to me

 Good for the module providing the interface
* Constraints clients, so don’t have to worry about them messing with internals

e Good for client modules
* Know what they can and can’t do, and needn’t worry about messing the

4 module up

-

Encapsulation + Information Hiding

Encapsulation: bundling together data and methods that operate on

the data, restricting access by means other than those methods
* An interface should hide implementation details

* A module should use its functions to encapsulate its data: clients can only
access the module through the functions in the ‘contract’

* A module should not allow clients to manipulate its internal data directly

Why?
e Clarity: Encourages abstraction: clients know what they can and cannot do
e Security: Clients cannot corrupt object by changing its data in unintended ways
e Flexibility: Allows implementation to change - even the underlying
representation, e.g. data structure - without affecting clients

-

Barbara LiSkOV, a pioneer in CS

"An abstract data type defines a class of abstract
objects which is completely characterized by the

operations available on those objects. This means i.e. Client needn’t,
that an abstract data type can be defined by defining | and doesn’t, know the
the characterizing operations for that type." representation

Barbara Liskov and Stephen Zilles.
"Programming with Abstract Data Types."
ACM SIGPLAN Conference on Very
High Level Languages, April 1974.

Turing Award winner 2008:

“For contributions to practical and
theoretical foundations of programming
language and system design, especially

related to data abstraction, fault tolerance,
and distributed computing.”

-
Abstract Data Type (ADT)

A data type has a representation:

An abstract data type has a
hidden representation;

all client code must access
the type through its interface:

and some operations:

-
Encapsulation with ADTs (wrong!)

list.h

<ﬂt Node {int key; struct Node *n?t;}':\>
struct List {struct Node xfirst;};

Nothing stops a client
from doing this!

If you put the
representation here,
then it’s not an
abstract data type,
it’s just a data type.

struct List s*new();

void insert(struct List xp, int key);
void concat(struct List p,

struct List *q);
int nth_key(struct List *p, int n);

client.c list_linked.c
#include "list.h" >#include "list.h"

p—>first = NULL;

nt f(void) { Etruct List *new()

struct List *p, *q; struct List *p;

p = new()i p = calloc(1l, sizeof(*p));

q = new(); assert(p != NULL);

nsert(p,6); return p;

insert(p,7); +

insert(q,5);

concat(p,q); void insert(struct List *p, int key) {...}

concat(q,p);

. return nth_key(q,1); void concat(struct List xp, struct List xq) { ... }

8 int nth_key(struct List *p, int n) { ... }

-

Encapsulation with ADTs (correct!)
list.h

Including only the
declaration in header file
enforces the abstraction: it
keeps clients from accessing
fields of the struct, allowing
implementation to change

struct List; Even compiler
doesn’t know
implementation
when compiling
client.c. So will
give error at
“p->first =
NULL;”

struct List s*new();
void insert(struct List xp, int key);
void concat(struct List p,

struct List *q);

int nth_key(struct List xp, W

[

. . struct Node {int key; struct Node *xnext;};
int f(void) { struct List {struct Node xfirst;};

client.c

#include

“Tinked.c
>#include "list.h"

struct List *p, *q;
p = new();

q = new();

insert (p,6);
insert (p,7);
insert (q,5);
concat (p,q);
concat (q,p); 1
return nth_key(q,1);

struct List *new()

struct List *p;

p = calloc(1, sizeof(xp));
assert(p != NULL);

return p;

Jl } void insert(struct List xp, int key) {...}
void concat(struct List *p, struct List *q) { ... }
\\» int nth_key(struct List *p, int n) { ... } Yy

Discussed in Precept

10

"Object-orientedness” with typedefs

Extensibility with function pointers

-
I> Question from Precept: Abstract Data Type?

Q: Is a string, as used by the <string. h> module an ADT?

A. Yes - clients can’t know the
implementation of strcpy, etc.

B. Yes - clients can’t know the

representation of strings. D
C. No - clients can know the We know the underlying
implementation of strcpy, etc. representation of strings.
D. No - clients can know the Clients can manipulate the
representation of strings. string’s state directly, not

. through the interface.
.4 E. No - strings are not a datatype. &

-
Module Specification

If you can’t see the representation (or the implementations of insert, concat, nth_key), then
how are you supposed to know what they do?

struct List;

struct List *xnew();
void insert(struct list xp, int key);
void concat(struct list xp,
struct list *q);
int nth_key(struct list *p, int n);

Specification:

A List p represents a sequence of integers a.

Operation new(): returns a list p representing the empty sequence.
Operation insert(p, i): if p represents g, causes p to how represent i -o.

Operation concat(p, q): if p represents g, and q represents 0,,
causes p to represent 0,-0, and leaves q representing 0..

Operation nth_key(p, n): if p represents o4 ‘0, where the length of g, is n, returns i
otherwise (if the length of the string represented by p is < n), it returns an arbitrary integer.

Doctor, it
hurts when

Ugh!? But specification makes clear that this is now the I do this
16 responsibility of the client. Note: already true for arrays in C.

-

Specifications Establish a Contract

17

A well-designed module establishes a contract
e A module should establish a contract with its clients

* The contract should describe what each function does, especially:
* Meanings of parameters
* Work performed
* Meaning of return value
e Side effects

Why?
* Facilitates cooperation between multiple programmers

* Assigns blame to contract violators!

e If all your functions have precise contracts and implement them correctly, then
the bug must be in someone else’s code

How? Comments in module interface

-

Specifications Allow Reasoning About Code

18

Can trace behavior of client code without
access to or knowing about how the list
ADT is implemented. And even if it’s not
yet implemented (by another team, say)

struct List;

struct List * new(void);
void insert(struct list xp, int key);
void concat(struct list xp,
struct list *q);
int nth_key(struct list *p, int n);

int f(void) {

struct List *p, *q;
p = new();

q = new();

insert (p,6);

insert (p,7);

insert (q,5);

concat (p,q);

concat (q,p);

return nth_key(q,1);

1 [1]
1 [1]
: [6]
:[7,6] 1 [1]

1 [7,6] : [5]
:[7,6,5]1 q:[5]
:[7,6,5] q:[5,7,6,5]
eturn 7

1 [1]
1 [1]

5 T TT TT TDO
o0 0.0 o0

-
Agenda

@danigtO7

A good module:
* Provides encapsulation and establishes a contract
* Manages resources
* Provides a consistent interface
* Provides a minimal interface
* Detects and handles/reports errors
* Has strong cohesion and weak coupling

https://unsplash.com/@danist07

Resource Management

20

A well-designed module manages resources consistently

e A module should release a resource iff the module has claimed that resource
* Allocate and free memory, open and close file, etc.

e Should client allocate and free a resource, or should module?
* Recall Symbol Table owning the key string from prior lecture

* Can be reasons for both, but generally who allocates should free

Why?
* Claiming and releasing resources at different levels is error-prone
Forget to free memory = memory leak
Forget to allocate memory = dangling pointer, seg fault
Forget to close file = inefficient use of a limited resource
Forget to open file = dangling pointer, seg fault

Exceptions to this rule should be clearly documented in comments

Passing Resource Ownership

24

Violations of / Diversions from expected resource ownership should
be noted explicitly in function comments

e.g., strdup in the string module, and an example in A4

(

Agenda

25

A good module:
* Provides encapsulation and establishes a contract
 Manages resources appropriately
* Provides a consistent and minimal interface
* Detects and handles/reports errors
* Has strong cohesion and weak coupling

@danigtO7

https://unsplash.com/@danist07

-

Consistency

26

A function's name should indicate its module, e.g. SymTable_put()

* Facilitates maintenance programming
* Programmer can find functions more quickly

* Reduces likelihood of name collisions (so important for non-static functions)
e From different programmers, different software vendors, etc.

A module's functions should use a consistent parameter order
* Facilitates writing client code

How Does C Do: Consistency in string.h

27

char
char
char
char
int
int
char
void
int

/* string.h x/

size_t strlen(const char *s);

Are function names consistent?

xstrcpy(char xdest, const char xsrc);
xstrncpy(char xdest, const char xsrc, size_t n);
xstrcat(char xdest, const char xsrc);
xstrncat(char xdest, const char xsrc, size_t n);
strcmp(const char *sl, const char %s2);
strncmp(const char xs1, const char *s2, size_t n);
xstrstr(const char xhaystack, const char *needle);
xmemcpy(void *dest, const void *src, size_t n);
memcmp (const void *s1, const void *s2, size_t n);

Is parameter order consistent?

-

Consistency in symtable.h

28

Are function names consistent?

SymTable_T
void
size_t

int

void

int

void

void

void

SymTable_new(void);
SymTable_free(SymTable_T oSymTable);
SymTable_getLength(SymTable_T oSymTable);
SymTable_put(SymTable_T oSymTable, const char xpcKey, const void *xpvValue);
*SymTable_replace(SymTable_T oSymTable, const char *xpcKey, const void xpvValue);
SymTable_contains(SymTable_T oSymTable, const char xpcKey);
*SymTable_get(SymTable_T oSymTable, const char xpcKey);
*SymTable_remove(SymTable_T oSymTable, const char *xpcKey);
SymTable_map(SymTable_T oSymTable,
void (xpfApply)(const char *pcKey, void *pvValue, void *pvExtra),
const void *xpvExtra);

Is parameter order consistent?

_et’s make List comply ...

List
(—) Every function name doesn't begin with “List_"
(+) First parameter identifies List_T object

Oops,
let's fix
that!

typedef struct List *List_T;

List T List_new();

void List_insert(List_T p, int key);
void List_concat(List_T p, List_T q);
int List_nth_key(List_T p, int n);

void List_free(List_T p);

List (revised)
(+) Each function name begins with “List_"
29 (+) First parameter identifies List_T object

(
Minimalism

A well-designed module has a minimal interface

* Function declaration should be in a module's interface if and only if:
* The function is necessary for functionality, or
* The function is necessary for clarity of client code

Why?

* More functions = higher learning costs, higher maintenance costs

30

e
|> Minimalism: Do we Need SymTable_contains?

Q: Assignment 3's interface has both SymTable_get () (which returns NULL if the
key is not found) and SymTable_contains() - is the latter necessary?

No - should be eliminated B

Yes - necessary for functionality SymTable bindings can have

Yes - necessary for efficiency NULL values, but
SymTable_get() can’t

tell these apart from keys
31 that aren’t in the table.

o 0w »

Yes - necessary for clarity

-
|> Now Hash This One Out

32

Q: Assignment 3 has SymTable_hash() defined in symtablehash.c’s
implementation, but not the symtable. h interface. Is this good design?

A. No - should be in interface to
enable functionality

B. No - should be in interface to
enable clarity

C. Yes - should remain an
implementation detail

C

It is only ever used internally,
and only in a hash table
implementation.

See discussion of “static”
functions in precept

(

Agenda

33

A good module:
* Provides encapsulation and establishes a contract
 Manages resources appropriately
* Provides a consistent and minimal interface
* Detects and handles/reports errors
* Has strong cohesion and weak coupling

@danigtO7

https://unsplash.com/@danist07

-

Error Handling

34

A well-designed module should:
e Detect errors (in C, with if statements or asserts)
 Handle and/or report errors.

Java provides language features to throw and catch exceptions

In C, some (less elegant) ways include:

e Use a function return value, that client can check and interpret

Use a (call-by-reference) function parameter, that client can check and interpret
Use a global variable, that client can check and interpret

Use an assert, and terminate the execution

(Languages like Java provide features to throw exceptions and catch them)

We recommend different approaches for user, programming errors

Handling Errors in C

35

C options for detecting errors

e 1 T statement
e assert macro

C options for handling errors
» Write message to stderr
* Impossible in many embedded applications
* Recover and proceed
* Sometimes impossible

* Abort process
e Often undesirable

Reporting Errors in C

36

C options for reporting errors to client (calling function)
e Use function return value?

Awkward if return value has some other natural purpose

Reporting Errors in C

37

C options for reporting errors to client (calling function)
» Set global variable?

int successful;

int div(int dividend, int divisor)
{
if (divisor == 0) {
successful = 0;
return 0;
¥
successful = 1;
return dividend / divisor;

}

quo = div(5, 3);
if (!'successful)
/* Handle the error x/

e Easy for client to forget to check
* Bad for multi-threaded programming
* Some standard C library functions set errno global variable

Reporting Errors in C

38

C options for reporting errors to client (calling function)
e Use call-by-reference parameter?

Awkward for client; must pass additional argument

Reporting Errors in C

39

C options for reporting errors to client (calling function)

e Call assert macro?

int div(int dividend, int divisor)

{

by

assert(divisor != 0);
return dividend / divisor;

quo = div(5, 3);

* Asserts could be disabled
e Error terminates the process!

-

User Errors

41

Errors that are best handled by the human user (often made by the human user)

Errors that “could happen”

Example: Bad data in stdin or command line input, too much/little data

Recommendation:
 Use 1T statement to detect
* Handle immediately if possible, or...

* Report to client via return value or call-by-reference parameter
 Don’t use global variables (not thread-safe, easy to ignore)

Programmer Errors

42

Errors best handled by a programmer (often made by the programmer)

Errors that “should never happen”

Examples: pointer parameter is NULL but should not be (violates a module’s
contract); invariant is true at entry into function but not at exit

For now, use assert to detect and handle, as a user can't do anything about it

* Programmer needs to get involved

The distinction sometimes is unclear
e Example: Write to file fails because disk is full
e Example: Divisor argument to div () is O, due to user input

Default: treat as user error

(

Agenda

50

A good module:
* Provides encapsulation and establishes a contract
 Manages resources appropriately
* Provides a consistent and minimal interface
* Detects and handles/reports errors
* Has strong cohesion and weak coupling

@danigtO7

https://unsplash.com/@danist07

-

Strong Cohesion and Weak Coupling

51

Strong cohesion
A module's functions should be strongly related to each other

Weak coupling

* Module should be weakly connected to other modules
e Interaction within modules should be more intense than among modules

Why?
» Strong cohesion facilitates abstraction, keeps modules small enough
* Weak coupling makes program easier to modify and modules easier to reuse

-

Strong Cohesion Examples

52

All functions are related to the encapsulated data

(+) Most functions are related to string handling

() Some functions are not related to string handling: memcpy, memcmp...
(+) But those functions are similar to string-handling functions

stdio.h

(+) Most functions are related to I/0

() Some functions don’t do I/0: sprintf, sscanf

(+) But those functions are similar to I/0 functions

SymTable

All functions are related to the encapsulated data

Design-time Weak Coupling Example

— Function call

Airplane
Airplane getlLat()
Simulator /1 getlLat() |::> getLon()
run() P getLon() Simulator getAlt()
v v getAt() () setLat()
move() é§\> setLat() setLon()
s setLon() \ setAlt()
setAlt() move()
e Simulator module calls e Simulator module calls
many functions in Airplane few functions in Airplane
e Strong design-time coupling * Weak design-time coupling

-

Maintenance-time Weak Coupling Example

55

= Changed together often
Client MyModule Client MyModule
f1() [j> f1() 20
f2() f3() £3()

* Maintenance programmer
changes Client and MyModule
together frequently

* Strong maintenance-time
coupling

* Maintenance programmer
changes Client and MyModule
together infrequently

* Weak maintenance-time
coupling

-
Achieving Weak Coupling

Achieving weak coupling could involve refactoring code:

* Move code from client to module (shown)
 Move code from module to client (not shown)
* Move code from client and module to a new module (not shown)

56

-

Summary

58

A good module:
* Provides encapsulation and establishes a contract
* Manages resources
* |s consistent
e Has a minimal interface
* Detects and handles/reports errors
* Has strong cohesion and weak coupling

@danigtO7

https://unsplash.com/@danist07

-
Sample Exam Questions

S17 Exam2 Q6c¢: What changes would be needed in a callback function for your A3
symbol table’s map function if the implementation of the symbol table is changed from
using a linked list to using a hash table?

59|

(

Sample Exam Question (Spring 2020 Exam 2)

60

Consider the following program, which consists of 6 files:
{a.h,a.c,b.h,b.c,c.h, c.c}

a.h:
#include <stddef.h>
/* struct a is a thing. you can't see inside,
better yet, just think of it as an object */
typedef struct a * a T;
a T a new(const char* src);
sIze_E aT _to size t(a T a);
void a free(a T a);

though.

a.c:
#include <stdlib.h>
#include <string.h>
#include "a.h”
struct a { size t a;};
a T a_new(const_char* src) {
char* res = strstr(src, "a");

a T a = malloc(sizeof (*a));
if (res == NULL) a->a = 0;
else a->a = res-src;

return a;

}

size t aT to size t(a T a) |
return a->a;

}

void a free(a T a) {
free(a);

}

b.h:

/* I need a.h to know what an a T is. */
#include "a.h”
a T getAnA (void);

b.c:

#include "b.h”

#include <stdio.h>enum { LIMIT =
a T getAnA (void) {

char buf[LIMIT];

scanf ("%s", buf);

return a new (buf);

}

100 };

c.h:

#include <stdio.h>
#include "b.h"

C.C.

#include "c.h”

int main (void) {

a T at = getAnA();

p;intf("%lu\n", aT to_size t(at));
return O;

}

What ambiguity or potential problem is exposed to clients of module A via the return value
of the a_new function?

Hint — consider the following inputs to the client program :

ensign, lieutenant, commander, captain, admiral.

J

-
Sample Exam Question (Fall 2015, Exam 2)

Consider the Queue interface:
/* A Queue is a first-in-first-out data structure.*/
/* First node of the queue*/
struct QueueNode * first;
/* The last node of the queue*/
struct QueueNode * last;
/* The number of elements in the queue */
int count;
/* Initialize the Queue */
void Queue_init (void);
/* Free the resources consumed by the Queue */
void Queue_free (void);
/* Return the number of items in the Queue */
int Queue_getCount (void);
/* Add item e to the end of the Queue. Return 1 (TRUE) if successful and 0 (FALSE) if memory is exhausted. */
int Queue_enqueue (void * e);
/* Remove the item at the front of the queue and return it. */
void * Queue_dequeue (void);

Q8b: Briefly describe two design problems with this code (i.e., two ways the .h file violates standard practice for modular software
61 development) and how they should be fixed?

