
COS 217: Introduction to Programming Systems

Principles for Module Design

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike)

Chapter 4

@slgoetz

https://unsplash.com/@slgoetz

Goals of this Lecture

Help you learn:
•How to create high-quality modules in C

Why?
•Abstraction is a powerful (the only?)

technique available for understanding
large, complex systems

•Modularity is a key manifestation of abstraction

•A mature programmer knows how to identify good abstractions in large programs

•A mature programmer knows how to convey a large program’s abstractions
via its modularity, including the separation from interface from implementation

2

Agenda

A good module:
•Provides encapsulation and establishes a contract
•Manages resources
•Provides a consistent interface
•Provides a minimal interface
•Detects and handles/reports errors
•Has strong cohesion and weak coupling

We will use the List, String, and
Symbol Table modules as examples

3

@danist07

https://unsplash.com/@danist07

A Good Module Establishes a Clear Contract

Here is what you know about me (e.g., I am a list)

Here are the operations you can ask me to perform

There is nothing else I will do for you, or you can know about me or
do to me

• Good for the module providing the interface
• Constraints clients, so don’t have to worry about them messing with internals

• Good for client modules
• Know what they can and can’t do, and needn’t worry about messing the

module up

4

Encapsulation + Information Hiding

Encapsulation: bundling together data and methods that operate on
the data, restricting access by means other than those methods
•An interface should hide implementation details
•A module should use its functions to encapsulate its data: clients can only

access the module through the functions in the ‘contract’
•A module should not allow clients to manipulate its internal data directly

Why?
•Clarity: Encourages abstraction: clients know what they can and cannot do
•Security: Clients cannot corrupt object by changing its data in unintended ways
•Flexibility: Allows implementation to change – even the underlying

representation, e.g. data structure – without affecting clients
5

Barbara Liskov, a pioneer in CS

6

"An abstract data type defines a class of abstract
objects which is completely characterized by the
operations available on those objects. This means
that an abstract data type can be defined by defining
the characterizing operations for that type."

Barbara Liskov and Stephen Zilles.
"Programming with Abstract Data Types."
ACM SIGPLAN Conference on Very
High Level Languages, April 1974.

Turing Award winner 2008:
“For contributions to practical and

theoretical foundations of programming
language and system design, especially

related to data abstraction, fault tolerance,
and distributed computing.”

i.e. Client needn’t,
and doesn’t, know the
representation

Abstract Data Type (ADT)
A data type has a representation:

and some operations:

7

struct Node {
 int key;
 struct Node *next;
};

struct List {
 struct Node *first;
}; struct List *new()

{
 struct List *p;
 p = calloc(1, sizeof(*p));
 assert(p != NULL);
 return p;
}

void insert(struct List *p, int key)
{
 struct Node *n;
 n = malloc(sizeof(*n));
 assert(n != NULL);
 n->key=key; n->next=p->first; p->first=n;
}

An abstract data type has a
hidden representation;
all client code must access
the type through its interface:
struct List;

struct List *new();
void insert(struct List *p, int key);
void concat(struct List *p,
 struct List *q);
int nth_key(struct List *p, int n);
...

Encapsulation with ADTs (wrong!)

8

list.h
struct Node {int key; struct Node *next;};
struct List {struct Node *first;};

struct List *new();
void insert(struct List *p, int key);
void concat(struct List *p,
 struct List *q);
int nth_key(struct List *p, int n);

#include "list.h"

int f(void) {
 struct List *p, *q;
 p = new();
 q = new();
 insert(p,6);
 insert(p,7);
 insert(q,5);
 concat(p,q);
 concat(q,p);
 return nth_key(q,1);
}

client.c list_linked.c
#include "list.h"

struct List *new()
{
 struct List *p;
 p = calloc(1, sizeof(*p));
 assert(p != NULL);
 return p;
}

void insert(struct List *p, int key) {...}

void concat(struct List *p, struct List *q) { ... }

int nth_key(struct List *p, int n) { ... }

If you put the
representation here,

then it’s not an
abstract data type,
it’s just a data type.

p->first = NULL;

Nothing stops a client
from doing this!

Encapsulation with ADTs (correct!)

9

list.h

#include "list.h"

int f(void) {
 struct List *p, *q;
 p = new();
 q = new();
 insert (p,6);
 insert (p,7);
 insert (q,5);
 concat (p,q);
 concat (q,p);
 return nth_key(q,1);
}

client.c list_linked.c
#include "list.h"

struct Node {int key; struct Node *next;};
struct List {struct Node *first;};

struct List *new()
{
 struct List *p;
 p = calloc(1, sizeof(*p));
 assert(p != NULL);
 return p;
}

void insert(struct List *p, int key) {...}
void concat(struct List *p, struct List *q) { ... }
int nth_key(struct List *p, int n) { ... }

struct List;

struct List *new();
void insert(struct List *p, int key);
void concat(struct List *p,
 struct List *q);
int nth_key(struct List *p, int n);

Including only the
declaration in header file

enforces the abstraction: it
keeps clients from accessing
fields of the struct, allowing
implementation to change

Even compiler
doesn’t know

implementation
when compiling
client.c. So will

give error at
“p->first =

NULL;”

Discussed in Precept

”Object-orientedness” with typedefs

Extensibility with function pointers

10

11

Question from Precept: Abstract Data Type?
Q: Is a string, as used by the <string.h> module an ADT?

A. Yes – clients can’t know the
implementation of strcpy, etc.

B. Yes – clients can’t know the
representation of strings.

C. No – clients can know the
implementation of strcpy, etc.

D. No – clients can know the
representation of strings.

E. No – strings are not a datatype.

D

We know the underlying
representation of strings.

Clients can manipulate the
string’s state directly, not
through the interface.

Ugh!? But specification makes clear that this is now the
responsibility of the client. Note: already true for arrays in C.

Doctor, it
hurts when
I do this Then don’t

do that!

Module Specification
If you can’t see the representation (or the implementations of insert, concat, nth_key), then
how are you supposed to know what they do?

Specification:

16

struct List;

struct List *new();
void insert(struct list *p, int key);
void concat(struct list *p,
 struct list *q);
int nth_key(struct list *p, int n);A List p represents a sequence of integers σ.

Operation new(): returns a list p representing the empty sequence.

Operation insert(p, i): if p represents σ, causes p to now represent i ·σ.

Operation concat(p, q): if p represents σ1 and q represents σ2,
causes p to represent σ1·σ2 and leaves q representing σ2.

Operation nth_key(p, n): if p represents σ1·i ·σ2 where the length of σ1 is n, returns i
 otherwise (if the length of the string represented by p is ≤ n), it returns an arbitrary integer.

Specifications Establish a Contract
A well-designed module establishes a contract

•A module should establish a contract with its clients
•The contract should describe what each function does, especially:

• Meanings of parameters
• Work performed
• Meaning of return value
• Side effects

Why?
•Facilitates cooperation between multiple programmers
•Assigns blame to contract violators!

• If all your functions have precise contracts and implement them correctly, then
the bug must be in someone else’s code

How? Comments in module interface
17

Specifications Allow Reasoning About Code

18

int f(void) {
 struct List *p, *q;
 p = new();
 q = new();
 insert (p,6);
 insert (p,7);
 insert (q,5);
 concat (p,q);
 concat (q,p);
 return nth_key(q,1);
}

p:[]
p:[] q:[]
p:[6] q:[]
p:[7,6] q:[]
p:[7,6] q:[5]
p:[7,6,5] q:[5]
p:[7,6,5] q:[5,7,6,5]
return 7

struct List;

struct List * new(void);
void insert(struct list *p, int key);
void concat(struct list *p,
 struct list *q);
int nth_key(struct list *p, int n);

Can trace behavior of client code without
access to or knowing about how the list
ADT is implemented. And even if it’s not
yet implemented (by another team, say)

Agenda

A good module:
•Provides encapsulation and establishes a contract
•Manages resources
•Provides a consistent interface
•Provides a minimal interface
•Detects and handles/reports errors
•Has strong cohesion and weak coupling

19

@danist07

https://unsplash.com/@danist07

Resource Management

A well-designed module manages resources consistently
•A module should release a resource iff the module has claimed that resource

• Allocate and free memory, open and close file, etc.
•Should client allocate and free a resource, or should module?

• Recall Symbol Table owning the key string from prior lecture
•Can be reasons for both, but generally who allocates should free

Why?
•Claiming and releasing resources at different levels is error-prone

• Forget to free memory Þ memory leak
• Forget to allocate memory Þ dangling pointer, seg fault
• Forget to close file Þ inefficient use of a limited resource
• Forget to open file Þ dangling pointer, seg fault

Exceptions to this rule should be clearly documented in comments
20

Passing Resource Ownership

Violations of / Diversions from expected resource ownership should
be noted explicitly in function comments

e.g., strdup in the string module, and an example in A424

/* somefile.h */

...

/* ...
 This function allocates memory for
 the returned object. You (the caller)
 own that memory, and are responsible
 for freeing it when you no longer
 need it. */
void *f();

…

Agenda

A good module:
•Provides encapsulation and establishes a contract
•Manages resources appropriately
•Provides a consistent and minimal interface
•Detects and handles/reports errors
•Has strong cohesion and weak coupling

25

@danist07

https://unsplash.com/@danist07

Consistency

A function's name should indicate its module, e.g. SymTable_put()
•Facilitates maintenance programming

• Programmer can find functions more quickly
•Reduces likelihood of name collisions (so important for non-static functions)

• From different programmers, different software vendors, etc.

A module's functions should use a consistent parameter order
•Facilitates writing client code

26

How Does C Do: Consistency in string.h

/* string.h */

size_t strlen(const char *s);
char *strcpy(char *dest, const char *src);
char *strncpy(char *dest, const char *src, size_t n);
char *strcat(char *dest, const char *src);
char *strncat(char *dest, const char *src, size_t n);
int strcmp(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2, size_t n);
char *strstr(const char *haystack, const char *needle);
void *memcpy(void *dest, const void *src, size_t n);
int memcmp(const void *s1, const void *s2, size_t n);
...

27

Are function names consistent?

Is parameter order consistent?

Consistency in symtable.h

SymTable_T SymTable_new(void);
void SymTable_free(SymTable_T oSymTable);
size_t SymTable_getLength(SymTable_T oSymTable);
int SymTable_put(SymTable_T oSymTable, const char *pcKey, const void *pvValue);
void *SymTable_replace(SymTable_T oSymTable, const char *pcKey, const void *pvValue);
int SymTable_contains(SymTable_T oSymTable, const char *pcKey);
void *SymTable_get(SymTable_T oSymTable, const char *pcKey);
void *SymTable_remove(SymTable_T oSymTable, const char *pcKey);
void SymTable_map(SymTable_T oSymTable,
 void (*pfApply)(const char *pcKey, void *pvValue, void *pvExtra),
 const void *pvExtra);

Are function names consistent?

Is parameter order consistent?

28

Let’s make List comply …

List
(-) Every function name doesn't begin with “List_”
(+) First parameter identifies List_T object

Oops,
let’s fix

that!
typedef struct List *List_T;

List_T new();

void insert(List_T p, int key);

void concat(List_T p, List_T q);

int nth_key(List_T p, int n);

void free(List_T p);

List (revised)
(+) Each function name begins with “List_”
(+) First parameter identifies List_T object29

typedef struct List *List_T;

List_T List_new();

void List_insert(List_T p, int key);

void List_concat(List_T p, List_T q);

int List_nth_key(List_T p, int n);

void List_free(List_T p);

Minimalism

A well-designed module has a minimal interface
•Function declaration should be in a module's interface if and only if:

• The function is necessary for functionality, or
• The function is necessary for clarity of client code

Why?
•More functions ⇒ higher learning costs, higher maintenance costs

30

31

Minimalism: Do we Need SymTable_contains?
Q: Assignment 3's interface has both SymTable_get() (which returns NULL if the

key is not found) and SymTable_contains() – is the latter necessary?

A. No – should be eliminated

B. Yes – necessary for functionality

C. Yes – necessary for efficiency

D. Yes – necessary for clarity

B

SymTable bindings can have
NULL values, but
SymTable_get() can’t
tell these apart from keys
that aren’t in the table.

32

Now Hash This One Out
Q: Assignment 3 has SymTable_hash() defined in symtablehash.c’s

implementation, but not the symtable.h interface. Is this good design?

A. No – should be in interface to
enable functionality

B. No – should be in interface to
enable clarity

C. Yes – should remain an
implementation detail

C

It is only ever used internally,
and only in a hash table
implementation.

 See discussion of “static”
functions in precept

Agenda

A good module:
•Provides encapsulation and establishes a contract
•Manages resources appropriately
•Provides a consistent and minimal interface
•Detects and handles/reports errors
•Has strong cohesion and weak coupling

33

@danist07

https://unsplash.com/@danist07

Error Handling

A well-designed module should:
•Detect errors (in C, with if statements or asserts)
•Handle and/or report errors.

Java provides language features to throw and catch exceptions

In C, some (less elegant) ways include:
• Use a function return value, that client can check and interpret
• Use a (call-by-reference) function parameter, that client can check and interpret
• Use a global variable, that client can check and interpret
• Use an assert, and terminate the execution
• (Languages like Java provide features to throw exceptions and catch them)

We recommend different approaches for user, programming errors34

Handling Errors in C

C options for detecting errors
•if statement
•assert macro

C options for handling errors
•Write message to stderr

• Impossible in many embedded applications
•Recover and proceed

• Sometimes impossible
•Abort process

• Often undesirable

35

Reporting Errors in C

C options for reporting errors to client (calling function)
•Use function return value?

Awkward if return value has some other natural purpose

int div(int dividend, int divisor, int *quotient)
{
 if (divisor == 0)
 return 0;
 ...
 *quotient = dividend / divisor;
 return 1;
}
...
successful = div(5, 3, &quo);
if (!successful)
 /* Handle the error */

36

Reporting Errors in C

C options for reporting errors to client (calling function)
•Set global variable?

• Easy for client to forget to check
• Bad for multi-threaded programming
• Some standard C library functions set errno global variable

int successful;
...
int div(int dividend, int divisor)
{
 if (divisor == 0) {
 successful = 0;
 return 0;
 }
 successful = 1;
 return dividend / divisor;
}
...
quo = div(5, 3);
if (!successful)
 /* Handle the error */

37

Reporting Errors in C

C options for reporting errors to client (calling function)
•Use call-by-reference parameter?

Awkward for client; must pass additional argument

int div(int dividend, int divisor, int *successful)
{
 if (divisor == 0) {
 *successful = 0;
 return 0;
 }
 *successful = 1;
 return dividend / divisor;
}
...
quo = div(5, 3, &successful);
if (!successful)
 /* Handle the error */

38

Reporting Errors in C

C options for reporting errors to client (calling function)
•Call assert macro?

• Asserts could be disabled
• Error terminates the process!

int div(int dividend, int divisor)
{
 assert(divisor != 0);
 return dividend / divisor;
}
...
quo = div(5, 3);

39

User Errors

Errors that are best handled by the human user (often made by the human user)

Errors that “could happen”

Example: Bad data in stdin or command line input, too much/little data

Recommendation:

• Use if statement to detect

• Handle immediately if possible, or…

• Report to client via return value or call-by-reference parameter
• Don’t use global variables (not thread-safe, easy to ignore)41

Programmer Errors
Errors best handled by a programmer (often made by the programmer)

Errors that “should never happen”

Examples: pointer parameter is NULL but should not be (violates a module’s
contract); invariant is true at entry into function but not at exit

For now, use assert to detect and handle, as a user can't do anything about it
• Programmer needs to get involved

The distinction sometimes is unclear
• Example: Write to file fails because disk is full
• Example: Divisor argument to div() is 0, due to user input

Default: treat as user error42

Agenda

A good module:
•Provides encapsulation and establishes a contract
•Manages resources appropriately
•Provides a consistent and minimal interface
•Detects and handles/reports errors
•Has strong cohesion and weak coupling

50

@danist07

https://unsplash.com/@danist07

Strong Cohesion and Weak Coupling

Strong cohesion
•A module's functions should be strongly related to each other

Weak coupling
•Module should be weakly connected to other modules
•Interaction within modules should be more intense than among modules

Why?
•Strong cohesion facilitates abstraction, keeps modules small enough
•Weak coupling makes program easier to modify and modules easier to reuse

51

Strong Cohesion Examples

52

(+) All functions are related to the encapsulated data

List

(+) Most functions are related to string handling
(-) Some functions are not related to string handling: memcpy, memcmp…
(+) But those functions are similar to string-handling functions

string.h

(+) Most functions are related to I/O
(-) Some functions don’t do I/O: sprintf, sscanf
(+) But those functions are similar to I/O functions

stdio.h

(+) All functions are related to the encapsulated data

SymTable

Design-time Weak Coupling Example

run()

move()

getLat()

getLon()

getAlt()

setLat()

Simulator

Airplane

• Simulator module calls
many functions in Airplane

• Strong design-time coupling

Function call

setLon()

setAlt()

run()

Simulator

• Simulator module calls
few functions in Airplane

• Weak design-time coupling

getLat()

getLon()

getAlt()

setLat()

Airplane

setLon()

setAlt()

move()

53

Maintenance-time Weak Coupling Example

f2() f3()

Client MyModule

• Maintenance programmer
changes Client and MyModule
together frequently

• Strong maintenance-time
coupling

f1() f2()

f3()

Client MyModule

• Maintenance programmer
changes Client and MyModule
together infrequently

• Weak maintenance-time
coupling

f1()

Changed together often

55

Achieving Weak Coupling

Achieving weak coupling could involve refactoring code:

•Move code from client to module (shown)
•Move code from module to client (not shown)
•Move code from client and module to a new module (not shown)

56

Summary

A good module:
•Provides encapsulation and establishes a contract
•Manages resources
•Is consistent
•Has a minimal interface
•Detects and handles/reports errors
•Has strong cohesion and weak coupling

58

@danist07

https://unsplash.com/@danist07

Sample Exam Questions
S17 Exam2 Q6c: What changes would be needed in a callback function for your A3

symbol table’s map function if the implementation of the symbol table is changed from
using a linked list to using a hash table?

59

Sample Exam Question (Spring 2020 Exam 2)
Consider the following program, which consists of 6 files:

{ a.h, a.c, b.h, b.c, c.h, c.c}.

a.h:
#include <stddef.h>
/* struct a is a thing. you can't see inside, though.
better yet, just think of it as an object */
typedef struct a * a_T;
a_T a_new(const char* src);
size_t aT_to_size_t(a_T a);
void a_free(a_T a);

a.c:
#include <stdlib.h>
#include <string.h>
#include "a.h”
struct a { size_t a;};
a_T a_new(const char* src) {
 char* res = strstr(src, "a");
 a_T a = malloc(sizeof(*a));
 if(res == NULL) a->a = 0;
 else a->a = res-src;
 return a;
}
size_t aT_to_size_t(a_T a) {
 return a->a;
}
void a_free(a_T a) {
 free(a);
}

b.h:
/* I need a.h to know what an a_T is. */
#include "a.h”
a_T getAnA(void);

b.c:
#include "b.h”
#include <stdio.h>enum { LIMIT = 100 };
a_T getAnA(void) {
 char buf[LIMIT];
 scanf("%s", buf);
 return a_new(buf);
}

c.h:
#include <stdio.h>
#include "b.h"

c.c:
#include "c.h”
int main(void) {
 a_T at = getAnA();
 printf("%lu\n", aT_to_size_t(at));
 return 0;
}

What ambiguity or potential problem is exposed to clients of module A via the return value
of the a_new function?
Hint – consider the following inputs to the client program :
ensign, lieutenant, commander, captain, admiral.

60

Sample Exam Question (Fall 2015, Exam 2)
Consider the Queue interface:

/* A Queue is a first-in-first-out data structure.*/
/* First node of the queue*/
struct QueueNode * first;
/* The last node of the queue*/
struct QueueNode * last;
/* The number of elements in the queue */
int count;
/* Initialize the Queue */
void Queue_init (void);
/* Free the resources consumed by the Queue */
void Queue_free (void);
/* Return the number of items in the Queue */
int Queue_getCount (void);
/* Add item e to the end of the Queue. Return 1 (TRUE) if successful and 0 (FALSE) if memory is exhausted. */
int Queue_enqueue (void * e);
/* Remove the item at the front of the queue and return it. */
void * Queue_dequeue (void);

Q8b: Briefly describe two design problems with this code (i.e., two ways the .h file violates standard practice for modular software
development) and how they should be fixed?61

