
COS 217: Introduction to Programming Systems

Errors and Debugging

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 5

We Talked about Testing
Testing
• Anticipating ways in which program can break

Debugging
•Something is wrong with the program
•Find it, so you can fix it

2

Goals of this Lecture
Learn strategies and tools for finding errors in code
• What is the buggy behavior?
• When does it appear?
• How do we fix it?

Why?
•Debugging large programs can be difficult

• More code, more interconnections
•Debugging is still an art, but

• A mature programmer knows a wide variety of debugging strategies
• A mature programmer knows about tools that facilitate debugging

• Thinking, Print statements, Debuggers, Version control systems, Profilers (a future lecture)

3

Agenda

• Build-time bugs: show up at build time
• Interpreting error messages

• Rum-time bugs: show up at run time
• Common types of coding errors in C
• Common types of dynamic memory management errors (in particular)

• Finding run-time bugs
• Dynamic memory management bugs
• Other bugs

4

Build-time Error Messages
Can seem confusing or be inaccurate

• Line # in error message may be close, but not exact

• Error message may seem nonsensical

• Compiler may not report the real underlying error

Let’s look at some examples …

5

Error Messages

6

1. #include <stdio.h>
2. /* Print "hello, world" to stdout and return 0. */
3. int main(void)
4. {
5. printf("hello, world\n")
6. return 0;
7. }

What’s the error?

Warning or Error?

$ gcc217 hello.c -o hello
hello.c: In function 'main':
hello.c:5:4: warning: implicit declaration of function
'prntf' [-Wimplicit-function-declaration]
 prntf("hello, world\n");
 ^
/tmp/cc2Q1XR0.o: In function `main':
hello.c:(.text+0x10): undefined reference to `prntf'
collect2: error: ld returned 1 exit status7

1. #include <stdio.h>
2. /* Print "hello, world" to stdout and return 0. */
3. int main(void)
4. {
5. prntf("hello, world\n");
6. return 0;
7. }

Which tool (preprocessor,
compiler, or linker)

reports the error(s)?

8

enumerating bugs

A. 5

B. 7

C. 8

D. 9

E. multiple lines

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(void)
4 {
5 enum StateType {
6 STATE_REGULAR,
7 STATE_INWORD
8 }
9 printf("just hanging around\n");
10 return EXIT_SUCCESS;
11 }

What is the line number
with the error?

What Does the Error Message Even Mean?

$ gcc217 states.c -o states
states.c:9:11: error: expected declaration specifiers or ‘...’
before string constant

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(void)
4 {
5 enum StateType {
6 STATE_REGULAR,
7 STATE_INWORD
8 }
9 printf("just hanging around\n");
10 return EXIT_SUCCESS;
11 }

9

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(void)
4 {
5 enum StateType {
6 STATE_REGULAR,
7 STATE_INWORD
8 };
9 printf("just hanging around\n");
10 return EXIT_SUCCESS;
11 }

Tips for Minimizing Build-time Errors
Clarity facilitates debugging

• Make sure code is indented properly
• Use auto-indent in editor (Ctrl-x p in Emacs): can also catch missing punctuation

Look for missing “punctuation”
• ; at ends of structure and enumerated type definitions
• ; at ends of function declarations
• ; at ends of do-while loops

Work incrementally, starting with first error shown
• Later errors can be figments of a previous one, which needs to be fixed

• Error messages may not be great
• Fixing first error may fix many of the others

• Fix, rebuild, repeat
10

Agenda

• Build-time bugs: show up at build time
• Interpreting error messages

• Rum-time bugs: show up at run time
• Common types of coding errors in C
• Common types of dynamic memory management errors (in particular)

• Finding run-time bugs
• Dynamic memory management bugs
• Other bugs

11

A “Rogues’ Gallery” of Common Run-time Errors
int i;
...
scanf("%d", i);

char c;
...
c = getchar();

switch (i) {
 case 0:
 ...
 case 1:
 ...
 case 2:
 ...
 break;
}

if (i = 5)
 ...

if (5 < i < 10)
 ...

if (i & j)
 ...

while (c = getchar() != EOF)
 ...

What are
the errors?

12

https://en.wikipedia.org/wiki/Rogues_gallery

• Can use -Wall option with gcc-217 to get warnings for some of these

https://en.wikipedia.org/wiki/Rogues_gallery

Pattern Mis-matching

for (i = 0; i < 10; i++) {
 for (j = 0; j < 10; i++) {
 ...
 }
}

What are
the errors?for (i = 0; i < 10; i++) {

 for (j = 10; j >= 0; j++) {
 ...
 }
}

13

“But this wasn't an issue in Java”

{
 int i;
 ...
 i = 5;
 if (something) {
 int i;
 ...
 i = 6;
 ...
 }
 ...
 printf("%d\n", i);
 ...
}

What value is
written if this
statement is
present? Absent?

14 • Will see more about scope and visibility in precept

Agenda

• Build-time bugs: show up at build time
• Interpreting error messages

• Rum-time bugs: show up at run time
• Common types of coding errors in C
• Common types of dynamic memory management errors (in particular)

• Finding run-time bugs
• Dynamic memory management bugs
• Other bugs

15

Look for Common DMM Bugs

Some of our “favorites:”
int *p;
... /* code not involving p */
*p = somevalue;

char *p;
...
fgets(p, 1024, stdin);

int *p;
...
p = malloc(sizeof(int));
*p = 5;
...
free(p);
...
*p = 6;

What are
the errors?

16

Look for Common DMM Bugs

Some of our “favorites:”
int *p;
...
p = malloc(sizeof(int));
...
*p = 5;
p = malloc(sizeof(int));

int *p;
...
p = malloc(sizeof(int));
...
*p = 5;
...
free(p);
...
free(p);

What are
the errors?

17

Look for Common DMM Bugs

Some of our “favorites:”
char *s1 = "hello, world";
char *s2;
s2 = malloc(strlen(s1));
strcpy(s2, s1);

long double *p;
p = malloc(sizeof(long double *));

char *s1 = ”hello, world";
char *s2;
s2 = malloc(sizeof(s1));
strcpy(s2, s1);

long double *p;
p = malloc(sizeof(p));

What are
the errors?

18 long double *p;
p = malloc(sizeof(*p));

Agenda

• Build-time bugs: show up at build time
• Interpreting error messages

• Rum-time bugs: show up at run time
• Common types of coding errors in C
• Common types of dynamic memory management errors (in particular)

• Finding run-time bugs
• Dynamic memory management bugs
• Other bugs

19

Finding DMM Bugs: Diagnose Seg Faults Using GDB

If you get a segmentation fault, make it happen in gdb
•Then issue the gdb where command

•Output will lead you to the line that caused the seg fault
• Of course, that line may not be where the cause of the problem resides
• But tells you which pointer causes the segfault, and where

•And where gives the stack trace of the function calls that got us to that point
• Can walk it backward to find the DMM problem

20

Finding DMM Errors: Manually Inspect Malloc Calls

Manually inspect every call of malloc()
•Make sure it allocates enough memory
•Check carefully, since you probably wrote it to begin with

Do the same for calloc() and realloc()

21

Finding DMM Errors: Hard-Code Malloc Calls

Temporarily change every call of malloc() to request
a large number of bytes
•Much more than program should need (often 10,000 bytes – could be more)
•Don’t change the malloc: comment it out and put in the new hard-coded one
•If the error disappears, then at least one of your calls is requesting too few bytes

Then incrementally (one by one) restore every call of malloc()
•When the error reappears, you might have found the culprit

Do the same for calloc() and realloc()

Time-consuming, but effective
22

Finding DMM Errors: Comment-Out Calls to free()
Temporarily comment-out every call of free()

•If the error disappears, then program is
• Freeing memory too soon, or
• Freeing memory that already has been freed, or
• Freeing memory that should not be freed,
• Etc.

Then incrementally “comment-in” each call of free()
•When the error reappears, you might have found the culprit

Time-consuming, but can be quite effective for free()s

23

24

Finding DMM errors: Use Memory Profiling Tools

Agenda

• Build-time bugs: show up at build time
• Interpreting error messages

• Rum-time bugs: show up at run time
• Common types of coding errors in C
• Common types of dynamic memory management errors (in particular)

• Finding run-time bugs
• Dynamic memory management bugs
• Other bugs
• Think carefully through the code: Speak out your logic and code walkthrough
• Refine and expand input and code • Focus on recent changes
• Add internal tests • Use print statements well
• Use a debugger25

Agenda

• Bugs that show up at Build time
• Interpreting error messages

• Bugs that show up at Run time
• Common types of coding errors in C
• Common types of memory management errors

• Finding run-time errors
• Dynamic memory management errors
• General errors:
• Think carefully through the code: Speak out your logic and code walkthrough
• Refine and expand input and code • Focus on recent changes
• Add internal tests • Use print statements well
• Use a debugger26

Refine and Expand Input Data

Incrementally find smallest input file that illustrates the bug

•Approach 1: Decrease input
• Start with full input file
• Incrementally remove lines and run program

until bug disappears
• Examine most-recently-removed lines

•Approach 2: Increase input
• Start with small subset of full input file
• Incrementally add lines until bug appears
• Examine most-recently-added lines

27

! ! OK

OK OK !

Bringing in the smallest input file for which the bug appears helps TAs help you

Refine and Expand Code

Incrementally find smallest client code that illustrates the bug

•Approach 1: Decrease code tested
• Start with test client
• Incrementally inactivate (don't actually remove) lines of code until bug disappears
• Examine most-recently-excluded lines

•Approach 2: Increase code tested
• Start with minimal client
• Incrementally add lines of test client until bug appears
• Examine most-recently-added lines

28

Focus on Recent Changes

Look first at the last thing(s) you did
•Corollary: Test and debug now, as you code, not later

Monotonous but Easier:

(1) Compose a little
(2) Test a little
(3) Debug a little
(4) Compose a little
(5) Test a little
(6) Debug a little
 …

Attractive but Difficult:

(1) Compose entire program
(2) Test entire program
(3) Debug entire program

29

Focus on Recent Changes

•Corollary: Maintain old versions of code

Low overhead but
Difficult recovery:

(1) Change code
(2) Note new bug
(3) Try to remember what
 changed since last
 version

Higher overhead but
Easier recovery:

(1) Backup current version
(2) Change code
(3) Note new bug
(4) Compare code with
 last version to
 determine what changed

30

git diff

Keep last correct version, last incorrect version you fully have your head around, etc.

Maintaining Old Versions

Use a Revision Control System

(Since you have to set it up anyway to get the files, you might as well
actually use it)

Allows programmer to:
• Check-in source code files from working copy to repository
• Commit revisions from working copy to repository

• saves all old versions
• Update source code files from repository to working copy

• Can retrieve old versions

•Appropriate for one-developer projects
•Extremely useful, almost necessary for multideveloper projects

31

Add (More) Internal Tests

•Internal tests help find bugs (as in “Testing” lecture)

•Internal tests also can help eliminate bug locations from your search space
• Validating parameters & checking invariants can help avoid bug hunting your entire codebase

32

Use Print Statements Well

Write values of important variables at critical spots, to see where a
bug lies or what certain key values are at that point

•Possibly poor:

•Maybe better:

•Better still:

printf("%d", keyvariable);
stdout is buffered;
program may crash
before output appears

printf("%d\n", keyvariable);
fflush(stdout);

printf("%d\n", keyvariable);

Call fflush() to flush
stdout buffer explicitly

Printing '\n' flushes
the stdout buffer, but
not if stdout is
redirected to a file

33

Use Print Statements Well

•Maybe even better:

•Maybe even better still:

fprintf(stderr, "%d\n", keyvariable);

FILE *fp = fopen("logfile", "w");
…
fprintf(fp, "%d\n", keyvariable);
fflush(fp);

Write debugging
output to stderr;
debugging output can
be separated from
normal output via
redirection

Write to a log file:
Good for long-running programs
Good for off-line diagnosis later

Bonus: stderr is
unbuffered

34

Finally, To Find Run-time Errors: Use a Debugger

GNU Debugger
•Part of the GNU development environment
•Integrated with Emacs editor
•Allows user to:

• Run program
• Set breakpoints
• Step through code one line at a time
• Examine values of variables during run
• Etc.

For details see precept materials
35

Go forth on your debugging adventure

36

Tanya Dusett

https://unsplash.com/@sinistertanya

