-

COS 217: Introduction to Programming Systems

Errors and Debugging

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 5

% PRINCETON UNIVERSITY

-

We Talked about Testing

Testing
* Anticipating ways in which program can break

Debugging
* Something is wrong with the program
e Find it, so you can fix it

(

Goals of this Lecture

Learn strategies and tools for finding errors in code
 What is the buggy behavior?
* When does it appear?
* How do we fix it?

Why?
* Debugging large programs can be difficult
* More code, more interconnections
* Debugging is still an art, but
* A mature programmer knows a wide variety of debugging strategies

* A mature programmer knows about tools that facilitate debugging
* Thinking, Print statements, Debuggers, Version control systems, Profilers (a future lecture)

(

Agenda

* Build-time bugs: show up at build time
* Interpreting error messages

* Rum-time bugs: show up at run time
e Common types of coding errors in C
« Common types of dynamic memory management errors (in particular)

* Finding run-time bugs
* Dynamic memory management bugs
 Other bugs

-

Build-time Error Messages

Can seem confusing or be inaccurate
* Line # in error message may be close, but not exact
* Error message may seem nonsensical

 Compiler may not report the real underlying error

Let’s look at some examples ...

-

Error Messages

()]

-
Warning or Error?

~l

-
|> enumerating bugs

5
7
8
9

00
m o O w »

multiple lines

-

What Does the Error Message Even Mean?

-

Tips for Minimizing Build-time Errors

10

Clarity facilitates debugging
* Make sure code is indented properly
* Use auto-indent in editor (Ctrl-x p in Emacs): can also catch missing punctuation

Look for missing “punctuation”
e ; at ends of structure and enumerated type definitions
e ; at ends of function declarations
e ; at ends of do-while loops

Work incrementally, starting with first error shown
* Later errors can be figments of a previous one, which needs to be fixed
* Error messages may not be great
* Fixing first error may fix many of the others
* Fix, rebuild, repeat

-

Agenda

11

* Rum-time bugs: show up at run time
e Common types of coding errors in C
e Common types of dynamic memory management errors (in particular)

* Finding run-time bugs
* Dynamic memory management bugs
e QOther bugs

-
A “Rogues’ Gallery” of Common Run-time Errors

switch (1) { int i;
case 0: . e
A scanf("%d", 1i);
case 1:
v char c;
case 2: .
e c = getchar();
break; 2
What are 3
the errors? while (c = getchar() '= EOF)

if (1 & j)

if (5 < i < 10)

https://en.wikipedia.org/wiki/Rogues gallery

10 ¢ Can use -Wall option with gcc-217 to get warnings for some of these

https://en.wikipedia.org/wiki/Rogues_gallery

Pattern Mis-matching

-

“But this wasn't an issue in Java”

* Will see more about scope and visibility in precept

(

Agenda

15

* Rum-time bugs: show up at run time

e Common types of dynamic memory management errors (in particular)

* Finding run-time bugs
* Dynamic memory management bugs
e QOther bugs

_Look for Common DMM Bugs

Some of our “favorites:”

_Look for Common DMM Bugs

Some of our “favorites:”

_Look for Common DMM Bugs

Some of our “favorites:”

char xs1 = "hello, world";
char *xs2;

s2 = malloc(strlen(sl));
strcpy(s2, s1);

char xs1 = "hello, world";
char xs2; What are
s2 = malloc(sizeof(sl)); the errors?

strcpy(s2, s1);

long double x*p;
p = malloc(sizeof(long double *));

long double *p;
p = malloc(sizeof(p));

long double *p;
p = malloc(sizeof(xp));

Agenda

19

* Finding run-time bugs
* Dynamic memory management bugs
e QOther bugs

-inding DMM Bugs: Diagnose Seg Faults Using GDB

20

If you get a segmentation fault, make it happen in gdb
* Then issue the gdb where command

* Qutput will lead you to the line that caused the seg fault
e Of course, that line may not be where the cause of the problem resides
e But tells you which pointer causes the segfault, and where

* And where gives the stack trace of the function calls that got us to that point
e Can walk it backward to find the DMM problem

-inding DMM Errors: Manually Inspect Malloc Calls

21

Manually inspect every call of malloc()

* Make sure it allocates enough memory
* Check carefully, since you probably wrote it to begin with

Do the same for calloc() and realloc()

-inding DMM Errors: Hard-Code Malloc Calls

22

Temporarily change every call of malloc() to request

a large number of bytes
* Much more than program should need (often 10,000 bytes - could be more)

* Don’t change the malloc: comment it out and put in the new hard-coded one
e |If the error disappears, then at least one of your calls is requesting too few bytes

Then incrementally (one by one) restore every call of malloc()
* When the error reappears, you might have found the culprit

Do the same for calloc() and realloc()

Time-consuming, but effective

Finding DMM Errors: Comment-Out Calls to free ()

23

Temporarily comment-out every call of free()

* |If the error disappears, then program is
* Freeing memory too soon, or
* Freeing memory that already has been freed, or
* Freeing memory that should not be freed,
* Etc.

Then incrementally “comment-in” each call of free()
* When the error reappears, you might have found the culprit

Time-consuming, but can be quite effective for free()s

-inding DMM errors: Use Memory Profiling Tools

Meminfo

Valgrind

Agenda

25

* Finding run-time bugs

e QOther bugs
* Think carefully through the code: Speak out your logic and code walkthrough
 Refine and expand input and code * Focus on recent changes

e Add internal tests * Use print statements well
 Use a debugger

Agenda

26

* Finding run-time errors

* General errors:
* Think carefully through the code: Speak out your logic and code walkthrough
 Refine and expand input and code * Focus on recent changes
e Add internal tests * Use print statements well
 Use a debugger

Refine and Expand Input Data

27

Incrementally find smallest input file that illustrates the bug

e Approach 1: Decrease input
e Start with full input file I | OK

* Incrementally remove lines and run program ' ']
until bug disappears

* Examine most-recently-removed lines

e Approach 2: Increase input
e Start with small subset of full input file OK OK |
* Incrementally add lines until bug appears :
 Examine most-recently-added lines I

Bringing in the smallest input file for which the bug appears helps TAs help you

Refine and Expand Code

28

Incrementally find smallest client code that illustrates the bug

e Approach 1: Decrease code tested
e Start with test client
* Incrementally inactivate (don't actually remove) lines of code until bug disappears
* Examine most-recently-excluded lines

e Approach 2: Increase code tested
e Start with minimal client

* Incrementally add lines of test client until bug appears
* Examine most-recently-added lines

-ocus on Recent Changes

29|

Look first at the last thing(s) you did

e Corollary: Test and debug now, as you code, not later

Attractive but Difficult:

(1) Compose entire program
(2) Test entire program
(3) Debug entire program

Monotonous but Easier:

1) Compose a little
2) Test a little

3) Debug a little

4) Compose a little
5) Test a little

6) Debug a little

(
(
(
(
(
(

-ocus on Recent Changes

30

e Corollary: Maintain old versions of code

Low overhead but
Difficult recovery:

(1) Change code

(2) Note new bug

(3) Try to remember what
changed since last
version

Higher overhead but
Easier recovery:

1) Backup current version

2) Change code

3) Note new bug

4) Compare code with
last version to

(
(
(
(

Keep last correct version, last incorrect version you fully have your head around, etc.

determine what changed v\

J

-

Maintaining Old Versions

31

Use a Revision Control System

(Since you have to set it up anyway to get the files, you might as well
actually use it)

Allows programmer to:

* Check-in source code files from working copy to repository

e Commit revisions from working copy to repository
* saves all old versions

» Update source code files from repository to working copy
* Can retrieve old versions

* Appropriate for one-developer projects
e Extremely useful, almost necessary for multideveloper projects

-
Add (More) Internal Tests

* Internal tests help find bugs (as in “Testing” lecture)

* Internal tests also can help eliminate bug locations from your search space
* Validating parameters & checking invariants can help avoid bug hunting your entire codebase

32

e
Use Print Statements Well

Write values of important variables at critical spots, to see where a
bug lies or what certain key values are at that point

° I .
Possibly poor: stdout is buffered;

printf("%d", keyvariable); |« program may crash
before output appears

* Maybe better: Printing '\n"' flushes
the stdout buffer, but

not if stdout is
redirected to a file

printf("%d\n", keyvariable); |[¢——

.| printf("sd\n", keyvariable); |, | Call fflush() to flush
* Better still: | #f1ush(stdout) stdout buffer explicitly

33

-

Use Print Statements Well

34

* Maybe even better:

fprintf(stderr, "%d\n", keyvariable);

* Maybe even better still:

FILE xfp = fopen("logfile", "w");

?printf(fp, "%d\n", keyvariable);
fflush(fp);

Write debugging
output to stderr;
debugging output can
be separated from
normal output via
redirection

Bonus: stderr is
unbuffered

Write to a log file:
Good for long-running programs
Good for off-line diagnosis later

inally, To Find Run-time Errors: Use a Debugger

35

GNU Debugger

e Part of the GNU development environment
* Integrated with Emacs editor

* Allows user to:
* Run program
* Set breakpoints
e Step through code one line at a time
e Examine values of variables during run
* Etc.

For details see precept materials

-

Go forth on your debugging adventure

Tanya Dugett

s,

—

- "

https://unsplash.com/@sinistertanya

