
COS 217: Introduction to Programming Systems

Abstraction:

Data Structures

@
mrthetrain

https://unsplash.com/@mrthetrain

This Wednesday – Oct 8, in class, at regular lecture time (10:40 am)

Info: https://www.cs.princeton.edu/courses/archive/fall25/cos217/exam1.php

Reminder — Midterm Exam!

2

https://www.cs.princeton.edu/courses/archive/fall25/cos217/exam1.php

Goals of this Lecture
1. Learn about Abstract Data Types

2. Learn (or refresh your memory) about:
• Common data structures: linked lists and hash tables (if not taken 226, or 126 …)

 Why? Deep motivation:
• Common data structures serve as “high level building blocks” for programs

• A mature programmer:
• Rarely creates programs from scratch
• Often creates programs using high level building blocks

 “Every program depends on algorithms and data structures, but few programs depend on the
invention of brand new ones.” -- Kernighan & Pike

 Why? Shallow motivation:
• Provide background pertinent to Assignment 3 (linked lists and hash tables)3

Data Structures as Abstractions: Abstract Data Types

Data structures are abstractions, implemented using primitive types
• Linked lists or trees using pointers, ints, strings, …
• Hash tables using arrays, pointers, ints, strings, …

Or using lower-level data structures
• Symbol table, used by compiler, implemented using linked lists or hash tables
• Should client (user) know which data structure is used in the implementation?

Data Structures can follow the rules of good abstraction
• Separation of interface from implementation
• Assignment 3: Abstract Data Types

4

Symbol Table
The abstraction: a collection of key/value pairs

• Lookup binding by key, get value back
• For these slides, a key is a string; a value is an int
• Unknown number of key-value pairs

Examples
• (student name, class year)

• (“Andrew Appel”, 81), (“Jen Rexford”, 91), (“JP Singh”, 87)
• (baseball player, number)

• (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)
• (variable name, value)

• (“maxLength”, 2000), (“i”, 7), (“j”, -10)

We will examine implementing this with linked lists and with hash tables

5

Should a Client Know Which Data Structure is Used?

- Dangerous w.r.t. separation of interface and implementation
- Client should only be able to access symbol table through the functions it allows

- What if the client is given access to the underlying data structure
(linked list or hash table)
- Allowing client to modify the implementation makes their interface

implementation-specific, and allows client deeper access (e.g. modification of
the implementation)

- Symbol table ADT exposes a set of things you can with/to it
- Find the value for a key
- Insert or delete a key value pair
- Whatever the symbol table ADT decides, nothing more6

Agenda

Linked lists

Hash tables

Hash table issues

Symbol table key ownership

7

Linked List Data Structure (for use by Symbol Table)

struct Node {
 const char *key;
 int value;
 struct Node *next;
};

struct List {
 struct Node *first;
};

Your Assignment 3
data structures will
be more general and
perhaps more elaborate

8

R u t h \0? ??
G e h r \0i g? ?

4 3
NULL

struct
List

struct
Node

struct
Node

Linked List Data Structure

4
"Gehrig"

3
"Ruth"

NULL

struct
List

struct
Node

struct
Node

Really this is the
address at which
a string with
contents “Ruth”
resides

9

struct Node {
 const char *key;
 int value;
 struct Node *next;
};

struct List {
 struct Node *first;
};

Your Assignment 3
data structures will
be more general and
perhaps more elaborate

struct List lineup;
struct Node g;
g.key = “Gehrig”;
lineup.first = &g;
(*lineup.first).value = 4;

struct Node* r =
 calloc(1,sizeof(struct Node));

(*lineup.first).next = r;

struct List lineup;
struct Node g;
g.key = “Gehrig”;
lineup.first = &g;
(*lineup.first).value = 4;
lineup.first->value = 4;
struct Node* r =
 calloc(1,sizeof(struct Node));
(*lineup.first).next = r;
lineup.first->next = r;

Accessing a Linked List

10

4 0
NULL

struct
List

struct
Node

struct
Node

struct Node {
 const char *key;
 int value;
 struct Node *next;
};

struct List {
 struct Node *first;
};

"Gehrig" NULL

list_linked.c
#include "list.h"

struct List *new()
{
 struct List *p;
 p = calloc(1, sizeof(*p));
 if(p == NULL) { return NULL; }
 return p;
}

void insert(struct List *p, const char* key, int value) {...}

void concat(struct List *p, struct List *q) { ... }

int nth_value(struct List *p, int n) { ... }

list_linked.c

Preview of A3/Lecture+2: Encapsulation (wrong!)

11

list.h
struct Node {const char* key; int value; struct Node *next;};
struct List {struct Node *first;};

struct List *new();
void insert(struct List *p, const char* key, int value);
void concat(struct List *p,
 struct List *q);
int nth_value(struct List *p, int n);

#include "list.h"

int f(void) {
 struct List *p, *q;
 p = new();
 q = new();
 insert(p,"six",6);
 insert(p,"sept",7);
 insert(q,"cinq",5);
 concat(p,q);
 concat(q,p);
 return nth_value(q,1);
}

client.c

If you put the
representation here,

then it’s not an
abstract data type,
it’s just a data type.

p->first = NULL;

Nothing stops a client
from doing this!

Preview of A3/Lecture+2: Encapsulation (right!)

12

list.h

#include "list.h"

int f(void) {
 List_T p, q;
 p = new();
 q = new();
 insert(p,"six",6);
 insert(p,"sept",7);
 insert(q,"cinq",5);
 concat(p,q);
 concat(q,p);
 return nth_value(q,1);
}

client.c list_linked.c
#include "list.h"

struct Node {const char *key; int value; struct Node *next;};
struct List {struct Node *first;};

struct List *new()
{
 struct List *p;
 p = calloc(1, sizeof(*p));
 if(p == NULL) {return NULL;}
 return p;
}

void insert(struct List *p, const char* key, int value) {...}
void concat(struct List *p, struct List *q) { ... }
int nth_value(struct List *p, int n) { ... }

struct List;
typedef struct List *List_T;

List_T new();
void insert(List_T p, const char* key, int value);
void concat(List_T p,
 List_T q);
int nth_value(List_T p, int n);

p->first = NULL;

Now this code won't
compile! Including only the

declaration in header file
enforces the

abstraction: it keeps
clients from accessing

fields of the struct,
allowing implementation

to change

Linked List Algorithms

Create
• Allocate List structure; set first to NULL
• Performance: O(1) ⇒ fast

Add (no check for duplicate key required)
• Insert new node containing key/value pair at front of list
• Performance: O(1) ⇒ fast

Add (check for duplicate key required)
• Traverse list to check for node with duplicate key
• Insert new node containing key/value pair into list
• Performance: O(n) ⇒ slow

13

Linked List Algorithms

Search
• Traverse the list, looking for given key
• Stop when key found, or reach end
• Performance: ???

14

15

Quick? Question
Q: How fast is searching for a key in a linked list?

A. Always fast – O(1)

B. Always slow – O(n)

C. On average, fast

D. On average, slow

Not well specified:

Depends on order of inserts, queries, etc.

Best answer is D.

Linked List Algorithms

Search
• Traverse the list, looking for given key
• Stop when key found, or reach end
• Performance: O(n) ⇒ slow

Free
• Free Node structures while traversing
• Free List structure
• Performance: O(n) ⇒ slow

16

Agenda

Linked lists

Hash tables

Hash table issues

Symbol table key ownership

17

Hash Table Data Structure (For COS 226 nerds – hashing with separate chaining)

enum { BUCKET_COUNT = 1024 };

struct Binding {
 const char *key;
 int value;
 struct Binding *next;
};

struct Table {
 struct Binding *buckets[BUCKET_COUNT];
}; NULL

4
"Gehrig"

NULL

3
"Ruth"

NULL

NULL
NULL0

1

806

23

723

…

…

…

NULL1023
…

struct
Table

struct
Binding

struct
Binding

Array of linked lists
Really this is the
address at which
“Ruth” resides

18
• You can handle hash tables just like you do linked lists

• Just get to the right list first. How? By hashing the key

Hash Table Data Structure

Hash function maps given key to an integer

Mod integer by BUCKET_COUNT to determine proper bucket

0

BUCKET_COUNT-1

Binding

Bucket

19

Hash Table Example

Example: BUCKET_COUNT = 7

Add (if not already present) bindings with these keys:
• the, cat, in, the, hat

20

Hash Table Example (cont.)

First key: “the”
• hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; not found

0
1
2
3
4
5
6

21

Hash Table Example (cont.)

Add binding with key “the” and its value to buckets[1]

0
1
2
3
4
5
6

X
the

22

Hash Table Example (cont.)

Second key: “cat”
• hash(“cat”) = 3895848756; 3895848756 % 7 = 2

Search buckets[2] for binding with key “cat”; not found

0
1
2
3
4
5
6

X
the

23

Hash Table Example (cont.)

Add binding with key “cat” and its value to buckets[2]

0
1
2
3
4
5
6

X
the

X
cat

24

Hash Table Example (cont.)

Third key: “in”
• hash(“in”) = 6888005; 6888005% 7 = 5

Search buckets[5] for binding with key “in”; not found

0
1
2
3
4
5
6

X
the

X
cat

25

Hash Table Example (cont.)

Add binding with key “in” and its value to buckets[5]

0
1
2
3
4
5
6

X
the

X
cat

X
in

26

Hash Table Example (cont.)

Fourth word: “the”
• hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; found it!
• Don’t change hash table

0
1
2
3
4
5
6

X
the

X
cat

X
in

27

Hash Table Example (cont.)

Fifth key: “hat”
• hash(“hat”) = 865559739; 865559739 % 7 = 2

Search buckets[2] for binding with key “hat”; not found

28

0
1
2
3
4
5
6

X
the

X
cat

X
in

Hash Table Example (cont.)

Add binding with key “hat” and its value to buckets[2]
• At front or back?

X
cat

29

0
1
2
3
4
5
6

X
the

hat

X
in

Hash Table Algorithms

Create
• Allocate Table structure; set each bucket to NULL
• Performance: O(1) ⇒ fast

Add
• Hash the given key
• Mod by BUCKET_COUNT to determine proper bucket
• Traverse proper bucket to make sure no duplicate key
• Insert new binding containing key/value pair into proper bucket
• Performance: ???

30

31

Now hash this one out …
Q: How fast is adding a key to a hash table?

A. Always fast

B. Usually fast, but depends on how many
keys are in the table

C. Usually fast, but depends on how many
keys hash to the same bucket

D. Usually slow

E. Always slow

C

If bindings are spread across
buckets, this is fast
(though B is a concern).

Worst case: everything hashes
to the same bucket – O(n)

Hash Table Algorithms

Search
• Hash the given key
• Mod by BUCKET_COUNT to determine proper bucket
• Traverse proper bucket, looking for binding with given key
• Stop when key found, or reach end
• Performance: Usually O(1) ⇒ fast

Free
• Traverse each bucket, freeing bindings
• Free Table structure
• Performance: O(n) ⇒ slow

32

Agenda

Linked lists

Hash tables

Hash table issues

Symbol table key ownership

33

How Many Buckets?
Many!

• Too few ⇒ large buckets ⇒ slow add, slow search

But not too many!
• Too many ⇒ memory is wasted

This is OK:

0

BUCKET_COUNT-1

34

What Hash Function?
Should distribute bindings across the buckets well

• Distribute bindings over the range 0, 1, …, BUCKET_COUNT-1
• Distribute bindings evenly to avoid very long buckets

This is not so good:

0

BUCKET_COUNT-1

What would be the worst
possible hash function?35

In the spirit of A0, let’s have a bash at this …
cmoretti@janet lec10 % for i in `cat names`; do echo ${#i} $i; done | sort -n | head -n 12 | column

3 Ark 3 Dev 3 Eve 3 Joy 3 Ray 3 Ryo
3 Ava 3 Era 3 Jie 3 Phu 3 Rin 3 Tom

cmoretti@janet lec10 % for i in `cat names`; do echo ${#i} $i; done | sort -nr | head -n 2 | column
13 Shreyassriram 13 Ourania-Maria

cmoretti@janet lec10 % for i in `cat names`; do echo ${#i}; done | sort -n | uniq -c
 12 3

 21 4
 42 5

 29 6
 25 7
 11 8

 6 9
 2 10

 2 13

cmoretti@janet lec10 % for i in `cat names`; do echo ${#i}; done | sort -n | uniq -c | wc -l

 9

36

How to Hash Strings?

Simple hash schemes don't distribute the keys evenly
• Number of characters, mod BUCKET_COUNT
• Sum the numeric codes of all characters, mod BUCKET_COUNT
• …

A reasonably good hash function:
• Weighted sum of characters si in the string s

• (Σ aisi) mod BUCKET_COUNT
• Best if a and BUCKET_COUNT are relatively prime (i.e., their GCD is 1)

• e.g., a = 65599, BUCKET_COUNT = 1024

37

How to Hash Strings?

A bit of math, and translation to code, yields:

size_t hash(const char *s, size_t bucketCount)
{
 enum { HASH_MULT = 65599 };
 size_t i;
 size_t h = 0;
 for (i = 0; s[i] != '\0'; i++)
 h = h * HASH_MULT + (size_t)s[i];
 return h % bucketCount;
}

38

Agenda

Linked lists

Hash tables

Hash table issues

Symbol table key ownership

39

How to Protect Keys?

Suppose a hash table function Table_add() contains this code:

void Table_add(struct Table *t, const char *key, int value)
{ …
 struct Binding *p =
 (struct Binding*)malloc(sizeof(struct Binding));
 p->key = key;
 …
}

40

How to Protect Keys?
Problem: Consider this calling code:

struct Table *t;
char k[100] = "Ruth";
…
Table_add(t, k, 3);

3
NULL

N0
1

806

23

723
…

…

1023
…

t

Ruth\0k

41

Ruth\0

How to Protect Keys?
Problem: Consider this calling code:

42

struct Table *t;
char k[100] = "Ruth";
…
Table_add(t, k, 3);
strcpy(k, "Gehrig");

What happens if the
client searches t for
“Ruth”? For "Gehrig"?

3
NULL

N0
1

806

23

723
…

…

1023
…

t

Gehrig\0k

k is REALLY &k[0]!

How to Protect Keys?

Solution: Table_add() saves a defensive copy of the given key

void Table_add(struct Table *t, const char *key, int value)
{ …
 struct Binding *p =
 (struct Binding*)malloc(sizeof(struct Binding));
 p->key = (const char*)malloc(strlen(key) + 1);
 strcpy((char*)p->key, key);
 …
} Why add 1?

43

What is missing from
this code that you
should have in yours?

How to Protect Keys?
Now consider same calling code:

struct Table *t;
char k[100] = "Ruth";
…
Table_add(t, k, 3);

3
NULL

N0
1

806

23

723
…

…

1023
…

t

Ruth\0k

44

Ruth\0

How to Protect Keys?
Now consider same calling code:

struct Table *t;
char k[100] = "Ruth";
…
Table_add(t, k, 3);
strcpy(k, "Gehrig");

3
NULL

N0
1

806

23

723
…

…

1023
…

t

Gehrig\0k

Ruth\0

Hash table is
not corrupted!

45

Who Owns the Keys?

Then the hash table owns its keys
• That is, the hash table allocated the memory in which its keys reside
• Table_remove() function must also free the memory in which the key resides,

not just the binding containing the key

46

Summary

Common data structures and associated algorithms
• Linked list

• (Maybe) fast add
• Slow search

• Hash table
• (Potentially) fast add
• (Potentially) fast search
• Very common

Hash table issues
• (Initial) Bucket array size
• Hashing algorithms

Symbol table concerns
• Key ownership

47

