
COS 217: Introduction to Programming Systems

Indirection

Command Line Arguments, Structures,
and Dynamic Memory

INDIRECTION IN COMMAND LINE ARGUMENTS
2

@athulca

$./printargv one two three

https://unsplash.com/@athulca

What’s My Name?
• String[] args was COS 126 day 1

• main() receives command line
 parameters in an array of strings
 in Java3

• But they are represented and
accessed differently

@wordsmithmedia

In C

• main() also receives arguments
in an array of strings
• Array of arrays of characters

https://unsplash.com/@wordsmithmedia

Indirection in Receiving Command Line Parameters
• main() receives arguments in array argv, a parameter to it

int main(int argc, char *argv[])

• main() doesn’t know how many parameters, or how long each is

• Indirection easily allows variable numbers and lengths of parameters
• argv: array of variable no. of pointers, each to variable-length string
• Note: As parameters, char *argv[] and char **argv are identical

• How many parameters? How long is each?
• Unlike Java, in C arrays aren’t objects with known lengths
• Can’t use sizeof(argv[]) in main to find out, as it results in 8 bytes
• Instead, teminating NULL pointer and null character
• For convenience, 1st parameter to main(), argc, holds # of arguments

4

• String Argv[0] is command name

• Argv[1] … argv[argc-1] are
other command line parameters

• Argv[argc] is NULL

So, What’s in argc and argv[]?

6

$./printargv one two three

argv
argc

'.''/''p''r''i''n''t''a''r''g''v''\0'

'o''n''e''\0'

't''w''o''\0'

't''h''r''e''e''\0'

$./printargv
argv
argc

'.''/''p''r''i''n''t''a''r''g''v''\0'

NULL

NULL1

4

Can Access in Code Using for Loop and argc

10

$./printargv one two three

argv

argc NULL

$./printargv

argv

argc

'.''/''p''r''i''n''t''a''r''g''v''\0'

'o''n''e''\0'

't''w''o''\0'

't''h''r''e''e''\0'

'.''/''p''r''i''n''t''a''r''g''v''\0'

NULL

printargv.c:

 int main(int argc, char *argv[])
{
 int i;
 printf("argc: %d\n", argc);

 for (i = 0; i < argc; i++)
 printf("argv[%d]: %s\n", i, argv[i]);

 return 0;
}

4

1

Or while Loop and Pointers, Terminating at NULL

12

$./printargv one two three

4

argv

argc NULL

$./printargv

1

argv

argc

'.''/''p''r''i''n''t''a''r''g''v''\0'

'o''n''e''\0'

't''w''o''\0'

't''h''r''e''e''\0'

'.''/''p''r''i''n''t''a''r''g''v''\0'

NULL

Post-increment with pointers is just like with
integer types: emits old value of ppc. The
dereference then happens on value emitted.
This could be parenthesized as: *(ppc++)

int main(int argc, char *argv[])
{
 char **ppc = argv;
 int i = 0;
 printf("argc: %d\n", argc);

 while(*ppc != NULL)
 printf("argv[%d]: %s\n", i++, *ppc++);

 return 0;
}

INDIRECTION AND
VARIABLE-FORM C STRUCTURES15

@alain_pham

https://unsplash.com/@alain_pham

Why Structures
• Arrays are multi-element types; i.e. a collection of N elements

• But every element is of the same type (e.g. ints, pointers, characters)

• What about a data structure for collections of elements of different types?
• Flexible records for (related) data, such as student ID, name, age, home address, …

16

Enum {MAX_NAME = 64, MAX_HOME_ADDR = 256}

struct SRec {
 int ID ;
 char name[NAX_NAME];
 int age_in_yr;
 char home_address[MAX_HOME];
 float GPA;
 };

C Struct
struct S {
 long l;
 int i;
};

 struct S s = {2L, 1};

17

s.i k+8
s

2

1

ks.l

s.i k+8
s

1

1

ks.l

Type

Variable Declaration
(and Initialization)

s.l = s.i;

C Struct
struct S {
 long l;
 int i;
};

 struct S s = {2L, 1};

 struct S *ps = &s;

 s.l = s.i;

18

s.i k+8
s

2

1

ks.l

s.i k+8
s

1

1

ks.l

s.i k+8
s

1

2

ks.l

This is such a common pattern
that it has its own operator:

ps->i

k
ps

(*ps).i *= 2;

At least three ways to reference i

struct S {
 long l;
 int i;
};

struct S s = {2L, 1};

19

Interface and Implementation: Padding in Structs

s.i

k+12
k+8

s
2

1

ks.l

THAT’S A PADDING.

?

s.l

k+4
k+8

k+16

s

2

1 ks.i

• So, use the interface given (ps->l, ps-> i), don’t try to know the implementation

struct S {
 int i;
 long l;
};

struct S as[2] =
 { {1, 2L}, {3, 4L} };

 as[1] = as[0];

20

2
as[0].l

k+4

k+8

k+16

as[0]

1 kas[0].i

4

3

as[1].l
as[1]

as[1].i

k+24
2

1

Arrays of Structs

• Assigning one struct variable to another makes a “deep copy” (copies the values)

Structs and Functions
Behave differently than arrays

• Passing a struct to a function passes it by value, not by reference (pointer)
• Makes a deep copy: The called function gets its own copy of the passed structure
• Unlike with arrays, where what is passed is the address of the array (a pointer)

• A function can return a struct
• Unlike with arrays

21

Structs and Functions
void printS(struct S s) {
 printf("%d %ld\n", s.i, s.l);
}
void swap1(struct S s) {
 int iTemp = s.l;
 s.l = s.i;
 s.i = iTemp;
}
struct S swap2(struct S s) {
 int iTemp = s.l;
 s.l = s.i;
 s.i = iTemp;
 return s;
}
void swap3(struct S *ps) {
 int iTemp = ps->l;
 ps->l = ps->i;
 ps->i = iTemp;
}22

int main(void) {
 struct S s = {1, 2L};
 printS(s);

 swap1(s);
 printS(s);

 s = swap2(s);
 printS(s);

 swap3(&s);
 printS(s);
 return 0;
}
armlab01:~/Test$./sswap
1 2
1 2
2 1
1 2

23

Structs and Functions
struct S {
 int aiSomeInts[10];
};

void printS(struct S s) {
 int i;
 for (i = 0; i < 10; i++)
 printf("%d ", s.aiSomeInts[i]);
 printf("\n");
}

How many int arrays are stored in memory?
A. 0: arrays in a struct aren’t really arrays
B. 1: arrays are copied/passed as a pointer
C. 2: structs are copied on assignment
D. 3: C, plus structs are passed by value
E. Arrays can’t be fields of a structure.

int main(void) {
 struct S s = { {0,1,2,3,4,5} };
 struct S s2 = s;
 printS(s2);
 return 0;
}

armlab01:~/Test$./a.out
0 1 2 3 4 5 0 0 0 0

The correct answer is D.

Passing, returning, or
assigning a structure with an
array field copies the array by
value (a deep copy)

DYNAMIC
MEMORY

24

@jorgetung

https://unsplash.com/@jorgetung

Why, Though? Isn’t Life Hard Enough?

• So far, all memory we’ve used was known at compile time (static)
• Except when we didn’t have to manage it, as in argv[]

• This is often not feasible;
memory needs are often dependent on runtime state
• E.g. User input (number of students records)

• E.g. Reading from a resource (file, network, etc.)
• E.g. Creating new nodes in a tree a threshold value is met

25

Dynamically Managed Memory Goes on the Heap
Memory allocated at run-time based on

state at that point

The data we’ve seen so far goes into three
memory sections:

Text
• Program machine language code

RODATA
• Read-only data, e.g. string literals

Stack
• Activation records (aka "stackframes"):

a function call's params and local variables

 Now, a 4th: the “Heap”:
dynamically allocated storage26

Your New Friends: malloc, calloc and free
int iCount;
int *piSomeInts;
printf(“How many ints?”);
scanf(“%d”, &iCount);
piSomeInts =
 malloc(iCount * sizeof(int));

27

? ? ?

piSomeInts

3

stack heap

iCount

Interfaces and implementations: Use sizeof.
malloc() doesn’t initialize data to 0

Your New Friends: malloc, calloc and free

int iCount;
int *piSomeInts;
printf(“How many ints?”);
scanf(“%d”, &iCount);
piSomeInts =
 malloc(iCount * sizeof(int));

28

int iCount;
int *piSomeInts;
printf(“How many ints?”);
scanf(“%d”, &iCount);
piSomeInts =
 calloc(iCount, sizeof(int));

0 0 0

piSomeInts

3

stack heap

iCount

calloc() initializes data to 0

Your New Friends: malloc, calloc and free

29

int iCount;
int *piSomeInts;
printf(“How many ints?”);
scanf(“%d”, &iCount);
piSomeInts = calloc(iCount, sizeof(int));

0 0 0

piSomeInts

3

stack heap

iCount

piSomeInts

3

stack heap

? ? ?

free(piSomeInts);

piSomeInts keeps pointing to the memory
Why?
Hmmm…. “Dangling pointer”

What if you no longer need the memory?
What do you do in Java?

int iCount;
int *piSomeInts, *piMoreInts;
printf(“How many ints?”);
scanf(“%d”, &iCount);
piSomeInts = calloc(iCount, sizeof(int));

Your New Friends: realloc

30

0 0 0

piSomeInts

3

stack heap

iCount

piMoreInts

0 ?0

piSomeInts

3

stack heap

iCount

piMoreInts = realloc(piSomeInts,
 (iCount-1)*sizeof(int));

0 0piSomeInts

2

stack heap

iCount ? ? ?
piMoreInts

int iCount;
int *piSomeInts, *piOtherInts;
printf(“How many ints?”);
scanf(“%d”, &iCount);
piSomeInts = calloc(iCount,

 sizeof(int));

Your New Friends: realloc

31

0 0 0

piSomeInts

3

stack heap

iCount

piMoreInts

0 0 0

piSomeInts

3

stack heap

iCount ?

piOtherInts = realloc(piSomeInts,
 (iCount+1)*sizeof(int));

0 0 0piSomeInts

4

stack heap

iCount

0

? ? ?
piMoreInts

DYNAMIC
MEMORY
DISASTERS33

Sarah Kilian

https://unsplash.com/@rojekilian

What Could Go Wrong (malloc, calloc)?

34

NU
LLpiSomeInts

3

stack heap

iCount

int iCount;
int *piSomeInts;
printf(“How many ints?”);
scanf(“%d”, &iCount);
piSomeInts = calloc(iCount, sizeof(int));

piSomeInts[0] = ...
if(piSomeInts == NULL)...

What if someone calls calloc with a –ve
number for iCount?

What Could Go Wrong (free)?

35

piSomeInts

3

stack heap

iCount

int iCount;
int *piSomeInts;
printf(“How many ints?”);
scanf(“%d”, &iCount);
piSomeInts = calloc(iCount, sizeof(int));
free(piSomeInts);

? ? ?x

piSomeInts[0] = x; What happens when you use pointer after freeing it?
free(piSomeInts); What happens when you free pointer after freeing it?

What Could Go Wrong (free)?

36

piSomeInts

3

stack heap

iCount

int iCount;
int *piSomeInts;
printf(“How many ints?”);
scanf(“%d”, &iCount);
piSomeInts = calloc(iCount, sizeof(int));
free(piSomeInts);

 piSomeInts = NULL;
piSomeInts[0] = x;
free(piSomeInts);

? ? ?

NU
LL

Will crash. But this is a bug, so that’s good
No double-free, since free does nothing for NULL pointer

int iCount;
int *piSomeInts, *piMoreInts;
printf(“How many ints?”);
scanf(“%d”, &iCount);
piSomeInts = calloc(iCount,

 sizeof(int));

What could go wrong: realloc

37

0 0 0

piSomeInts

3

stack heap

iCount

Check result for NULL before dereference
piSomeInts

3

stack heap

iCount 0 0 0

NU
LL

piSomeInts = realloc(piSomeInts,
 (iCount+1)*sizeof(int));
if(piSomeInts == NULL)...

0 0 0piSomeInts

4

stack heap

iCount

0

? ? ?

Regardless, if realloc fails: memory leak
Solution: realloc to temp pointer, check NULL, and
only then update original pointer accordingly

0

int iCount;
int *piSomeInts, *piMoreInts;
printf(“How many ints?”);
scanf(“%d”, &iCount);
piSomeInts = calloc(iCount,

 sizeof(int));

What could go wrong: realloc

38

0 0 0

piSomeInts

3

stack heap

iCount

Check result for NULL before dereference
piSomeInts

3

stack heap

iCount 0 0 0

NU
LL

piMoreInts = realloc(piSomeInts,
 (iCount+1)*sizeof(int));
if(piMoreInts != NULL) {
 piSomeInts = piMoreInts;
 piMoreInts = NULL; }

0 0 0piSomeInts

4

stack heap

iCount

0

? ? ?
piMoreInts

Regardless, if realloc fails: memory leak
Solution: realloc to temp pointer, check NULL, and
only then update original pointer

int iCount;
int *piSomeInts, *piMoreInts;
printf(“How many ints?”);
scanf(“%d”, &iCount);
piSomeInts = calloc(iCount, sizeof(int));

What could go really wrong: realloc

39

0 0 0

piSomeInts

3

stack heap

iCount

0 0 0piSomeInts

3

stack heap

iCount

?

0 0 0

Memory Leak
Dangling Pointer
Likely eventual double free

realloc(piSomeInts,
 (iCount+1)*sizeof(int));
if(piSomeInts == NULL)...

What if realloc didn’t change location? What if it failed?

40

Catch the Common Bug

newCopy = malloc(strlen(oldCopy));
strcpy(newCopy, oldCopy);

Does this work?
A. Totally.

B. Nope. The bug is …

 B:

This allocates 1 too few bytes for newCopy,
because strlen doesn’t count the
trailing ‘\0’

41

Save a line?

newCopy = strcpy(malloc(strlen(oldCopy)+1), oldCopy);

Does this work?
A. So that’s why strcpy returns

the destination. Sure

B. Eh, okay, but this is less clear.

C. Nope

C:

If malloc returns NULL, this fails the
precondition for strcpy

(This was also an issue on the previous slide.)

 Check for malloc returning NULL first, so
keep it on separate line

Don't get ahead of yourself …

Assignment 2 does NOT use dynamic memory
• Assignments 3 and 4 will use it extensively
• We will not test it on the midterm

DO NOT use {m,c,re}alloc and free on A2

42 @katiemoum

https://unsplash.com/@katiemoum

Sample Exam Problem (Fall 2020 – 14 points / 80)
For the statements in each part of this question, indicate one or more appropriate statuses from this list:

ML - Memory Leak: aka garbage creation
BD - Bad Dereference: derefs NULL or a pointer to memory that was never allocated or has already been freed
IF - Improper Free: frees a pointer to memory that was never allocated or has already been freed
OK - Okay: exhibits no dynamic memory problem

If different statuses could result depending on the result of a call to malloc, calloc, or realloc, then list all possible
statuses. You do NOT have to delineate the cases in which each would result.

Each part of this question is independent from the others, but you should assume for each that:
1. p is a char pointer pointing to k bytes that have been allocated in the heap, at least one of which is '\0’.
2. q is a char pointer

a) strcpy(calloc(strlen(p)+1, sizeof(char)), p);

b) for(i=0; i<k; i++) free(p+i);

c) free(p); printf("%ul\n", p);

d) free(p++);

e) q = p; free(q); printf("%s", p);

f) free(p); p=NULL; free(p);

g) p = realloc(p, 2*k);
43

Sample Exam Problem (Fall 2020 – 22 points /80)
Consider the following program that contains 9 numbered location (0 through 8) :
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int main((⃣ int argc, +⃣ char** argv) {
.⃣ int a[10] = {-1, 0, 1};
7⃣ double x = 10.75;
B⃣ double* px = &x;
D⃣ char* s;
J⃣ char* f = L⃣ "\"%s\"\n";
s = P⃣ calloc(*px, sizeof(*s));
printf(f, s);
return strlen(s);
}

a. how many bytes are allocated, and in which section of memory, for the expression immediately following each
callout. Assume this is using gcc217 on armlab, and that the calloc call does not return NULL.

b. What does this program print to standard output?

c. How would this program’s return value change if callout 8 were replaced with malloc(x*sizeof(*s));
(Assume that, like calloc, malloc does not return NULL.)

44

