
COS 217: Introduction to Programming Systems

Managing Modularity

Building Multifile Programs with make

@martinsanchez

https://unsplash.com/@martinsanchez

Agenda

Motivation for Make

Make Fundamentals

Non-File Targets

Macros

Multi-File Programs

#ifndef INTMATH_INCLUDED
#define INTMATH_INCLUDED
int gcd(int i, int j);
int lcm(int i, int j);
#endif

#include "intmath.h"

int gcd(int i, int j)
{
 int temp;
 while (j != 0) {
 temp = i % j;
 i = j;
 j = temp;
 }
 return i;
}
int lcm(int i, int j)
{
 return (i / gcd(i, j)) * j;
}

#include "intmath.h"
#include <stdio.h>

int main(void)
{
 int i, j;
 printf("Enter the first integer:\n");
 scanf("%d", &i);
 printf("Enter the second integer:\n");
 scanf("%d", &j);
 printf("Greatest common divisor: %d.\n",
 gcd(i, j));
 printf("Least common multiple: %d.\n",
 lcm(i, j);
 return 0;
}

intmath.h (interface) intmath.c (implementation) testintmath.c (client)

Note: intmath.h is
#included into intmath.c
and testintmath.c3

Which
stage?

Motivation for make

4
https://xkcd.com/303/

https://xkcd.com/303/

Building testintmath: Approach 1 (“shortcut version”)

One gcc217 command to preprocess, compile, assemble, and link

intmath.h intmath.ctestintmath.c

testintmath

gcc217 testintmath.c intmath.c –o testintmath

5

Building testintmath: Approach 2

Preprocess, compile, assemble to produce .o files

Link to produce executable binary file

intmath.ctestintmath.c

testintmath

testintmath.o intmath.o

gcc217 –c intmath.cgcc217 –c testintmath.c

gcc217 testintmath.o intmath.o –o testintmath

Recall: -c option
tells gcc217 to omit link

intmath.h

6

Allows us to preserve
.o files across builds,
and not have to rebuild
them if nothing they
depend on has changed

Partial Builds

Approach 2 allows for partial builds
•Example: Change intmath.c

• Must rebuild intmath.o and testintmath
• No need to rebuild testintmath.o

If program contains many files, could save hours of build/test time

intmath.ctestintmath.c

testintmath

testintmath.o intmath.o

gcc217 –c intmath.cgcc217 –c testintmath.c

gcc217 testintmath.o intmath.o –o testintmath

intmath.h

7

Partial Builds

However, changing a .h file can be more dramatic
•Example: Change intmath.h

• intmath.h is #include’d into testintmath.c and intmath.c
• Must rebuild testintmath.o, intmath.o, and testintmath

intmath.ctestintmath.c

testintmath

testintmath.o intmath.o

gcc217 –c intmath.cgcc217 –c testintmath.c

gcc217 testintmath.o intmath.o –o testintmath

intmath.h

8

Wouldn’t It Be Nice If We had a Tool to Automate This
Observation

•Doing partial builds manually is tedious and error-prone

How would the tool work?
•Input:

• Dependency graph (as shown previously)
• Specifies file dependencies
• Specifies commands to build each file from its dependents

• Date/time stamps of files
•What it does: Figures out which components do and don’t need to be rebuilt
•Algorithm:

• If file B depends on A and date/time stamp of A is newer than date/time stamp of B,
then rebuild B using the specified command

That’s make!9

Obligatory Princeton Context
Stuart Feldman ’68 (Astro)
• Chief Scientist at Schmidt Futures

• Former President of ACM

• AAAS, IEEE, and ACM fellow

• Board Chair of

Created make at Bell Labs in 1976

10

Agenda

Motivation for Make

Make Fundamentals

Non-File Targets

Macros

Make Command Syntax
$ man make
SYNOPSIS
 make [-f makefile] [options] [targets]

•makefile
• Textual representation of dependency graph
• Contains dependency rules, that together make up the dependency graph
• Default name is makefile, then Makefile

•target
• What make should build
• Usually: .o file(s) or executable binary file. Makefile specifies targets that can be built
• If not specified, default is to build first target defined in makefile

12

Dependency Rules in Makefile

Dependency rule syntax
target: dependencies
 <tab>command

•target: the file you want to build
•dependencies (aka prerequisites):

 the files needed to build the target
•command (aka recipe): what to execute to build the target

Dependency rule semantics
•Build target if it doesn’t exist
•Rebuild target iff it is older than at least one of its dependencies
•Use command to do the build
•Work recursively; examples illustrate…

13

Make gotcha: tab means tab not k spaces

<tab>command

The first character of the line with the command must be an actual
tab character, ASCII character 9. Cryptic error for failing to do so:
 *** missing separator. Stop.

Feldman explains the genesis:
"Within a few weeks of writing Make, I already had a dozen friends who
were using it" ... "I didn't want to upset them" … "So instead I wrought
havoc on tens of millions."
 --Cobbled from Brian Kernighan's UNIX: A History and a Memoir and Michael Stillwell

14

https://beebo.org/haycorn/2015-04-20_tabs-and-makefiles.html

Makefile Version 1

testintmath: testintmath.o intmath.o
 gcc217 testintmath.o intmath.o –o testintmath

testintmath.o: testintmath.c intmath.h
 gcc217 -c testintmath.c

intmath.o: intmath.c intmath.h
 gcc217 -c intmath.c

intmath.ctestintmath.c

testintmath

testintmath.o intmath.o

gcc217 –c intmath.cgcc217 –c testintmath.c

gcc217 testintmath.o intmath.o –o testintmath

intmath.h

Makefile

15

Makefile Version 1

testintmath: testintmath.o intmath.o
 gcc217 testintmath.o intmath.o –o testintmath

testintmath.o: testintmath.c intmath.h
 gcc217 -c testintmath.c

intmath.o: intmath.c intmath.h
 gcc217 -c intmath.c

intmath.ctestintmath.c

testintmath

testintmath.o intmath.o

gcc217 –c intmath.cgcc217 –c testintmath.c

gcc217 testintmath.o intmath.o –o testintmath

intmath.h

Makefile

16

testintmath: testintmath.o intmath.o
 gcc217 testintmath.o intmath.o –o testintmath

testintmath.o: testintmath.c intmath.h
 gcc217 -c testintmath.c

intmath.o: intmath.c intmath.h
 gcc217 -c intmath.c

Version 1 in Action

$ make testintmath

Recur!

Recur! No target, but file exists

Recur! No target, but file exists
testintmath.o not found. Build!

Recur!

Recur! No target, but file exists

Recur! No target, but file exists
intmath.o not found. Build!

testintmath not found.
Now finally produce testintmath!

17

gcc217 -c testintmath.c
gcc217 -c intmath.c
gcc217 testintmath.o intmath.o -o testintmath

Version 1 in Action

$ make testintmath
gcc217 -c testintmath.c
gcc217 -c intmath.c
gcc217 testintmath.o intmath.o -o testintmath

$ touch intmath.c

$ make testintmath
gcc217 -c intmath.c
gcc217 testintmath.o intmath.o -o testintmath

$ make testintmath
make: `testintmath' is up to date.

$ make
make: `testintmath' is up to date.

At first, to build testintmath
make issues all three gcc
commands

Use the touch command to
change the date/time stamp
of intmath.c

make does a partial build

make notes that the specified
target is up to date

The default target is testintmath,
the target of the first dependency rule18

make up your mind
Q: If you were making a Makefile for this program

(where black solid arrows are #include relationships and
orange unfilled arrows are build process relationships),
what should a.o depend on?

A. a

B. a.c

C. a.c b.c

D. a.h c.h d.h

E. a.c a.h c.h d.h

c.h

d.h

a.h

a.o

a.c b.c

b.o

a
19

Makefile Guidelines

In a properly constructed Makefile, each object file:
•Depends upon its .c file

• Does not depend upon any other .c file
• Does not depend upon any .o file

•Depends upon any .h files that are #included directly or indirectly

c.h

d.h

a.h

a.o

a.c b.c

b.o

a

a.o: a.c a.h c.h d.h

20

building understanding
Q: If you were making a Makefile for this program

(where black solid arrows are #include relationships and
orange unfilled arrows are build process relationships),
what should the executable a depend on?

A. a.o b.o

B. a.o b.o a.c b.c

C. a.o b.o a.h c.h d.h

D. a.c b.c a.h c.h d.h

E. a.o b.o a.c b.c a.h c.h d.h

c.h

d.h

a.h

a.o

a.c b.c

b.o

a

21

Makefile Guidelines

In a proper Makefile, each executable:
•Depends upon the .o files that comprise it
•Does not depend upon any .c files
•Does not depend upon any .h files

c.h

d.h

a.h

a.o

a.c b.c

b.o

a a: a.o b.o

22

Agenda

Motivation for Make

Make Fundamentals

Non-File Targets

Macros

Non-File Targets (aka “pseudotargets”)
Take advantage that make doesn't check that a target actually gets built to add useful shortcuts

Commonly defined non-file targets (but “all”, “clean”, ”clobber” are not syntactically special):
• make all: create the final executable binary file(s), often the first target listed in the Makefile, perhaps with

multiple executables that the Makefile builds
• make clean: delete all .o files, executable binary file(s)
• make clobber: delete all .o files, executable(s), and assorted development cruft (e.g., Emacs backup files)

• rm –f: remove files without querying user. Files ending in ‘~’ and starting/ending in ‘#’ are Emacs
backup and autosave files

Typical first target in makefile is all or help (provides info but doesn’t build anything)

clean, clobber, all are treated like files (but don’t exist), but make doesn’t that care they don’t get built

all: testintmath
clobber: clean
 rm -f *~ \#*\#
clean:
 rm -f testintmath *.o

24

Makefile Version 2

Dependency rules for non-file targets
all: testintmath
clobber: clean
rm -f *~ \#*\#

clean:
rm -f testintmath *.o

Dependency rules for file targets
testintmath: testintmath.o intmath.o
 gcc217 testintmath.o intmath.o –o testintmath
testintmath.o: testintmath.c intmath.h
 gcc217 -c testintmath.c
intmath.o: intmath.c intmath.h
 gcc217 -c intmath.c

25

• We don’t use make clean too often because we don’t want to get rid of .o files (we like partial builds)
• We could also have a rule for removing the *~ and \#*\# files without first removing .o files

Version 2 in Action

$ make clean
rm -f testintmath *.o

$ make clobber
rm -f testintmath *.o
rm -f *~ \#*\#

$ make all
gcc217 -c testintmath.c
gcc217 -c intmath.c
gcc217 testintmath.o intmath.o -o testintmath

$ make
make: Nothing to be done for `all'.

make observes that “clean” target
doesn’t exist; attempts to build it
by issuing “rm” command

Same idea here, but
“clobber” depends upon “clean”

“all” depends upon
“testintmath”

“all” is the default target,
since it comes first in file26

Agenda

Motivation for Make

Make Fundamentals

Non-File Targets

Macros

Macros
make has a macro facility

• Performs textual substitution
• Similar to C preprocessor’s #define

Macro definition syntax
 macroname = macrodefinition

• make replaces $(macroname) with macrodefinition in remainder of Makefile

Example: Make it easy to change (or swap) build commands
CC = gcc217
YACC = bison -d -y
#YACC = yacc -d

Example: Make it easy to change build flags
CFLAGS = -D NDEBUG –O

28

Makefile Version 3

Macros
CC = gcc217
CC = gcc217m
CFLAGS =
CFLAGS = -g
CFLAGS = -D NDEBUG
CFLAGS = -D NDEBUG -O

Dependency rules for non-file targets
all: testintmath
clobber: clean
 rm -f *~ \#*\#
clean:
 rm -f testintmath *.o

Dependency rules for file targets
testintmath: testintmath.o intmath.o
 $(CC) $(CFLAGS) testintmath.o intmath.o -o testintmath
testintmath.o: testintmath.c intmath.h
 $(CC) $(CFLAGS) -c testintmath.c
intmath.o: intmath.c intmath.h
 $(CC) $(CFLAGS) -c intmath.c

29

Version 3 in Action

Same as Version 2

More Makefile Gotchas

Beware:

•Bears repeating: each command (second line of each
dependency rule) must begin with a tab character,
not spaces – configure your editor accordingly!

•Use the rm –f command with caution
(More generally, be careful about automatically doing anything you can’t undo!)

•Have something sensible as your default command
(Users are likely to just type make , out of habit or ignorance.)

31

Leslie Delay
Bears … repeating. Groan …

... visual puns are unbearable.

https://unsplash.com/@leslounie

Making Makefiles

In this course
•Create Makefiles manually
•Perhaps start from the Makefiles from this lecture?

Beyond this course
•Can use tools to generate Makefiles

• See mkmf, among others
•Copy, paste, edit existing Makefiles

32

Advanced: Automatic Variables
make has wildcard matching for generalizing rules

• make has “pattern” rules that use % in targets and dependencies
• make has variables to fill in the ”pattern” in commands

• $@ : the target of the rule that was triggered
• $< : the first dependency of the rule
• $? : all the dependencies that are newer than the target
• $^ : all the dependencies

Examples:
testintmath: testintmath.o intmath.o
 $(CC) $(CFLAGS) $^ -o $@
%.o: %.c intmath.h
 $(CC) $(CFLAGS) -c $<

 Not required (and potentially confusing!), but common.
 We'll never ask you to write these.33

Advanced: Implicit Rules

make has implicit rules for compiling and linking C programs
•make knows how to build x.o from x.c

• Automatically uses $(CC) and $(CFLAGS)
•make knows how to build an executable from .o files

• Automatically uses $(CC)

make has implicit rules for inferring dependencies
•make will assume that x.o depends upon x.c

Not required (and almost certainly confusing).
Not allowed in this class

34

If One Did …. Makefile Version 4

testintmath: testintmath.o intmath.o
 $(CC) testintmath.o intmath.o –o testintmath

testintmath: testintmath.o intmath.o

testintmath.o: testintmath.c intmath.h
 $(CC) $(CFLAGS) –c intmath.c

testintmath.o: testintmath.c intmath.h

testintmath.o: intmath.h

intmath.o: intmath.c intmath.h
 $(CC) $(CFLAGS) –c intmath.c

intmath.o: intmath.c intmath.h

intmath.o: intmath.h

Macros
CC = gcc217
CFLAGS =

Dependency rules for non-file targets
all: testintmath
clobber: clean
 rm -f *~ \#*\#
clean:
 rm -f testintmath *.o

Dependency rules for file targets
testintmath: testintmath.o intmath.o
testintmath.o: testintmath.c intmath.h
intmath.o: intmath.c intmath.h

Progressively terser but
more confusing. Just don't.35

Implicit Rule Gotcha

Beware:

•To use an implicit rule to make an executable,
the executable must have the same name as one of the .o files

myprog: myprog.o someotherfile.o

myprog: somefile.o someotherfile.o

Correct:

Won't work:

ü
û

36

Again, implicit rules not allowed in this class. Be explicit

Make Resources

GNU make http://www.gnu.org/software/make/manual/make.html

C Programming: A Modern Approach (King) Section 15.4

37

http://www.gnu.org/software/make/manual/make.html

