
COS 217: Introduction to Programming Systems

Indirection

Pointers, Arrays, and Strings

Indirection
• Referencing an object through an intermediary, such as a pointer, handle, or a layer

of abstraction, rather than directly
• Provides decoupling
• Which helps manage complexity and provide flexibility in programming and system design
• Critical in many areas of CS: databases, Internet (e.g. DNS), virtual machines, design patterns, …

• "All problems in computer science can be solved by another level of indirection”

• But can get complicated if not managed well, and can reduce performance

• Examples?

2

@rbw500

https://unsplash.com/@rbw500

Indirection Examples
• URLs

• Search indexes: can change index, or indexing method, without changing data

• DNS: can change name of web site, or relocate it, without affecting links or
underlying systems

• Virtual machines: write programs for VM, run them on any hardware

3

@rbw500

https://unsplash.com/@rbw500

Indirection with URLs
• Different names for same object

• cocacola.com, coca-cola.com, coke.com
• Names that point to different objects at different times: leadingsoftdrink.com

• Access with different protocols, e.g. security
• http://www.coca-cola.com, https://www.coca-cola.com

• Access with different parameters
• User context, analytics parameters

• Access from different subdomains

Pointers are a key example of indirection in programming
4

@rbw500

http://www.coca-cola.com/
http://www.coca-cola.com/
http://www.coca-cola.com/
http://www.coca-cola.com/
https://unsplash.com/@rbw500

Agenda
• Pointers

• Arrays

• Strings

5

@rbw500

https://unsplash.com/@rbw500

Pointers in C
So… what’s a pointer?

• A pointer is a variable

• Its value is the location (addr) of another variable

• “Dereference” (follow) the pointer to read/write
the value at that location

Why is that a good idea?

• Copying pointers is much faster than large structures

• x=y is a one-time copy: if y changes, x doesn’t “update”

• Parameters to functions are copied; but handy to be able to modify value

• Often need a handle to access dynamically allocated memory6

@rbw500

k+4

k+12

k+60

k

k+80

b

pb

pa

a

pa2

1.303577
150

k

k+4

k

https://unsplash.com/@rbw500

Pointers in C
Pointer types are target dependent

• Example: “int *pi;” – declares pi to be a pointer to an int
• We’ll see “generic” pointers later

Pointer values are memory addresses
• … so size is architecture-dependent – 8 bytes on ARMv8
• NULL is macro in stddef.h for special pointer guaranteed

not to point to any variable

Pointer-specific operators
• Address-of operator (&a) – a pointer to variable “a”
• Dereference operator (*a) – value that ptr “a” points to

Other pointer operators
• Assignment operator: =
• Relational operators: ==, !=, >, <=, etc.
• Arithmetic operators: +, –, ++, –=, !, etc.

8

k+4b

k+20k+4 pb

a150 k

k+12pa0

int a = 150;
double b = 1.303577;

1.303577

150 1

0 k

pa = &a;
*pa = (int) *pb;

int *pa = NULL;
double *pb = &b;

0 1

1 0 1 0 1
<- same as *pa == *pb

Pointers in C
int a = 42;

int b = 42;

int *pa = &a;

int *pb = &b;

int **pc = &pa;

printf("%d %d\n",
 pa == pb,
 *pa == *pb);

printf(”%d %d %d %d %d\n",
 pc == &pa,
 pc == &pb,
 *pc == pa,
 *pc == pb,
 **pc == *pb);9

b

pb

42

k

k+4

k+8

pa

pc

k+4

k+8

k+16

k+24

a42 kWhat if this
were:
int *pa;
*pa = &a;
Is it the same?

10

What Points to Whom, Where?

b

pb

42

k

k+4

k+8

pa

pc

k+4

k+8

k+16

k+24

a42 k

A: 0 0
B: 0 1
C: 1 0
D: 1 1

printf("%d %d\n",
 pa == pb,
 *pa == *pb);

k+4pa = pb;

Pointer Declaration Gotcha
Pointer declarations can be written as follows: int* pi;

This is equivalent to: int *pi;

but the former seemingly emphasizes that the type of pi is ("int pointer")

Even though the first syntax may seem more natural, and you are welcome to use it,
the * is attached to the variable name (pi), not to the type.

Beware!!!!! This declaration : int* p1, p2;

 really means: int *p1; int p2;

To declare both p1 and p2 as pointers, i.e.: int* p1; int* p2;

in one statement, must "star" both variables: int *p1, *p2;12

Agenda
• Pointers

• Arrays

• Strings

13

@rbw500

https://unsplash.com/@rbw500

14

Non Sequitur
Options for lecture the Monday of Thanksgiving week:

A. Re-visit some topics with material we didn’t get to on the lecture slides

B. Walk-through of some trickier iClicker questions and some past exam questions

C. Cover some OS material (processes, signals, pipes) that used to be in COS217

D. Cancel lecture (take the week off from 217: no other 217 activities that week)

Refresher: Java Arrays
• Always dynamically allocated
• Even when the values are known at

compile time (e.g., initializer lists)
• Objects on the heap

• Access via reference variable (handle)
• Dereference, assign/copy. Can’t see value

public static void arrays() {
int[] arr1 = {1, 2, 3};
int[] arr2 = new int[3];
int[] arr3 = arr1;

 for (int c = 0;
 c < arr2.length; c++)
 arr2[c] = 3 * arr1[c];

}

15
1 2 3

3length
3 6 9

3length
arr1

arr2

arr3

dynamically allocated
objects

local references

Copy of reference is also done in:
f(arr1);

C Arrays
• Can be statically allocated

e.g., as local variables
• Length must be known at compile time

• Can also be dynamically allocated
• We will see this in Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int[] arr3 = arr1;

 int arr2len =
 sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)
 arr2[c] = 3 * arr1[c];
}

16

arr1[0]

arr2[0]

1
2
3
3
6
9

arr1[1]
arr1[2]

arr2[1]
arr2[2]

Java and C Arrays

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];

 int arr2len =
 sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)
 arr2[c] = 3 * arr1[c];

 int[] arr3 = arr1;
}

17

public static void arrays() {

 int[] arr1 = {1, 2, 3};
int[] arr2 = new int[3];

 for(int c = 0;
 c < arr2.length; c++)
 arr2[c] = 3 * arr1[c];

 int[] arr3 = arr1;
 }

Can we declare this way?
int c, arr1[] = {1, 2, 3};

Java and C Arrays

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];

 int arr2len =
 sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)
 arr2[c] = 3 * arr1[c];

 int[] arr3 = arr1;
}

18

public static void arrays() {

 int[] arr1 = {1, 2, 3};
int[] arr2 = new int[3];

 for(int c = 0;
 c < arr2.length; c++)
 arr2[c] = 3 * arr1[c];

 int[] arr3 = arr1;
 }

Unlike in Java, local variables are not automatically initialized to 0 in C.
So can contain junk unless initialized.

Yes, there’s a midterm.

Wednesday, October 8. (2 weeks from today)

In class. So, 50 minutes. We start at the start. Please don’t be late

On paper. Closed book. 1 one-sided study sheet allowed.

Covers through Thursday 10/2. Exam info page available now on
course web site. Please read it carefully

A Programming Note …

19

Java and C Arrays

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];

 int arr2len =
 sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)
 arr2[c] = 3 * arr1[c];

 int[] arr3 = arr1;
}

20

public static void arrays() {

 int[] arr1 = {1, 2, 3};
int[] arr2 = new int[3];

 for(int c = 0;
 c < arr2.length; c++)
 arr2[c] = 3 * arr1[c];

 int[] arr3 = arr1;
 }

C arrays don[t have a length field, since they’re not objects, just addresses
This use of sizeof to get length only works for fixed-size arrays, within the scope where declared
Note that in C, unlike in Java, can’t declare a variable inside the loop control

Java and C Arrays

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];

 int arr2len =
 sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)
 arr2[c] = 3 * arr1[c];

 int[] arr3 = arr1;
}

21

public static void arrays() {

 int[] arr1 = {1, 2, 3};
int[] arr2 = new int[3];

 for(int c = 0;
 c < arr2.length; c++)
 arr2[c] = 3 * arr1[c];

 int[] arr3 = arr1;
 }

Array names can’t be assigned new values. This neither copies pointers nor
the entire object. It’s just wrong. But could use pointers: pa = arr1;

Pointers and Arrays: An Array Name is Not a Pointer
• Arrays in C are not pointers. They’re data types with variable sizes
• sizeof(arr1) is 3*sizeof(int); it is not 1 * sizeeof(int *)
• An array is just a composite of its elements. There isn’t another object

• An array name is the address of this array. first byte of the array
• So, like a pointer in that sense. arr1 is the same as &arr1[0]

• Unlike pointer, there is no variable in memory that stores the address
• Can’t assign a new value to it: can’t say arr1 = arr2; or arr1 = pa;
• &arr1 is addr of the composite, so same value as arr1 or &arr1[0]
• Can’t take the address of the address of an array name (or of a pointer)
• pa = &(&arr1); pa = &(&pb);

22

Arrays in C

23

Arr1[0]

Address = 6000

Print &Arr1[0] = 6000
Print Arr1[0] = 11 2 3

Print &Arr1 = 6000
Print Arr1 = 6000

Arr1

1 2 3

Int *pa = Arr1 1 2 3

60007128

Print &pa = 7128
Print pa = 6000
Print *pa = 1

Pointers and Arrays: An Array Name is Not a Pointer

char array[10];

sizeof(array) == 10 the size of the array

sizeof(*array) == 1 the size of the pointed to first element (as by def)

sizeof(&array) == 8 size of a pointer to the array.

sizeof(*&array) == 10 size of the pointed to object (the array)

sizeof(array[0]) == 1 size of the first element.

sizeof(&array[0]) == 8 size of a pointer to the first element (as above)

sizeof(*&array[0]) == 1 size of the pointed to first element.
24

But an Array Name is an Address
• Can assign array name to a pointer: p = arr1; p = &arr1[0];
• Can use array names in pointer arithmetic
 int arr1[] = {1, 2, 3};
 int *p = arr1 + 10;

• Note: Arithmetic on pointers is in units of sizeof(data type), not bytes:

 ptr ± k is implicitly ptr ± (k * sizeof(*ptr)) bytes
 (ptr + k) – ptr == k.

• True for all pointer types. Also true for array names.

• If a ptr is assigned an array, we can use it like we use the array name
• If p = arr1, p[k] is same as arr[k], p+10 is same as arr1+10, etc.

25

Array Names are Just (Immutable) Addresses
• If arr1 is an array of int, arr1 + k is the address of the kth

element of arr1, i.e. the address of arr1[k], which is &arr1[k])

• So, arr1[k] is the same as *(arr1 + k)

• The C secret: Array indexing is just syntactic sugar

arr[k] is actually *(arr + k)

26

Can Use Array Names or Pointers to Access Elements
If int *p = arr1, can reach elements of arr1 as

• arr1[0], arr1[1] … , arr1[k], …

• *arr1, *(arr1 + 1), … *(arr1 + k), …

• p[0], p[1] … , p[k], …

• *p, *(p + 1), … *(p + k), …

C programs often use both array names and regular pointers to
traverse arrays and dereference array elements

(But remember, array names are not pointers: not variables, no storage)27

Arrays with Functions
Passing an array to a function
• Is like passing a pointer (the

function parameter gets the
address of the array)

• Array length in signature is ignored
• sizeof on the array “doesn’t

work” inside a function

Returning an array from a function
• Not allowed in C
• Can return a pointer instead
• Be careful not to return an

address of a local function variable
(as it will be deallocated on return)

/* equivalent function signatures */
size_t count(int numbers[]);
size_t count(int *numbers);
size_t count(int numbers[5]);
{

 /* always returns 8 */
 return sizeof(numbers);
}

int[] getArr();
int *getArr();

28

Agenda
• Pointers

• Arrays

• Strings (precepts)

30

@rbw500

https://unsplash.com/@rbw500

Strings and String Literals in C
A string in C is a sequence of contiguous chars

• Terminated with null char ('\0') – not to be confused with the NULL pointer
• Double-quote syntax (e.g., "hello") to represent a string literal
• String literals can be used as special-case initializer lists
• No other language features for handling strings

• Delegate string handling to standard library functions

Examples
• "abcd" is a string literal
• "a" is a string literal

Contrast
• 'a' is a character literal, not a string literal

(really an int, as we've discussed)

31

How many
bytes?

Pointers for making a Lemon Gelatin Dessert
char string[10] =
{'H','e','l','l','o','\0'};

(or, equivalently*)
char string[10] = "Hello";

char *pc = string+1;

printf(”Y%sw ", &string[1]);
printf(”J%s!\n", pc);

* Unless you mess up counting. See strings.pdf a few precepts from now.
32

string[0]

string[9]

‘h’
‘e’

‘l’
‘l’

‘o’
’\0’

#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <stdlib.h>
enum { LENGTH = 14 };
int main() {
 char h[] = "Hello, ";
 char w[] = "world!";
 char msg[LENGTH];
 char *found;
 if(sizeof(msg) <= strlen(h) + strlen(w))
 return EXIT_FAILURE;
 strcpy(msg, h);
 strcat(msg, w);
 if(strcmp(msg , "Hello, world!"))
 return EXIT_FAILURE;
 found = strstr(msg, ", ");
 if(found – msg != 5)
 return EXIT_FAILURE;
 return EXIT_SUCCESS;
}

Standard String Library

33

strlen(h) + strlen(w)

strcpy(msg, h);
strcat(msg, w);

strcmp(msg)

strstr(msg, ", ");

34

DIY (x2) – Already Available!

Sample exam question (Fall 2019)

35

Sample exam question (Fall 2020) 12pts/80
Consider the following function, which copies characters from

the source string into the destination string, but unlike in
strcpy:

* only some characters from the source are copied;
* they're not necessarily consecutive characters from source;
* their order from the source is reversed in the destination.

The destination string must have enough space for the copied
characters, but all its allocated space can be assumed to be
filled with '\0' bytes, such as if it were allocated with calloc.
If the source string is NULL or the empty string, then no
change is made to the destination string and the function
returns NULL.

For example, assuming buf has enough space:
fun(buf, "ab") should result in buf: "b”
fun(buf, "abc") should result in buf: "b”
fun(buf, "abcd") should result in buf: "cb”
fun(buf, "abcde") should result in buf: "cb”
fun(buf, "abcdefghijklmnopqrstuvwxyz")
 should result in buf: "ngdb"

1 #include <string.h>
2 #include <assert.h>
3
4 char* fun(char* d, char* s) {
5 int i, j;
6 assert(sizeof(d) > sizeof(s));
7 if(strlen(s) == 0 || s == NULL)
8 return NULL;
9 for(i = strlen(s); i /= 2;) {
10 d[j++] = s[i];
11 }
12 return d;
13 }

It has 4 bugs that cause warnings or errors from gcc217,
runtime crashes, or incorrect contents copied into the
destination string.

Identify these bugs by line, with a short description of the
problem (e.g. "infinite loop", "accesses array out of bounds",
"missing ; after do-while loop") and how it could be fixed
(e.g. "start i at 1 not 0", "bound loop with < n not <= n",
 "add ;", respectively).36

