COS 217: Introduction to Programming Systems Numbers (in C and otherwise) #### The Old Ice Breaker Q: Why do computer programmers confuse Christmas and Halloween? A: Because Dec 25 is Oct 31 # Agenda Number Systems: Decimal, Binary, Hex, Octal + conversions among them Negative numbers in a computer Integers in C: Representation and Operations ## The Decimal Number System From Latin decem ("ten") Ten Symbols: e.g., 0 1 2 3 4 5 6 7 8 9 - Different symbols in different languages - The integers we use in C are decimal Positional: **2945** ≠ **2495** Base 10: $2945 = (2*10^3) + (9*10^2) + (4*10^1) + (5*10^0)$ ``` From late Latin ūnus ("one") ``` One symbol: 1 Effectively non-positional: $1111_{\text{U}} = 1111_{\text{U}}$ Base 1: $$1111 = (1*1^3) + (1*1^2) + (1*1^1) + (1*1^0)$$ Like tally marks (without crossing our fives) - Integer 5 = 11111 - Integer 8 = 11111111 - Integer 25 = 1111111111111111111111111 - etc ### **Key Points** All the other base systems we'll consider seriously are positional Counting, addition, subtraction, work the same way in them as in decimal, just with different bases (number of symbols available) Some are good for humans (base 10) and some for computers (powers-of-two bases) There are simple methods for conversion So now we can go over them very quickly ... ## The Binary Number System From late Latin *binarius* ("consisting of two"), from classical Latin *bis* ("twice"). Plus English suffix -ary Two symbols: 0 1 Positional: $1010_{B} \neq 1100_{B}$ Base 2: $1010 = (1*2^3) + (0*2^2) + (1*2^1) + (0*2^0)$ • "One zero one" in Base10 is integer value 101, and in Base 2 it is integer 5 Most (digital) computers use the binary number system #### Terminology - Bit: a single binary symbol ("binary digit") - Byte: (typically) 8 bits - Nibble / Nybble: 4 bits we'll see a more common name for 4 bits soon. ### The Hexadecimal Number System From ancient Greek $\xi \xi$ (hex, "six") + Latin-derived decimal Sixteen symbols ("hexits"): 0 1 2 3 4 5 6 7 8 9 A B C D E F Positional: $A13D_H \neq 3DA1_H$ Base 16: A13D_H: $A*16^3 + 1*16^2 + 3*16^1 + D*16^0 = 40960 + 256 + 48 + 13 =$ Computer programmers often use hexadecimal ("hex") • In C: Ox prefix (OxA13D, etc.) That's a zero, not a letter O "octo" (Latin) ⇒ eight Eight symbols: 0 1 2 3 4 5 6 7 Positional: **1743** ≠ **7314** Base 8: 7143_{H} : $7*8^3 + 1*8^2 + 4*8^1 + 3*8^0$ Computer programmers sometimes use octal (so does Mickey?) - In C: 0 prefix (01743, etc.) - Unix file permissions: chmod 755 myfile - Changes permissions to _rwxr_xr_x # Converting to Decimal: Expand using Base Template Binary to Decimal: LS Hex to Decimal: $$25_{H} = (2*16^{1}) + (5*16^{0})$$ = 32 + 5 = 37 Similarly: $$3B_{H} = (3*16^{1}) + (11*16^{0})$$ = 48 + 11 = 59 Octal to Decimal: $$25_0 = (2*8^1) + (5*8^0)$$ = 16 + 5 = 21 #### e.g., (Decimal) Integer to binary • Determine largest power of 2 that's ≤ number. Then write template from that power down: $$37 = (?*2^5) + (?*2^4) + (?*2^3) + (?*2^2) + (?*2^1) + (?*2^0)$$ • Then fill in template ``` 37 = (1*2^{5}) + (0*2^{4}) + (0*2^{3}) + (1*2^{2}) + (0*2^{1}) + (1*2^{0}) -32 5 -4 1 100101_{B} -1 0 ``` ## Converting from Decimal: Division Method - e.g. (Decimal) Integer to binary - Repeatedly divide by 2, consider remainder Read (L to R) from bottom to top: 100101_B Similarly, (Decimal) Integer to Hex: Read from bottom to top: 25_H # Conversion Among Power-of-2 Based Systems #### Observations: - For Hex, $16^1 = 2^4$, so every 1 hexit corresponds to a nybble (4 bits) - Watch the left-padding with zeros #### Binary to hexadecimal: 0010000100111101_B DH Number of bits in binary number not a multiple of $4? \Rightarrow$ pad with zeros on left Hexadecimal to binary: 001000100111101_R Discard leading zeros from binary number if appropriate For octal, it's 3 bits # iClicker Question Convert binary 101010 into decimal and hex - A. 21 decimal, A2 hex - B. 21 decimal, A8 hex - C. 18 decimal, 2A hex - D. 42 decimal, 2A hex hint: might want to convert to hex first # Agenda Number Systems: Decimal, Binary, Hex, Octal + conversions among them Negative numbers in a computer Integers in C: Representation and Operations Much easier than signed integers. Just binary numbers in the natural way we think of them. Addition, subtraction work same way. Only, can overflow due to fixed space #### **Mathematics** • Non-negative integers' range is 0 to ∞ #### Computers - Range limited by computer's word size - Word size is n bits \Rightarrow range is 0 to $2^n 1$ representing with an n bit binary number - Exceed range ⇒ overflow #### Typical computers today • n = 32 or 64, so range is 0 to $2^{32} - 1$ (~4 billion) or $2^{64} - 1$ (huge ... ~1.8e19) #### A pretend computer for upcoming slides - Assume n = 4, so range is 0 to $2^4 1$ (15) - (All points made generalize to larger word sizes like 32 and 64) On 4-bit pretend computer | Unsigned | | | | | |----------|------|--|--|--| | Integer | Rep | | | | | 0 | 0000 | | | | | 1 | 0001 | | | | | 2 | 0010 | | | | | 3 | 0011 | | | | | 4 | 0100 | | | | | 5 | 0101 | | | | | 6 | 0110 | | | | | 7 | 0111 | | | | | 8 | 1000 | | | | | 9 | 1001 | | | | | 10 | 1010 | | | | | 11 | 1011 | | | | | 12 | 1100 | | | | | 13 | 1101 | | | | | 14 | 1110 | | | | | 15 | 1111 | | | | # Adding Unsigned Integers Addition ``` 1 3 0011_B + 10 + 1010_B -- ---- 13 1101_B ``` Start at right column Proceed leftward Carry 1 when necessary ``` 111 7 0111_B + 10 + 1010_B -- ---- 1 0001_B ``` Beware of overflow All results are mod 24 17 mod 16 = 1 How would you detect overflow programmatically? # **Subtracting Unsigned Integers** #### Subtraction Start at right column Proceed leftward Borrow when necessary Beware of overflow All results are mod 24 -7 mod 16 = 9 How would you detect overflow programmatically? # Negative Numbers Attempt #1: Sign-Magnitude | Integer | Rep | | | |---------|------|--|--| | -7 | 1111 | | | | -6 | 1110 | | | | -5 | 1101 | | | | -4 | 1100 | | | | -3 | 1011 | | | | -2 | 1010 | | | | -1 | 1001 | | | | -0 | 1000 | | | | 0 | 0000 | | | | 1 | 0001 | | | | 2 | 0010 | | | | 3 | 0011 | | | | 4 | 0100 | | | | 5 | 0101 | | | | 6 | 0110 | | | | 7 | 0111 | | | | | | | | #### **Definition** High-order bit indicates sign $$0 \Rightarrow positive, 1 \Rightarrow negative$$ Remaining bits indicate magnitude $$0101_{B} = 101_{B} = 5$$ $1101_{B} = -101_{B} = -5$ Pros and cons - + easy to understand, easy to negate - + symmetric - two representations of zero - different algorithms to add signed and unsigned Not widely used for integers today ## Negative Numbers: Two's Complement | -x is 0 - x. | 00000000
- 01001011 | 1
00000000
- 01001011 | 11
0000000
- 01001011 | 111
00000000
- 01001011 | 1111
00000000
- 01001011 | |--------------|--------------------------------|---------------------------------|----------------------------------|----------------------------------|--------------------------------| | | | 1 | 01 | 101 | 0101 | | | 11111
0000000
- 01001011 | 111111
0000000
- 01001011 | 1111111
0000000
- 01001011 | 1111111
0000000
- 01001011 | | | | 10101 | 110101 | 0110101 | 10110101 | | How do you get 10110101 from 01001011? Flip the bits and add 1 Called two's complement because, in n bits, it's the same as $2^n - x$ (drop $n+1^{th}$ bit) (just flipping bits gives us "one's complement." Also a way to represent –ve numbers) ``` Integer Rep 1000 1001 1010 1011 1100 -3 1101 -2 1110 -1 1111 0000 0001 1 2 0010 3 0011 0100 0101 0110 0111 ``` ``` Computing negative ``` ``` neg(x) = flip all bits, and add 1. \simx + 1. onescomp(x) + 1 neg (0101_B) = 1010_B + 1 = 1011_B neg (1011_B) = 0100_B + 1 = 0101_B ``` A definition: High-order bit has weight $-(2^{b-1})$ ``` 1010_{B} = (1*-8) + (0*4) + (1*2) + (0*1) = -6 0010_{B} = (0*-8) + (0*4) + (1*2) + (0*1) = 2 ``` #### Pros and cons - not symmetric ("extra" negative number; -(-8) = -8) - + one representation of zero - + same algorithms add/subtract signed and unsigned int ``` pos + pos ``` ``` 11 3 0011_B + 3 + 0011_B -- ---- 6 0110_B ``` ``` 111 7 0111_B + 1 + 0001_B -- ---- -8 1000_B ``` #### pos + neg ``` 3 0011_B + -1 + 1111_B -- ---- 2 0010_B ``` How would you detect overflow programmatically? neg + neg neg + neg (overflow) # Subtracting Signed Integers in Two's Complement How would you compute 3 - 4? ``` 3 0011_B - 4 - 0100_B -- --- ? ????_B ``` # **Subtracting Signed Integers** Perform subtraction with borrows or Compute two's comp and add ### Why does Two's Complement Arithmetic Work Answer: $[-b] \mod 2^4 = [twoscomp(b)] \mod 2^4$ ``` [-b] mod 2^4 = [2^4 - b] mod 2^4 = [2^4 - 1 - b + 1] mod 2^4 = [(2^4 - 1 - b) + 1] mod 2^4 = [onescomp(b) + 1] mod 2^4 = [twoscomp(b)] mod 2^4 ``` So: $[a - b] \mod 2^4 = [a + twoscomp(b)] \mod 2^4$ ``` [a - b] mod 2^4 = [a + 2^4 - b] mod 2^4 = [a + 2^4 - 1 - b + 1] mod 2^4 = [a + (2^4 - 1 - b) + 1] mod 2^4 = [a + onescomp(b) + 1] mod 2^4 = [a + twoscomp(b)] mod 2^4 ``` # Agenda Number Systems: Decimal, Binary, Hex, Octal + conversions among them Negative numbers in a computer Integers in C: Representation and Operations ### Integer Data Types in C Integer types of various sizes: {signed, unsigned} {char, short, int, long} - Shortcuts: signed assumed for short/int/long; unsigned means unsigned int - char is 1 byte - Number of bits per byte is unspecified (but in the 21st century, safe to assume it's 8) - Signedness is system dependent, so for arithmetic use "signed char" or "unsigned char" What decisions did the designers of Java make? - Sizes of other integer types not fully specified but constrained: - int was intended to be "natural word size" of hardware, but isn't always - 2 ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long) #### On armlab: • Natural word size: 8 bytes ("64-bit machine") • char: 1 byte • short: 2 bytes • int: 4 bytes (compatibility with widespread 32-bit code) • long: 8 bytes # Integer Types in Java vs. C | ` Java | | С | | |----------------|---|--|--| | Unsigned types | char // 16 bits | <pre>unsigned char unsigned short unsigned (int) unsigned long</pre> | | | Signed types | byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits | <pre>signed char (signed) short (signed) int (signed) long</pre> | | - 1. Not guaranteed by C, but on armlab, short = 16 bits, int = 32 bits, long = 64 bits - 2. Not guaranteed by C, but on armlab, char is unsigned sizeof operator returns the size of a type or a variable (or an expression's result) - Applied at compile-time - Operand can be a data type - Operand can be an expression, from which the compiler infers a data type #### Examples, on armlab using gcc217 - sizeof(int) evaluates to 4 - sizeof(i) evaluates to 4 if i is a variable of type int - sizeof(1+2) evaluates to 4 ### Integer Literals in C #### Prefixes, suffixes indicate bases, types (resp). Default base is decimal int: 123 - Prefixes to indicate a different base - Octal int: 0173 = 123 - Hexadecimal int: 0x7B = 123 - No prefix to indicate binary int literal - Suffixes to indicate a different type - Use "L" suffix to indicate long literal - Use "U" suffix to indicate unsigned literal - No suffix to indicate char or short literals; instead, cast char: '{' (← really int, as seen last time), (char) 123, (char) 0173, (char) 0x7B int: 123, 0173, 0x7B long: 123L, 0173L, 0x7BL short: (short)123, (short)0173, (short)0x7B unsigned int: 123U, 0173U, 0x7BU unsigned long: 123UL, 0173UL, 0x7BUL unsigned short: (unsigned short)123, (unsigned short)0173, (unsigned short)0x7B # sizeof synthesis Q: What is the value of the following size of expression on the armlab machines? ``` int i = 1; sizeof(i + 2L) ``` - A. 3 - B. 4 - C. 8 - D. 12 - E. error # Agenda Number Systems: Decimal, Binary, Hex, Octal + conversions among them Negative numbers in a computer Integers in C: Representation and Operations ## Reading / Writing Numbers #### Motivation - Numbers come in as sequences of characters, but must be interpreted as numbers with types - Could provide special read/write functions for each type: getchar(), putshort(), getint(), putfloat() ... - Or parameterized functions: one function that takes a specification for the kind of data to expect #### C library provides parameterized functions: scanf() and printf() - Can read/write any primitive type of data - First parameter is a format string containing conversion specs: size, base, field width - Can read/write multiple variables with one call #### See King book for details ## Operators in C - Typical arithmetic operators: + * / % - Typical relational operators: == != < <= > >= - Each evaluates to FALSE \Rightarrow 0, TRUE \Rightarrow 1 - Typical logical operators: ! && || - Each interprets $0 \Rightarrow FALSE$, non- $0 \Rightarrow TRUE$ (remember, no Boolean type) - Each evaluates to FALSE \Rightarrow 0, TRUE \Rightarrow 1 - Cast operator: (type) - Bitwise operators: ~ & | ^ >> << - C designed to be close to the hardware - Bitwise operators enable fast calculations/arithmetic ### Shifting Unsigned Integers Bitwise right shift (>> in C): fill on left with zeros $$\begin{array}{ccc} 10 >> 1 \Rightarrow 5 \\ 1010_{\text{B}} & 0101_{\text{B}} \end{array}$$ What is the effect arithmetically? Bitwise left shift (<< in C): fill on right with zeros $$\begin{array}{c|c} 5 & << 1 \Rightarrow 10 \\ \hline 0101_{B} & 1010_{B} \end{array}$$ $$3 \ll 2 \Rightarrow 12$$ $$0011_{B} \qquad 1100_{B}$$ $$3 \ll 3 \Rightarrow 8$$ $$0011_{B} 1000_{B}$$ What is the effect arithmetically? ← Overflows. But Results are correct mod 2⁴ ## Other Bitwise Operations on Unsigned Integers ## Bitwise NOT (~ in C) Flip each bit (don't forget leading 0s) $$\begin{array}{c} \sim 5 \Rightarrow 10 \\ 0101_{\text{B}} \quad 1010_{\text{B}} \end{array}$$ ## Bitwise AND (& in C) • AND (1=True, 0=False) corresponding bits Useful for "masking" bits to 0. All bits ANDed with 0 are 0. x & 0 is 0, x & 1 is x ## Other Bitwise Operations on Unsigned Ints ## Bitwise OR: (| in C) • Logical OR corresponding bits ``` 10 1010_B | 1 | 0001_B | -- 11 1011_B ``` Useful for "masking" bits to 1. OR with 1 is 1. $x \mid 1$ is 1, $x \mid 0$ is $x \mid x \mid 0$ ## Bitwise exclusive OR (^ in C) • Logical exclusive OR corresponding bits ``` 10 1010_B 10 1010_B 1010_B 0 0000_B ``` ^ with 1 flips value of bit x ^ x sets all bits to 0 ``` Logical AND (&&) vs. bitwise AND (&) ``` • 2 (TRUE) && 1 (TRUE) => 1 (TRUE) ``` Decimal Binary 2 00000000 00000000 00000000 00000010 && 1 00000000 00000000 00000000 00000001 --- 1 00000000 00000000 00000000 00000001 ``` • 2 (TRUE) & 1 (TRUE) => 0 (FALSE) #### Implication: - Use logical AND to control flow of logic - Use bitwise AND only when doing bit-level manipulation - Same for OR and NOT # A Bit Complicated ... challenge for the bored How do you set bit k (where the least significant bit is bit 0) of unsigned variable u to zero (leaving everything else in u unchanged)? - A. u &= (0 << k); - B. u = (1 << k); - C. u = (1 << k); - D. $u \&= \sim (1 << k);$ - E. $u = \sim u \wedge (1 << k);$ # Aside: Using Bitwise Ops for Arithmetic Can use <<, >>, and & to do some arithmetic efficiently $$x * 2^y == x << y$$ • $3*4 = 3*2^2 = 3 << 2 \Rightarrow 12$ $$x / 2^y == x >> y$$ • 13/4 = 13/2² = 13>>2 \Rightarrow 3 $$x \% 2^{y} == x \& (2^{y}-1)$$ • $13\%4 = 13\%2^{2} = 13\&(2^{2}-1)$ = $13\&3 \Rightarrow 1$ Fast way to multiply by a power of 2 Fast way to divide unsigned by power of 2 Fast way to mod by a power of 2 Many compilers will do these transformations automatically! Bitwise left shift (<< in C): fill on right with zeros $$3 \ll 1 \Rightarrow 6$$ $$0011_{B} \qquad 0110_{B}$$ $$\begin{array}{ccc} -3 & << 2 \Rightarrow 4 \\ 1101_{\text{B}} & 0100_{\text{B}} \end{array}$$ What is the effect arithmetically? Results are mod 2⁴ Bitwise right shift: fill on left with ??? ## Shifting Signed Integers (cont.) Bitwise logical right shift: fill on left with zeros $$-6 >> 1 => 5$$ $1010_{\rm B}$ $0101_{\rm B}$ What is the effect arithmetically? Bitwise arithmetic right shift: fill on left with sign bit $$\begin{array}{c|c} 6 >> 1 \Rightarrow 3 \\ \hline 0110_{B} & 0011_{B} \end{array}$$ $$\begin{array}{c|cccc} -6 & >> 1 \Rightarrow -3 \\ \hline 1010_{B} & 1101_{B} \end{array}$$ In C, right shift (>>) could be logical (>>> in Java) or arithmetic (>> in Java) - Not specified by standard (happens to be arithmetic on armlab) - Best to avoid shifting signed integers 49 ## Other Operations on Signed Ints ## Bitwise NOT (~ in C) • Same as with unsigned ints ## Bitwise AND (& in C) Same as with unsigned ints ## Bitwise OR: (| in C) Same as with unsigned ints ## Bitwise exclusive OR (^ in C) Same as with unsigned ints Best to avoid using signed ints for bit-twiddling (you're not usually using the ints for their integer values when you do this, anyway) ## **Assignment Operator** Many high-level languages provide an assignment statement C provides an assignment operator - Operator takes operands as inputs and produces a result - Performs assignment and then evaluates to the assigned value. Why? - Allows assignment to appear within larger expressions - Terseness of code - But be careful about precedence. Extra parentheses often needed. Can confuse reader. ## Examples ``` i = 0; /* Side effect: assign 0 to i. Evaluate to 0. */ j = i = 0; /* Assignment op has R to L associativity */ /* Side effect: assign 0 to i. Evaluate to 0. Side effect: assign 0 to j. Evaluate to 0. */ while ((i = getchar()) != EOF) ... /* Read a character or EOF value. Side effect: assign that value to i. Evaluate to that value. Compare that value to EOF. Evaluate to 0 (FALSE) or 1 (TRUE). */ ``` #### Motivation - The construct a = b + c is flexible - The construct d = d + e is somewhat common - The construct d = d + 1 is very common #### Assignment in C - Useful: Introduce += operator to do things like d += e - Extend to -= *= /= ~= &= |= ^= <<= >>= - All evaluate to whatever was assigned. i.e., if a was 1, a+=2 is a = a + 2 so evaluates to 3 - Pre-increment and pre-decrement: ++d --d. Evaluates to d+1 and d-1 - Post-increment and post-decrement (evaluate to old value): d++ d--. Evaluates to d # Plusplus Playfulness / Confusion Plusplus Q: What are i and j set to in the following code? A. 5, 7 B. 7, 5 C. 7, 11 D. 7, 12 E. 7, 13 54 ## **Incremental Iffiness** Q: What does the following code print? ``` int i = 1; switch (i++) { case 1: printf("%d", ++i); case 2: printf("%d", i++); } ``` - A. 1 - B. 2 - C. 3 - D. 22 - E. 33 # Sample Exam Question (Spring 2017, Exam 1) - 1(b) (12 points/100) Suppose we have a 7-bit computer. Answer the following questions. - (i) (4 points) What is the largest unsigned number that can be represented in 7 bits? In binary: In decimal: - (ii) (4 points) What is the smallest (i.e., most negative) signed number represented in 2's complement in 7 bits? In binary: In decimal: - (iii) (2 points) Is there a number n, other than 0, for which n is equal to -n, when represented in 2's complement in 7 bits? If yes, show the number (in decimal). If no, briefly explain why not. - (iv) (2 points) When doing arithmetic addition using 2's complement representation in 7 bits, is it possible to have an overflow when the first number is positive and the second is negative? (Yes/No answer is sufficient, no need to explain.) # Sample Exam Question (Fall 2024, Exam 1) 1 (d) (1 point /32) If acc is of type int, write a statement that has the same effect as the line acc *= 10, without using multiplication and using no more than one addition operation. # (Hard!) Sample Exam Question (Fall 2020, Exam 1) a. In the two ranges below, replace the "____" with the inclusive upper and lower bounds of decimal numbers that do not change value when moving from i-bit two's complement to (i+1)-bit two's complement (for example, when moving from four bits to represent integers to using five bits to do so). The two ranges consider two different possibilities for changing an i-bit value into an (i+1)-bit value: If we make the change by prepending a 0 onto the front of the i-bit representation (e.g., 1001 -> 01001): <= x <= If we make the change by prepending a 1 onto the front of the i-bit representation (e.g., 1001 -> 11001): ____ <= x <= ____ b. In the range below, replace the "____" with the inclusive upper and lower bounds of armlab C int literals for which the expression still compiles and does not change value when adding a O before the first character of the literal (for example, 217 -> 0217): ____ <= x <= ____ Hint 1: does a literal 09 compile? Hint 2: the word "expression" is intentional; note that the first character of a signed int is not necessarily a digit. 58 # APPENDIX: FLOATING POINT ## **Rational Numbers** #### Mathematics - A rational number is one that can be expressed as the ratio of two integers - Unbounded range and precision ## Computer science - Finite range and precision - Approximate using floating point number ## Floating Point Numbers Like scientific notation: e.g., c is $2.99792458 \times 10^8 \text{ m/s}$ This has the form (multiplier) × (base)(power) In the computer, - Multiplier is called mantissa - Base is almost always 2 - Power is called exponent ## Floating-Point Data Types ## C specifies: - Three floating-point data types: float, double, and long double - Sizes unspecified, but constrained: - sizeof(float) ≤ sizeof(double) ≤ sizeof(long double) On ArmLab (and on pretty much any 21st-century computer using the IEEE standard) • float: 4 bytes • double: 8 bytes On ArmLab (but varying across architectures) • long double: 16 bytes ## How to write a floating-point number? - Either fixed-point or "scientific" notation - Any literal that contains decimal point or "E" is floating-point - The default floating-point type is double - Append "F" to indicate float - Append "L" to indicate long double ## Examples • double: 123.456, 1E-2, -1.23456E4 • float: 123.456F, 1E-2F, -1.23456E4F • long double: 123.456L, 1E-2L, -1.23456E4L ## Common finite representation: IEEE floating point More precisely: ISO/IEEE 754 standard #### Using 32 bits (type **float** in C): - 1 bit: sign (0⇒positive, 1⇒negative) - 8 bits: exponent + 127 ## Using 64 bits (type **double** in C): - 1 bit: sign (0⇒positive, 1⇒negative) - 11 bits: exponent + 1023 # When was floating-point invented? mantissa (noun): decimal part of a logarithm, 1865, **Answer: long before computers!** from Latin mantisa "a worthless addition, makeweight" | COI | MMOI | N LO | GA | RITI | HMS | | logio | æ | | | | | | | |-----|-------|--------------|------|------|------|------|-------|------|------|------|-------------------------|---|---|---| | ac | 0 | | | 2 | | - 5 | 6 | | | | $\Delta_{\mathfrak{m}}$ | I | 2 | 3 | | * | | • | * | 3 | * | 3 | | 1 | 8 | 9. | + | | - | - | | 50 | -6990 | 6998 | 7007 | 7016 | 7024 | 7033 | 7042 | 7050 | 7059 | 7067 | 9 | 1 | 2 | 3 | | 51 | -7076 | 7084 | 7093 | 7101 | 7110 | 7118 | 7126 | 7135 | 7143 | 7152 | 8 | I | 2 | 2 | | 52 | -7160 | | 7177 | | 7193 | 7202 | 7210 | | 7226 | | 8 | I | 2 | 2 | | 53 | -7243 | ALCOHOL: THE | 7259 | | | 7284 | | | | 7316 | 8 | 1 | 2 | 2 | | 54 | -7324 | 7332 | 7340 | 7348 | 7356 | 7364 | 7372 | 7380 | 7388 | 7396 | 8 | I | 2 | 2 | | 55 | -7404 | 0.000 | 7419 | | 7435 | 7443 | 7451 | 7459 | 7466 | 7474 | 8 | I | 2 | 2 | # Floating Point Example ## Sign (1 bit): • 1 ⇒ negative #### **10000011**101101100000000000000000 32-bit representation ## Exponent (8 bits): - 10000011_B = 131 - 131 127 = 4 ## Mantissa (23 bits): - 1 + $(1*2^{-1})$ + $(0*2^{-2})$ + $(1*2^{-3})$ + $(1*2^{-4})$ + $(0*2^{-5})$ + $(1*2^{-6})$ + $(1*2^{-7})$ + $(0*2^{-\cdots})$ = 1.7109375 #### Number: • $-1.7109375 * 2^4 = -27.375$ ## Floating Point Consequences "Machine epsilon": smallest positive number you can add to 1.0 and get something other than 1.0 For float: $\varepsilon \approx 10^{-7}$ - No such number as 1.00000001 - Rule of thumb: "almost 7 digits of precision" For double: $\varepsilon \approx 2 \times 10^{-16}$ • Rule of thumb: "not quite 16 digits of precision" These are all relative numbers Just as decimal number system can represent only some rational numbers with finite digit count... • Example: 1/3 cannot be represented Binary number system can represent only some rational numbers with finite digit count • Example: 1/5 cannot be represented #### Beware of round-off error - Error resulting from inexact representation - Can accumulate - Be careful when comparing two floating-point numbers for equality | Decimal
Approx | Rational
Value | |-------------------|-------------------| | .3 | 3/10 | | .33 | 33/100 | | .333 | 333/1000 | | | | | Binary | Rational | |------------|--------------| | Approx | <u>Value</u> | | 0.0 | 0/2 | | 0.01 | 1/4 | | 0.010 | 2/8 | | 0.0011 | 3/16 | | 0.00110 | 6/32 | | 0.001101 | 13/64 | | 0.0011010 | 26/128 | | 0.00110011 | 51/256 | | | | | | | # Floating away ... What does the following code print? ``` double sum = 0.0; double i; for (i = 0.0; i != 10.0; i++) sum += 0.1; if (sum == 1.0) printf("All good!\n"); else printf("Yikes!\n"); ``` A. All good! B: Yikes! B. Yikes! ... loop terminates, because we can represent 10.0 exactly by C. (Infinite loop) adding 1.0 at a time. D. (Compilation error) ... but sum isn't 1.0 because we can't represent 1.0 exactly by adding 0.1 at a time. 69