COS 217: Introduction to Programming Systems

Numbers

(in C and otherwise)

The Old Ice Breaker

Q: Why do computer programmers confuse Christmas and Halloween?

A: Because Dec 25 is Oct 31

Agenda

Number Systems: Decimal, Binary, Hex, Octal + conversions among them

Negative numbers in a computer

Integers in C: Representation and Operations

The Decimal Number System

From Latin decem ("ten")

Ten Symbols: e.g., 0 1 2 3 4 5 6 7 8 9

- Different symbols in different languages
- The integers we use in C are decimal

Positional: **2945** ≠ **2495**

Base 10: $2945 = (2*10^3) + (9*10^2) + (4*10^1) + (5*10^0)$


```
From late Latin ūnus ("one")
```

One symbol: 1

Effectively non-positional: $1111_{\text{U}} = 1111_{\text{U}}$

Base 1:
$$1111 = (1*1^3) + (1*1^2) + (1*1^1) + (1*1^0)$$

Like tally marks (without crossing our fives)

- Integer 5 = 11111
- Integer 8 = 11111111
- Integer 25 = 1111111111111111111111111
- etc

Key Points

All the other base systems we'll consider seriously are positional

Counting, addition, subtraction, work the same way in them as in decimal, just with different bases (number of symbols available)

Some are good for humans (base 10) and some for computers (powers-of-two bases)

There are simple methods for conversion

So now we can go over them very quickly ...

The Binary Number System

From late Latin *binarius* ("consisting of two"), from classical Latin *bis* ("twice"). Plus English suffix -ary

Two symbols: 0 1

Positional: $1010_{B} \neq 1100_{B}$

Base 2: $1010 = (1*2^3) + (0*2^2) + (1*2^1) + (0*2^0)$

• "One zero one" in Base10 is integer value 101, and in Base 2 it is integer 5

Most (digital) computers use the binary number system

Terminology

- Bit: a single binary symbol ("binary digit")
- Byte: (typically) 8 bits
- Nibble / Nybble: 4 bits we'll see a more common name for 4 bits soon.

The Hexadecimal Number System

From ancient Greek $\xi \xi$ (hex, "six") + Latin-derived decimal

Sixteen symbols ("hexits"): 0 1 2 3 4 5 6 7 8 9 A B C D E F

Positional: $A13D_H \neq 3DA1_H$

Base 16: A13D_H: $A*16^3 + 1*16^2 + 3*16^1 + D*16^0 = 40960 + 256 + 48 + 13 =$

Computer programmers often use hexadecimal ("hex")

• In C: Ox prefix (OxA13D, etc.)

That's a zero, not a letter O

"octo" (Latin) ⇒ eight

Eight symbols: 0 1 2 3 4 5 6 7

Positional: **1743** ≠ **7314**

Base 8: 7143_{H} : $7*8^3 + 1*8^2 + 4*8^1 + 3*8^0$

Computer programmers sometimes use octal (so does Mickey?)

- In C: 0 prefix (01743, etc.)
- Unix file permissions: chmod 755 myfile
 - Changes permissions to _rwxr_xr_x

Converting to Decimal: Expand using Base Template

Binary to Decimal:

LS

Hex to Decimal:

$$25_{H} = (2*16^{1}) + (5*16^{0})$$

= 32 + 5
= 37

Similarly:

$$3B_{H} = (3*16^{1}) + (11*16^{0})$$

= 48 + 11
= 59

Octal to Decimal:

$$25_0 = (2*8^1) + (5*8^0)$$

= 16 + 5
= 21

e.g., (Decimal) Integer to binary

• Determine largest power of 2 that's ≤ number. Then write template from that power down:

$$37 = (?*2^5) + (?*2^4) + (?*2^3) + (?*2^2) + (?*2^1) + (?*2^0)$$

• Then fill in template

```
37 = (1*2^{5}) + (0*2^{4}) + (0*2^{3}) + (1*2^{2}) + (0*2^{1}) + (1*2^{0})
-32
5
-4
1
100101_{B}
-1
0
```


Converting from Decimal: Division Method

- e.g. (Decimal) Integer to binary
 - Repeatedly divide by 2, consider remainder

Read (L to R) from bottom to top: 100101_B

Similarly, (Decimal) Integer to Hex:

Read from bottom to top: 25_H

Conversion Among Power-of-2 Based Systems

Observations:

- For Hex, $16^1 = 2^4$, so every 1 hexit corresponds to a nybble (4 bits)
- Watch the left-padding with zeros

Binary to hexadecimal:

0010000100111101_B DH

Number of bits in binary number not a multiple of $4? \Rightarrow$ pad with zeros on left

Hexadecimal to binary:

001000100111101_R

Discard leading zeros from binary number if appropriate

For octal, it's 3 bits

iClicker Question

Convert binary 101010 into decimal and hex

- A. 21 decimal, A2 hex
- B. 21 decimal, A8 hex
- C. 18 decimal, 2A hex
- D. 42 decimal, 2A hex

hint: might want to convert to hex first

Agenda

Number Systems: Decimal, Binary, Hex, Octal + conversions among them

Negative numbers in a computer

Integers in C: Representation and Operations

Much easier than signed integers. Just binary numbers in the natural way we think of them. Addition, subtraction work same way. Only, can overflow due to fixed space

Mathematics

• Non-negative integers' range is 0 to ∞

Computers

- Range limited by computer's word size
- Word size is n bits \Rightarrow range is 0 to $2^n 1$ representing with an n bit binary number
- Exceed range ⇒ overflow

Typical computers today

• n = 32 or 64, so range is 0 to $2^{32} - 1$ (~4 billion) or $2^{64} - 1$ (huge ... ~1.8e19)

A pretend computer for upcoming slides

- Assume n = 4, so range is 0 to $2^4 1$ (15)
- (All points made generalize to larger word sizes like 32 and 64)

On 4-bit pretend computer

Unsigned				
Integer	Rep			
0	0000			
1	0001			
2	0010			
3	0011			
4	0100			
5	0101			
6	0110			
7	0111			
8	1000			
9	1001			
10	1010			
11	1011			
12	1100			
13	1101			
14	1110			
15	1111			

Adding Unsigned Integers

Addition

```
1
3 0011<sub>B</sub>
+ 10 + 1010<sub>B</sub>
-- ----
13 1101<sub>B</sub>
```

Start at right column
Proceed leftward
Carry 1 when necessary

```
111

7 0111<sub>B</sub>

+ 10 + 1010<sub>B</sub>

-- ----

1 0001<sub>B</sub>
```

Beware of overflow All results are mod 24 17 mod 16 = 1

How would you detect overflow programmatically?

Subtracting Unsigned Integers

Subtraction

Start at right column
Proceed leftward
Borrow when necessary

Beware of overflow All results are mod 24 -7 mod 16 = 9

How would you detect overflow programmatically?

Negative Numbers Attempt #1: Sign-Magnitude

Integer	Rep		
-7	1111		
-6	1110		
-5	1101		
-4	1100		
-3	1011		
-2	1010		
-1	1001		
-0	1000		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		

Definition

High-order bit indicates sign

$$0 \Rightarrow positive, 1 \Rightarrow negative$$

Remaining bits indicate magnitude

$$0101_{B} = 101_{B} = 5$$

 $1101_{B} = -101_{B} = -5$

Pros and cons

- + easy to understand, easy to negate
- + symmetric
- two representations of zero
- different algorithms to add signed and unsigned

Not widely used for integers today

Negative Numbers: Two's Complement

-x is 0 - x.	00000000 - 01001011	1 00000000 - 01001011	11 0000000 - 01001011	111 00000000 - 01001011	1111 00000000 - 01001011
		1	01	101	0101
	11111 0000000 - 01001011	111111 0000000 - 01001011	1111111 0000000 - 01001011	1111111 0000000 - 01001011	
	10101	110101	0110101	10110101	

How do you get 10110101 from 01001011? Flip the bits and add 1

Called two's complement because, in n bits, it's the same as $2^n - x$ (drop $n+1^{th}$ bit) (just flipping bits gives us "one's complement." Also a way to represent –ve numbers)


```
Integer
           Rep
           1000
           1001
           1010
           1011
           1100
     -3
          1101
     -2
           1110
     -1
          1111
           0000
           0001
      1
      2
           0010
      3
           0011
          0100
          0101
          0110
           0111
```

```
Computing negative
```

```
neg(x) = flip all bits, and add 1. \simx + 1. onescomp(x) + 1

neg (0101<sub>B</sub>) = 1010<sub>B</sub> + 1 = 1011<sub>B</sub>

neg (1011<sub>B</sub>) = 0100<sub>B</sub> + 1 = 0101<sub>B</sub>
```

A definition: High-order bit has weight $-(2^{b-1})$

```
1010_{B} = (1*-8) + (0*4) + (1*2) + (0*1) = -6

0010_{B} = (0*-8) + (0*4) + (1*2) + (0*1) = 2
```

Pros and cons

- not symmetric ("extra" negative number; -(-8) = -8)
- + one representation of zero
- + same algorithms add/subtract signed and unsigned int


```
pos + pos
```

```
11

3 0011<sub>B</sub>

+ 3 + 0011<sub>B</sub>

-- ----

6 0110<sub>B</sub>
```

```
111

7 0111<sub>B</sub>

+ 1 + 0001<sub>B</sub>

-- ----

-8 1000<sub>B</sub>
```

pos + neg

```
3 0011<sub>B</sub>
+ -1 + 1111<sub>B</sub>
-- ----
2 0010<sub>B</sub>
```

How would you detect overflow programmatically?

neg + neg

neg + neg (overflow)

Subtracting Signed Integers in Two's Complement

How would you compute 3 - 4?

```
3 0011<sub>B</sub>
- 4 - 0100<sub>B</sub>
-- ---
? ????<sub>B</sub>
```

Subtracting Signed Integers

Perform subtraction with borrows

or

Compute two's comp and add

Why does Two's Complement Arithmetic Work

Answer: $[-b] \mod 2^4 = [twoscomp(b)] \mod 2^4$

```
[-b] mod 2^4

= [2^4 - b] mod 2^4

= [2^4 - 1 - b + 1] mod 2^4

= [(2^4 - 1 - b) + 1] mod 2^4

= [onescomp(b) + 1] mod 2^4

= [twoscomp(b)] mod 2^4
```

So: $[a - b] \mod 2^4 = [a + twoscomp(b)] \mod 2^4$

```
[a - b] mod 2^4

= [a + 2^4 - b] mod 2^4

= [a + 2^4 - 1 - b + 1] mod 2^4

= [a + (2^4 - 1 - b) + 1] mod 2^4

= [a + onescomp(b) + 1] mod 2^4

= [a + twoscomp(b)] mod 2^4
```

Agenda

Number Systems: Decimal, Binary, Hex, Octal + conversions among them

Negative numbers in a computer

Integers in C: Representation and Operations

Integer Data Types in C

Integer types of various sizes: {signed, unsigned} {char, short, int, long}

- Shortcuts: signed assumed for short/int/long; unsigned means unsigned int
- char is 1 byte
 - Number of bits per byte is unspecified (but in the 21st century, safe to assume it's 8)
 - Signedness is system dependent, so for arithmetic use "signed char" or "unsigned char"

What decisions did the

designers of Java make?

- Sizes of other integer types not fully specified but constrained:
 - int was intended to be "natural word size" of hardware, but isn't always
 - 2 ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long)

On armlab:

• Natural word size: 8 bytes ("64-bit machine")

• char: 1 byte

• short: 2 bytes

• int: 4 bytes (compatibility with widespread 32-bit code)

• long: 8 bytes

Integer Types in Java vs. C

` Java		С	
Unsigned types	char // 16 bits	<pre>unsigned char unsigned short unsigned (int) unsigned long</pre>	
Signed types	byte // 8 bits short // 16 bits int // 32 bits long // 64 bits	<pre>signed char (signed) short (signed) int (signed) long</pre>	

- 1. Not guaranteed by C, but on armlab, short = 16 bits, int = 32 bits, long = 64 bits
- 2. Not guaranteed by C, but on armlab, char is unsigned

sizeof operator returns the size of a type or a variable (or an expression's result)

- Applied at compile-time
- Operand can be a data type
- Operand can be an expression, from which the compiler infers a data type

Examples, on armlab using gcc217

- sizeof(int) evaluates to 4
- sizeof(i) evaluates to 4 if i is a variable of type int
- sizeof(1+2) evaluates to 4

Integer Literals in C

Prefixes, suffixes indicate bases, types (resp). Default base is decimal int: 123

- Prefixes to indicate a different base
 - Octal int: 0173 = 123
 - Hexadecimal int: 0x7B = 123
 - No prefix to indicate binary int literal

- Suffixes to indicate a different type
 - Use "L" suffix to indicate long literal
 - Use "U" suffix to indicate unsigned literal
 - No suffix to indicate char or short literals; instead, cast

char: '{' (← really int, as seen last time), (char) 123, (char) 0173, (char) 0x7B

int: 123, 0173, 0x7B

long: 123L, 0173L, 0x7BL

short: (short)123, (short)0173, (short)0x7B

unsigned int: 123U, 0173U, 0x7BU

unsigned long: 123UL, 0173UL, 0x7BUL

unsigned short: (unsigned short)123, (unsigned short)0173, (unsigned short)0x7B

sizeof synthesis

Q: What is the value of the following size of expression on the armlab machines?

```
int i = 1;
sizeof(i + 2L)
```

- A. 3
- B. 4
- C. 8
- D. 12
- E. error

Agenda

Number Systems: Decimal, Binary, Hex, Octal + conversions among them

Negative numbers in a computer

Integers in C: Representation and Operations

Reading / Writing Numbers

Motivation

- Numbers come in as sequences of characters, but must be interpreted as numbers with types
- Could provide special read/write functions for each type: getchar(), putshort(), getint(), putfloat() ...
- Or parameterized functions: one function that takes a specification for the kind of data to expect

C library provides parameterized functions: scanf() and printf()

- Can read/write any primitive type of data
- First parameter is a format string containing conversion specs: size, base, field width
- Can read/write multiple variables with one call

See King book for details

Operators in C

- Typical arithmetic operators: + * / %
- Typical relational operators: == != < <= > >=
 - Each evaluates to FALSE \Rightarrow 0, TRUE \Rightarrow 1
- Typical logical operators: ! && ||
 - Each interprets $0 \Rightarrow FALSE$, non- $0 \Rightarrow TRUE$ (remember, no Boolean type)
 - Each evaluates to FALSE \Rightarrow 0, TRUE \Rightarrow 1
- Cast operator: (type)
- Bitwise operators: ~ & | ^ >> <<
 - C designed to be close to the hardware
 - Bitwise operators enable fast calculations/arithmetic

Shifting Unsigned Integers

Bitwise right shift (>> in C): fill on left with zeros

$$\begin{array}{ccc} 10 >> 1 \Rightarrow 5 \\ 1010_{\text{B}} & 0101_{\text{B}} \end{array}$$

What is the effect arithmetically?

Bitwise left shift (<< in C): fill on right with zeros

$$\begin{array}{c|c} 5 & << 1 \Rightarrow 10 \\ \hline 0101_{B} & 1010_{B} \end{array}$$

$$3 \ll 2 \Rightarrow 12$$

$$0011_{B} \qquad 1100_{B}$$

$$3 \ll 3 \Rightarrow 8$$

$$0011_{B} 1000_{B}$$

What is the effect arithmetically?

← Overflows. But Results are correct mod 2⁴

Other Bitwise Operations on Unsigned Integers

Bitwise NOT (~ in C)

Flip each bit (don't forget leading 0s)

$$\begin{array}{c}
\sim 5 \Rightarrow 10 \\
0101_{\text{B}} \quad 1010_{\text{B}}
\end{array}$$

Bitwise AND (& in C)

• AND (1=True, 0=False) corresponding bits

Useful for "masking" bits to 0. All bits ANDed with 0 are 0. x & 0 is 0, x & 1 is x

Other Bitwise Operations on Unsigned Ints

Bitwise OR: (| in C)

• Logical OR corresponding bits

```
10 1010<sub>B</sub>
| 1 | 0001<sub>B</sub>
| -- 11 1011<sub>B</sub>
```

Useful for "masking" bits to 1. OR with 1 is 1. $x \mid 1$ is 1, $x \mid 0$ is $x \mid x \mid 0$

Bitwise exclusive OR (^ in C)

• Logical exclusive OR corresponding bits

```
10 1010<sub>B</sub>

10 1010<sub>B</sub>

1010<sub>B</sub>

0 0000<sub>B</sub>
```

^ with 1 flips value of bit

x ^ x sets all bits to 0


```
Logical AND (&&) vs. bitwise AND (&)
```

• 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

```
Decimal Binary
2 00000000 00000000 00000000 00000010
&& 1 00000000 00000000 00000000 00000001
--- 1 00000000 00000000 00000000 00000001
```

• 2 (TRUE) & 1 (TRUE) => 0 (FALSE)

Implication:

- Use logical AND to control flow of logic
- Use bitwise AND only when doing bit-level manipulation
- Same for OR and NOT

A Bit Complicated ... challenge for the bored

How do you set bit k (where the least significant bit is bit 0) of unsigned variable u to zero (leaving everything else in u unchanged)?

- A. u &= (0 << k);
- B. u = (1 << k);
- C. u = (1 << k);
- D. $u \&= \sim (1 << k);$
- E. $u = \sim u \wedge (1 << k);$

Aside: Using Bitwise Ops for Arithmetic

Can use <<, >>, and & to do some arithmetic efficiently

$$x * 2^y == x << y$$

• $3*4 = 3*2^2 = 3 << 2 \Rightarrow 12$

$$x / 2^y == x >> y$$

• 13/4 = 13/2² = 13>>2 \Rightarrow 3

$$x \% 2^{y} == x \& (2^{y}-1)$$
• $13\%4 = 13\%2^{2} = 13\&(2^{2}-1)$
= $13\&3 \Rightarrow 1$

Fast way to multiply by a power of 2

Fast way to divide unsigned by power of 2

Fast way to mod by a power of 2

Many compilers will do these transformations automatically!

Bitwise left shift (<< in C): fill on right with zeros

$$3 \ll 1 \Rightarrow 6$$

$$0011_{B} \qquad 0110_{B}$$

$$\begin{array}{ccc} -3 & << 2 \Rightarrow 4 \\ 1101_{\text{B}} & 0100_{\text{B}} \end{array}$$

What is the effect arithmetically?

Results are mod 2⁴

Bitwise right shift: fill on left with ???

Shifting Signed Integers (cont.)

Bitwise logical right shift: fill on left with zeros

$$-6 >> 1 => 5$$

 $1010_{\rm B}$ $0101_{\rm B}$

What is the effect arithmetically?

Bitwise arithmetic right shift: fill on left with sign bit

$$\begin{array}{c|c} 6 >> 1 \Rightarrow 3 \\ \hline 0110_{B} & 0011_{B} \end{array}$$

$$\begin{array}{c|cccc}
-6 & >> 1 \Rightarrow -3 \\
\hline
1010_{B} & 1101_{B}
\end{array}$$

In C, right shift (>>) could be logical (>>> in Java) or arithmetic (>> in Java)

- Not specified by standard (happens to be arithmetic on armlab)
- Best to avoid shifting signed integers

49

Other Operations on Signed Ints

Bitwise NOT (~ in C)

• Same as with unsigned ints

Bitwise AND (& in C)

Same as with unsigned ints

Bitwise OR: (| in C)

Same as with unsigned ints

Bitwise exclusive OR (^ in C)

Same as with unsigned ints

Best to avoid using signed ints for bit-twiddling (you're not usually using the ints for their integer values when you do this, anyway)

Assignment Operator

Many high-level languages provide an assignment statement

C provides an assignment operator

- Operator takes operands as inputs and produces a result
- Performs assignment and then evaluates to the assigned value. Why?
 - Allows assignment to appear within larger expressions
 - Terseness of code
 - But be careful about precedence. Extra parentheses often needed. Can confuse reader.

Examples

```
i = 0;
   /* Side effect: assign 0 to i.
        Evaluate to 0. */

j = i = 0; /* Assignment op has R to L associativity */
   /* Side effect: assign 0 to i.
        Evaluate to 0.
        Side effect: assign 0 to j.
        Evaluate to 0. */

while ((i = getchar()) != EOF) ...
   /* Read a character or EOF value.
        Side effect: assign that value to i.
        Evaluate to that value.
        Compare that value to EOF.
        Evaluate to 0 (FALSE) or 1 (TRUE). */
```


Motivation

- The construct a = b + c is flexible
- The construct d = d + e is somewhat common
- The construct d = d + 1 is very common

Assignment in C

- Useful: Introduce += operator to do things like d += e
 - Extend to -= *= /= ~= &= |= ^= <<= >>=
 - All evaluate to whatever was assigned. i.e., if a was 1, a+=2 is a = a + 2 so evaluates to 3
- Pre-increment and pre-decrement: ++d --d. Evaluates to d+1 and d-1
- Post-increment and post-decrement (evaluate to old value): d++ d--. Evaluates to d

Plusplus Playfulness / Confusion Plusplus

Q: What are i and j set to in the following code?

A. 5, 7

B. 7, 5

C. 7, 11

D. 7, 12

E. 7, 13

54

Incremental Iffiness

Q: What does the following code print?

```
int i = 1;
switch (i++) {
   case 1: printf("%d", ++i);
   case 2: printf("%d", i++);
}
```

- A. 1
- B. 2
- C. 3
- D. 22
- E. 33

Sample Exam Question (Spring 2017, Exam 1)

- 1(b) (12 points/100) Suppose we have a 7-bit computer. Answer the following questions.
 - (i) (4 points) What is the largest unsigned number that can be represented in 7 bits? In binary:

 In decimal:
 - (ii) (4 points) What is the smallest (i.e., most negative) signed number represented in 2's complement in 7 bits?

In binary:

In decimal:

- (iii) (2 points) Is there a number n, other than 0, for which n is equal to -n, when represented in 2's complement in 7 bits? If yes, show the number (in decimal). If no, briefly explain why not.
- (iv) (2 points) When doing arithmetic addition using 2's complement representation in 7 bits, is it possible to have an overflow when the first number is positive and the second is negative? (Yes/No answer is sufficient, no need to explain.)

Sample Exam Question (Fall 2024, Exam 1)

1 (d) (1 point /32) If acc is of type int, write a statement that has the same effect as the line acc *= 10, without using multiplication and using no more than one addition operation.

(Hard!) Sample Exam Question (Fall 2020, Exam 1)

a. In the two ranges below, replace the "____" with the inclusive upper and lower bounds of decimal numbers that do not change value when moving from i-bit two's complement to (i+1)-bit two's complement (for example, when moving from four bits to represent integers to using five bits to do so). The two ranges consider two different possibilities for changing an i-bit value into an (i+1)-bit value:

If we make the change by prepending a 0 onto the front of the i-bit representation (e.g., 1001 -> 01001):

<= x <=

If we make the change by prepending a 1 onto the front of the i-bit representation (e.g., 1001 -> 11001):

____ <= x <= ____

b. In the range below, replace the "____" with the inclusive upper and lower bounds of armlab C int literals for which the expression still compiles and does not change value when adding a O before the first character of the literal (for example, 217 -> 0217):

____ <= x <= ____

Hint 1: does a literal 09 compile?

Hint 2: the word "expression" is intentional; note that the first character of a signed int is not necessarily a digit.

58

APPENDIX: FLOATING POINT

Rational Numbers

Mathematics

- A rational number is one that can be expressed as the ratio of two integers
- Unbounded range and precision

Computer science

- Finite range and precision
- Approximate using floating point number

Floating Point Numbers

Like scientific notation: e.g., c is $2.99792458 \times 10^8 \text{ m/s}$

This has the form

(multiplier) × (base)(power)

In the computer,

- Multiplier is called mantissa
- Base is almost always 2
- Power is called exponent

Floating-Point Data Types

C specifies:

- Three floating-point data types: float, double, and long double
- Sizes unspecified, but constrained:
- sizeof(float) ≤ sizeof(double) ≤ sizeof(long double)

On ArmLab (and on pretty much any 21st-century computer using the IEEE standard)

• float: 4 bytes

• double: 8 bytes

On ArmLab (but varying across architectures)

• long double: 16 bytes

How to write a floating-point number?

- Either fixed-point or "scientific" notation
- Any literal that contains decimal point or "E" is floating-point
- The default floating-point type is double
- Append "F" to indicate float
- Append "L" to indicate long double

Examples

• double: 123.456, 1E-2, -1.23456E4

• float: 123.456F, 1E-2F, -1.23456E4F

• long double: 123.456L, 1E-2L, -1.23456E4L

Common finite representation: IEEE floating point

More precisely: ISO/IEEE 754 standard

Using 32 bits (type **float** in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 8 bits: exponent + 127

Using 64 bits (type **double** in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 11 bits: exponent + 1023

When was floating-point invented?

mantissa (noun): decimal part of a logarithm, 1865, **Answer: long before computers!** from Latin mantisa "a worthless addition, makeweight"

COI	MMOI	N LO	GA	RITI	HMS		logio	æ						
ac	0			2		- 5	6				$\Delta_{\mathfrak{m}}$	I	2	3
*		•	*	3	*	3		1	8	9.	+		-	-
50	-6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	9	1	2	3
51	-7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	8	I	2	2
52	-7160		7177		7193	7202	7210		7226		8	I	2	2
53	-7243	ALCOHOL: THE	7259			7284				7316	8	1	2	2
54	-7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	8	I	2	2
55	-7404	0.000	7419		7435	7443	7451	7459	7466	7474	8	I	2	2

Floating Point Example

Sign (1 bit):

• 1 ⇒ negative

10000011101101100000000000000000

32-bit representation

Exponent (8 bits):

- 10000011_B = 131
- 131 127 = 4

Mantissa (23 bits):

- 1 + $(1*2^{-1})$ + $(0*2^{-2})$ + $(1*2^{-3})$ + $(1*2^{-4})$ + $(0*2^{-5})$ + $(1*2^{-6})$ + $(1*2^{-7})$ + $(0*2^{-\cdots})$ = 1.7109375

Number:

• $-1.7109375 * 2^4 = -27.375$

Floating Point Consequences

"Machine epsilon": smallest positive number you can add to 1.0 and get something other than 1.0

For float: $\varepsilon \approx 10^{-7}$

- No such number as 1.00000001
- Rule of thumb: "almost 7 digits of precision"

For double: $\varepsilon \approx 2 \times 10^{-16}$

• Rule of thumb: "not quite 16 digits of precision"

These are all relative numbers

Just as decimal number system can represent only some rational numbers with finite digit count...

• Example: 1/3 cannot be represented

Binary number system can represent only some rational numbers with finite digit count

• Example: 1/5 cannot be represented

Beware of round-off error

- Error resulting from inexact representation
- Can accumulate
- Be careful when comparing two floating-point numbers for equality

Decimal Approx	Rational Value
.3	3/10
.33	33/100
.333	333/1000

Binary	Rational
Approx	<u>Value</u>
0.0	0/2
0.01	1/4
0.010	2/8
0.0011	3/16
0.00110	6/32
0.001101	13/64
0.0011010	26/128
0.00110011	51/256

Floating away ...

What does the following code print?

```
double sum = 0.0;
double i;
for (i = 0.0; i != 10.0; i++)
    sum += 0.1;
if (sum == 1.0)
    printf("All good!\n");
else
    printf("Yikes!\n");
```

A. All good!

B: Yikes!

B. Yikes!

... loop terminates, because we can represent 10.0 exactly by

C. (Infinite loop)

adding 1.0 at a time.

D. (Compilation error)

... but sum isn't 1.0 because we can't represent 1.0 exactly by

adding 0.1 at a time.

69