
COS 217: Introduction to Programming Systems

Interfaces and Implementations*
Using the Smallest C Data Type: Character

 *Note: We will have more lectures on this topic in a more
general context later

Agenda
Interface, implementation and design decisions for characters

Interfaces and implementations for the human reader

Another difference from Java
•Variable declarations in C89

2

To Use Characters in Programs, What Do We Need?
• A representation for characters

• Ways to input and output characters

• Ways to manipulate characters
• Convert from lowercase to uppercase, etc.

6

Character Representation: The ASCII Standard
Mapping from integer values to characters on pretty much all machines:

ASCII (American Standard Code for Information Interchange) (/ˈæski/)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0 NUL HT LF
 16
 32 SP ! " # $ % & ' () * + , - . /
 48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
 64 @ A B C D E F G H I J K L M N O
 80 P Q R S T U V W X Y Z [\] ^ _
 96 ` a b c d e f g h i j k l m n o
112 p q r s t u v w x y z { | } ~

Notes: Many non-printing characters left blank in table above
 UPPER-CASE and lower-case letters are 32 apart
 … but they’re internally contiguous. So are digits 0 through 9.

Converting to Uppercase in upper Program

if ((c >= 97) && (c <= 122))
 c -= 32;

What’s wrong?

8

A Different Representation/Implementation: EBCDIC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0 NUL HT
 16
 32 LF
 48
 64 SP . < (+ |
 80 & ! $ *) ;
 96 - / | , % _ > ?
112 ` : # @ ' = "
128 a b c d e f g h i {
144 j k l m n o p q r }
160 ~ s t u v w x y z
176
192 A B C D E F G H I
208 J K L M N O P Q R
224 \ S T U V W X Y Z
240 0 1 2 3 4 5 6 7 8 9

Extended Binary Coded Decimal Interchange Code (/ˈɛbsɪdɪk/)

Pa
rt

ia
l m

ap

9

C Provides Character Literals
Translate to different integer values in different encodings

Single quote syntax: 'a' is a value of type char with the value 97 in ASCII

Use backslash to write special characters
• Examples (with numeric equivalents in ASCII, EBCDIC):

10

'a' the a character (97, 129)
'A' the A character (65, 193)
'0' the zero character (48, 240)
'\0' the NUL (nullbyte) character (0, 0)
'\n' the newline character (10, 37)
'\t' the horizontal tab character (9, 5)
'\\' the backslash character (92, 224)
'\'' the single quote character (39, 125)
'"' the double quote character (34, 127)

Converting to Uppercase: Version 2

if ((c >= 'a') && (c <= 'z'))
 c += 'A' - 'a';

What’s wrong now?

Arithmetic
on chars?

11

Recall EBCDIC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0 NUL HT
 16
 32 LF
 48
 64 SP . < (+ |
 80 & ! $ *) ;
 96 - / | , % _ > ?
112 ` : # @ ' = "
128 a b c d e f g h i {
144 j k l m n o p q r }
160 ~ s t u v w x y z
176
192 A B C D E F G H I
208 J K L M N O P Q R
224 \ S T U V W X Y Z
240 0 1 2 3 4 5 6 7 8 9

Extended Binary Coded Decimal Interchange Code

Note: UPPER CASE not contiguous; same for lower case.

Pa
rt

ia
l m

ap

12

Converting to Uppercase: Version 3

#include <ctype.h>

if (islower(c))
 c = toupper(c);
 13

• Provide a real interface:
• Character data type

• API for operations on characters
• Works on all machines and representations

• Implemented differently for different machines and representations (ASCII, EBCDIC, etc)

What about Input/Output?
C does not provide I/O facilities in the language :

• They’re provided in the standard library, declared in stdio.h
• Constant: EOF
• Data type: FILE (described later in course)
• Variables: stdin, stdout, and stderr
• Functions: (numerous)

Reading characters
• getchar() function with return type wider than char (specifically, int)
• Returns EOF (a special non-character int) to indicate failure
• Reminder: there is no such thing as "the EOF character”

Writing characters
• putchar() function accepting one parameter
• For symmetry with getchar(), parameter is an int

14

Aside: Unicode
Back in 1970s, the language only cared about English characters:

ASCII:
American Standard Code
for Information Interchange

Other languages?

Diacritics?

16

When C was designed, characters fit in 8 (really 7) bits, so C’s chars are 8 bits long.

When Java was designed, Unicode fit in 16 bits, so Java’s chars are 16 bits. Then …

Result: modern systems use variable length (UTF-8/16/32) encoding for Unicode.

In C, this is supported not in the language but via libraries

Modern Unicode

17

https://xkcd.com/1953/

https://xkcd.com/1953/

Agenda
Interfaces, implementations and design decisions for characters

Interfaces and implementations for the human reader

Another difference from Java
•Variable declarations in C89

18

Functionality
• Read all chars from stdin
• Capitalize the first letter of each word

• “cos 217 rocks” ⇒ “Cos 217 Rocks”
• Write result to stdout

19

upper1
cos 217 rocks
Does this work?
It seems to work.

stdin stdout
Cos 217 Rocks
Does This Work?
It Seems To Work.

Recall: The upper1 Product Specification

upper1 Version 3
#include <stdio.h>
#include <ctype.h>
enum Statetype {NORMAL, INWORD};

enum Statetype handleNormalState(int c)
{
 enum Statetype state;
 if (isalpha(c)) {
 putchar(toupper(c));
 state = INWORD;
 } else {
 putchar(c);
 state = NORMAL;
 }
 return state;
}

enum Statetype handleInwordState(int c)
{
 enum Statetype state;
 if (!isalpha(c)) {
 putchar(c);
 state = NORMAL;
 } else {
 putchar(c);
 state = INWORD;
 }
 return state;
}

int main(void)
{
 int c;
 enum Statetype state = NORMAL;
 while ((c = getchar()) != EOF) {
 switch (state) {
 case NORMAL:
 state = handleNormalState(c);
 break;
 case INWORD:
 state = handleInwordState(c);
 break;
 }
 }
 return 0;
}

That’s an A-, at best.
No comments!

20

Upper1: Improving the Interface

Problem:
•The program works, but…
•It’s too hard for the human reader

Solution:
•Add function-level comments as part of the interface

21

Function Comments: A Key Part of Interfaces

Function comment should describe
what the function does (from the caller’s viewpoint)
•Data coming into the function

• Parameters, input streams
•What it does to those data (at a high level)
•Data going out from the function

• Return value, output streams, call-by-reference parameters

Function comment should not describe
how the function works

22

Function Comment Examples
Bad main() function comment: Describes how the function works

Good main() comment: Describes what the function does (from caller’s perspective)

Read a character from stdin using getchar.
Depending upon the current DFA state, pass the
character to an appropriate state-handling
function. The value returned by the state-
handling function is the next DFA state. Repeat
until end-of-file. Return 0.

Read text from stdin. Convert the first character
of each "word" to uppercase, where a word is a
sequence of uppercase or lowercase letters. Write
the result to stdout. Return 0.

23

Upper1: Other Interface Comments
/* defines constants representing each state in the DFA */
enum Statetype {NORMAL, INWORD};

24

/* Implement the NORMAL state of the DFA. c is the current DFA
 character. Write c’s uppercase equivalent, if it has one, or
 otherwise c itself, to stdout. Return the next state specified
 by the DFA. */

enum Statetype handleNormalState(int c) {

/* Implement the INWORD state of the DFA. c is the current
 DFA character. Write c to stdout. Return the next DFA state. */

enum Statetype handleInwordState(int c) {

/* Read text from stdin. Convert the first character of each
 "word" to uppercase, where a word is a sequence of
 letters. Write the result to stdout. Return 0. */

int main(void) {
 /* Use a DFA approach. state is the current DFA state. */
 enum Statetype state = NORMAL;

Other Good Things for the Human Reader

• Comments in the implementation

• Readable code
• Often a tradeoff with efficiency and “showing coding prowess”
• Lack of language support for other data types can make it worse

25

iClicker Question
Q: Is the if statement in upper really necessary?

A. Gee, I don’t know.
Let me check
the man page
(again)

#include <stdio.h>
#include <ctype.h>
int main(void)
{
 int c;
 while ((c = getchar()) != EOF) {
 if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}

26

$ man toupper
NAME
 toupper, tolower - convert letter to upper or lower case

SYNOPSIS
 #include <ctype.h>
 int toupper(int c);
 int tolower(int c);

DESCRIPTION
 toupper() converts the letter c to upper case, if possible.
 tolower() converts the letter c to lower case, if possible.

 If c is not an unsigned char value, or EOF, the behavior of
 these functions is undefined.

RETURN VALUE
 The value returned is that of the converted letter,
 or c if the conversion was not possible.

27

ctype.h Functions

iClicker Question
Q: Is the if statement really necessary?

A. Yes, necessary
for correctness.

B. Not necessary,
but I’d leave it in.

C. Not necessary,
and I’d get rid of it.

#include <stdio.h>
#include <ctype.h>
int main(void)
{
 int c;
 while ((c = getchar()) != EOF) {
 if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}

28

c = getchar();
while (c != EOF)
{putchar(toupper(c));
 c = getchar();
}

D.

29

iClicker Question: How to Structure a Loop?
Q: There are several ways to structure a loop – which is best?

for (c = getchar(); c != EOF; c = getchar())
 putchar(toupper(c));A.

while ((c = getchar()) != EOF)
 putchar(toupper(c));B.

for (;;)
{ c = getchar();
 if (c == EOF)
 break;
 putchar(toupper(c));
}

C.

Other Good Things for the Human Reader

• Comments in the implementation

• Readable code
• Often a tradeoff with efficiency and “showing coding prowess”
• Lack of language support for other data types can make it worse

30

Unlike Java, C has No Boolean (Logical) Data Type

•Represent logical data using type char or int
• Or any primitive type! 😱

•Conventions:
• Statements (if, while, etc.) use 0 ⇒ FALSE, ≠0 ⇒ TRUE
• Relational operators (<, >, etc.) and logical operators (!, &&, ||) produce the result 0 or 1

•Would have been nice to have a Boolean type

31

Issues with Lack of Logical Data Type

Imagine this type of code in Java code and in C.
What happens in each case?

32

…
int i;
…
i = 0;
…
if (i = 5)
 statement1;
…

What happens
in C?

What happens
in Java?

DALL·E 2
prompt: impressionist painting of a
computer programmer with a lack
of sleep debugging late at night

https://openai.com/dall-e-2

Sample Exam Question (Spring 2016, Exam 1)

Indicate what value this expression evaluates to:

33

What happens
in C?

What happens
in Java?

…
 -10 < i < -1
…

DALL·E 2
prompt: impressionist painting of a
computer programmer with a lack
of sleep debugging late at night

https://openai.com/dall-e-2

Doing Logic with Integers
Using integers to represent logical data permits shortcuts

It also permits really bad code…

34

…
int i;
…
if (i) /* same as (i != 0) */
 statement1;
else
 statement2;
…

i = (1 != 2) + (3 > 4);

35

iClicker? More like iBrainteaser!
Q: What is int i set to in the following code?

A. Depends on the initial value of i

B. 0

C. 1

D. 2

E. 3

D.

If i is negative, this will be 1 + 0 + 1

If i is non-negative, this will be 0 + 1 + 1

i = (i < (i < 0)) + (i >= (i > 0)) + ((i-i) < (i == i));

Agenda
Interfaces, implementations and design decisions for characters

Interfaces and implementations for the human reader

Another difference from Java
•Variable declarations in C89

36

Declaring Variables

C requires variable declarations (some languages don’t: awk, bash)

Declaring variables requires more from the programmer
• Extra verbiage
• Thinking ahead about how it will be used

But it has many benefits
• Allows compiler to check “spelling”
• Allows compiler to allocate memory more efficiently
• Declaring variables’ types produces fewer surprises at runtime

37

Declaring Variables

C requires variable declarations.
• Declaration statement specifies type of variable (and other attributes too)

Examples:

38

int i;
int i, j;
int i = 5;
const int i = 5; /* value of i cannot change */
static int i; /* covered later in course */
extern int i; /* covered later in course */

Declaring Variables

C requires variable declarations.
• Declaration statement specifies type of variable (and other attributes too)
• Unlike Java (and later versions of C), declaration statements in C89 must appear before

any other kind of statement in any compound statement.
• Note this doesn’t mean that all declarations must be at the top of a function exclusively!

39

{
 int i;

 /* Non-declaration
 statements, even if
 they don’t use j */

 int j;
}

{
 int i;
 int j;

 /* Non-declaration
 statements that use
 i and/or j. */
}

Illegal in C89 Legal in C89

Next time … numbers! (Bigger than 127.)

40
Mick Haupt

https://unsplash.com/@rocinante_11

