
COS 217: Introduction to Programming Systems

Writing Simple Programs and Building Executables

From Product Specification to Design to Code

Agenda
A simple character processing program: Upper. Why?

•Learn to go from product specification to design to code
•Learn to structure a simple C program. Trace its execution beginning to end
•Learn to use a C library (ctype)

A more complex character processing program: Upper1. Why?
•Assignment 1
•Design step more involved: designing the simple DFA model
•Coding Step: develop a C program to implement the DFA

Building an executable C program

Next time: design decisions in upper, upper1
2

Read all chars from stdin

Convert every lower-case alphabetic char to upper case
• Leave other kinds of char alone

Print results to stdout

upper Product Specification

upperDoes this work?
It seems to work.

stdin stdout
DOES THIS WORK?
IT SEEMS TO WORK.

3

Read a char from stdin

If it is a lowercase alphabetical character, turn it into uppercase, and write it to stdout

If it is not, keep it as is, but just write it to stdout

upper Program Design

4

Read a char from stdin

If it is a lowercase alphabetical character, turn it into uppercase

If it is not, keep it as is

Write the resulting character to stdout

Can we optimize this, from a code size perspective?

upper C Program

#include <stdio.h>
#include <ctype.h>
/* Turn letters in stdin to uppercase
and print result to stdout. Return 0. */
int main(void)
{ int c;
 while ((c = getchar()) != EOF)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}5

Now let’s walk through
this element by
element and see the
program is executed

Tracing through upper: Starting up

#include <stdio.h>
#include <ctype.h>
/* Turn letters in stdin to uppercase
and print result to stdout. Return 0. */
int main(void)
{ int c;
 while ((c = getchar()) != EOF)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}6

Block /* */
comments are
the only legal
ones in C90:

no //

Execution begins at the
main() function
• No classes in C

Tracing through upper: Defining Variables

#include <stdio.h>
#include <ctype.h>
/* Turn letters in stdin to uppercase
and print result to stdout. Return 0. */
int main(void)
{ int c;
 while ((c = getchar()) != EOF)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}7

We allocate space for c
in the stack section of memory

Why int
not char?

Variables
must be

declared at
the top of a

block

Tracing through upper: Reading and Processing Input

#include <stdio.h>
#include <ctype.h>
/* Turn letters in stdin to uppercase
and print result to stdout. Return 0. */
int main(void)
{ int c;
 while ((c = getchar()) != EOF)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}8

getchar() tries to read
char from stdin
• Success ⇒ returns

that char value (as int)
• Failure ⇒ returns a

special value: EOF

Tracing through upper: Reading and Processing Input

#include <stdio.h>
#include <ctype.h>
/* Turn letters in stdin to uppercase
and print result to stdout. Return 0. */
int main(void)
{ int c;
 while ((c = getchar()) != EOF)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}9

We read a character at a
time in a while loop until we
hit EOF, for every character
we read (not EOF), we
process and print it

Simpler version of loop:

c = getchar();
while (c != EOF)
{ if (islower(c))
 c = toupper(c);
 putchar(c);
 c = getchar(c);
}

Tracing through upper: Using Library Functions

#include <stdio.h>
#include <ctype.h>
/* Turn letters in stdin to uppercase
and print result to stdout. Return 0. */
int main(void)
{ int c;
 while ((c = getchar()) != EOF)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}10

$ man islower
NAME
 isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph,
 islower, isprint, ispunct, isspace, isupper, isxdigit –
 character classification routines

SYNOPSIS
 #include <ctype.h>
 int isalnum(int c);
 int isalpha(int c);
 int isascii(int c);
 int isblank(int c);
 int iscntrl(int c);
 int isdigit(int c);
 int isgraph(int c);
 int islower(int c);
 int isprint(int c);
 int ispunct(int c);
 int isspace(int c);
 int isupper(int c);
 int isxdigit(int c);

These functions check
whether c, which must
have the value of an
unsigned char or EOF,
falls into a certain
character class.

...

islower() checks for a
lowercase character.

ctype.h Functions

11

13

What build tool will be limited (and thus complain with a warning)
if we omit the library preprocessor directive?

A: Preprocessor

B: Compiler

C: Assembler

D: Linker

B: Compiler
gives warning
that it hasn't seen
declaration for
islower or toupper

… but build does
ultimately succeed.

#include <stdio.h>
#include <ctype.h>
int main(void)
{ int c;
 while ((c = getchar()) != EOF)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}

Leave me out of this?

Tracing through upper: The End Game

#include <stdio.h>
#include <ctype.h>
/* Turn letters in stdin to uppercase
and print result to stdout. Return 0. */
int main(void)
{ int c;
 while ((c = getchar()) != EOF)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}14

• Eventually getchar() returns EOF
• Loop condition fails
• We exit the loop, having output

what we needed to output

Tracing through upper: The Exit

#include <stdio.h>
#include <ctype.h>
/* Turn letters in stdin to uppercase
and print result to stdout. Return 0. */
int main(void)
{ int c;
 while ((c = getchar()) != EOF)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}15

• return statement returns control
to calling function

• return from main() returns to
_start, terminates program

Normal execution ⇒ 0 or EXIT_SUCCESS
Abnormal execution ⇒ EXIT_FAILURE
#include <stdlib.h> to use these constants

Agenda
A simple character processing program: Upper. Why?

•Learn to go from product specification to design to code
•Learn to structure a simple C program. Trace its execution beginning to end
•Learn to use a C library (ctype)

A more complex character processing program: Upper1. Why?
•Assignment 1
•Design step more involved: designing the simple DFA model
•Coding Step: develop a C program to implement the DFA

Building an executable C program

Next time: design decisions in upper, upper1
16

The upper1 program
Functionality

• Read all chars from stdin
• Capitalize the first letter of each word

• “cos 217 rocks” ⇒ “Cos 217 Rocks”
• Write result to stdout

What are the key things we need to do?

17

upper1
cos 217 rocks
Does this work?
It seems to work.

stdin stdout
Cos 217 Rocks
Does This Work?
It Seems To Work.

• Recognize when we're “in a word” vs “not in a word”
• Reason about what to do with that information in a systematic way
 - if in a word, don’t capitalize until we leave the word
 - if not in word, capitalize next time we see a non-whitespace char

•States , one of which is designated as the start
•Transitions labeled by individual or categories of chars
•Optionally, actions on transitions
•Usually (but not here) a notion of accept ✅ and reject ❌ states

upper1 Program Design
Deterministic Finite State Automaton (DFA)

NORMAL INWORD

isalpha
(print uppercase equiv)

isalpha
(print)

!isalpha
(print)

!isalpha
(print)

18

Agenda
A simple character processing program: Upper. Why?

•Learn to go from product specification to design to code
•Learn to structure a simple C program. Trace its execution beginning to end
•Learn to use a C library (ctype)

A more complex character processing program: Upper1. Why?
•Assignment 1
•Design step more involved: designing the simple DFA model
•Coding Step: develop a C program to implement the DFA

Building an executable C program

Next time: design decisions in upper, upper1
19

Agenda
A simple C program: Upper. Why?

•Learn to structure a simple C program. Trace its execution beginning to end
•Learn to use of a C library (ctype)
•Basis for a more complex program that implements a DFA (upper1)
•Will come back to it this simpler program when looking at the build process

A DFA character processing program: Upper1. Why?
•Assignment 1
•Going from product specification to design to program
•Design: designing the simple DFA model
•Coding: develop a C program to implement the DFA

Building an executable C program

Next time: design decisions in upper, upper120

upper1 C Program, Version 1
#include <stdio.h>
#include <ctype.h>
int main(void) {
 int c;
 int state = 0;
 while ((c = getchar()) != EOF) {
 switch (state) {
 case 0:
 if (isalpha(c)) {
 putchar(toupper(c)); state = 1;
 } else {
 putchar(c); state = 0;
 }
 break;
 case 1:
 if (isalpha(c)) {
 putchar(c); state = 1;
 } else {
 putchar(c); state = 0;
 }
 break;
 }
 }
 return 0;
}

0 1

isalpha

isalpha

!isalpha

!isalpha

That’s a B.
What’s wrong?21

Problem:
•The program works, but…
•States should have names

Solution:
•Define your own named constants:

•enum Statetype {NORMAL, INWORD};
• Define an enumeration type

(a type with literals that are semantically meaningful names for a subset of integer values)
(values start at 0 or a specifically assigned value)
(subsequent values increment by 1 over previous if not specifically assigned)

•enum Statetype state;
• Define a variable of that type22

upper1 C Program, Toward Version 2

…
enum Statetype {NORMAL, INWORD};
int main(void) {
 int c;
 enum Statetype state = NORMAL;
 while ((c = getchar()) != EOF) {
 switch (state) {
 case NORMAL:
 if (isalpha(c)) {
 putchar(toupper(c)); state = INWORD;
 } else {
 putchar(c); state = NORMAL;
 }
 break;
 case INWORD:
 if (isalpha(c)) {
 putchar(c); state = INWORD;
 } else {
 putchar(c); state = NORMAL;
 }
 break;
 }
 }
 return 0;
}

That’s a B+.
What’s wrong?23

upper1 C Program, Version 2

Problem:
•The program works, but…
•Deeply nested statements
•No modularity

Solution:
•Handle each state in a separate function

24

upper1 C Program, Toward Version 3

#include <stdio.h>
#include <ctype.h>
enum Statetype {NORMAL, INWORD};

enum Statetype
handleNormalState(int c)
{
 enum Statetype state;
 if (isalpha(c)) {
 putchar(toupper(c));
 state = INWORD;
 } else {
 putchar(c);
 state = NORMAL;
 }
 return state;
}

25

enum Statetype
handleInwordState(int c)
{
 enum Statetype state;
 if (!isalpha(c)) {
 putchar(c);
 state = NORMAL;
 } else {
 putchar(c);
 state = INWORD;
 }
 return state;
}

upper1 C Program, Version 3
int main(void)
{
 int c;
 enum Statetype state = NORMAL;
 while ((c = getchar()) != EOF) {
 switch (state) {
 case NORMAL:
 state = handleNormalState(c);
 break;
 case INWORD:
 state = handleInwordState(c);
 break;
 }
 }
 return 0;
}

That’s an A-.
What’s wrong?

Agenda
A simple C program: Upper. Why?

•Learn to structure a simple C program. Trace its execution beginning to end
•Learn to use of a C library (ctype)
•Basis for a more complex program that implements a DFA (upper1)
•Will come back to it this simpler program when looking at the build process

A DFA character processing program: Upper1. Why?
•Assignment 1
•Going from product specification to design to program
•Design: designing the simple DFA model
•Coding: develop a C program to implement the DFA

Building an executable C program

Next time: design decisions in upper, upper126

Agenda
A simple C program: Upper. Why?

•Learn to structure a simple C program. Trace its execution beginning to end
•Learn to use of a C library (ctype)
•Basis for a more complex program that implements a DFA (upper1)
•Will come back to it this simpler program when looking at the build process

A DFA character processing program: Upper1. Why?
•Assignment 1
•Going from product specification to design to program
•Design: designing the simple DFA model
•Coding: develop a C program to implement the DFA

Building an executable C program

Next time: design decisions in upper, upper127

Building the upper Executable

$ gcc217 upper.c
$ ls
. .. a.out
$
$ gcc217 upper.c -o upper
$ ls
. .. a.out upper
$./upper
cos 217 rocks
Does this work?
It seems to work.
^D28

We’ll go back to upper, just because the code fits better on a slide

What do we see in our
terminal emulator after
this?

The starting point:

#include <stdio.h>
#include <ctype.h>
/* Turn letters in stdin to uppercase
and print result to stdout. Return 0. */
int main(void)
{ int c;
 while ((c = getchar()) != EOF)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}

•C language

•Missing declarations of
getchar(), putchar(),
islower(), toupper()

•Missing definitions of
getchar(), putchar(),
islower(), toupper()

29

upper Build Process in Detail

upper.c

upper Build Process in Detail

Question:
•Exactly what happens when you issue the command
gcc217 upper.c –o upper

Answer: Four steps
•Preprocess
•Compile
•Assemble
•Link

30

Command to preprocess:
• gcc217 –E upper.c > upper.i

Preprocessor functionality
• Removes comments
• Handles preprocessor directives

31

upper Build Process: Preprocessor

Preprocessor removes
comment (this is A1!)

#include <stdio.h>
#include <ctype.h>
/* Turn letters in stdin to uppercase
and print result to stdout. Return 0. */
int main(void)
{ int c;
 while ((c = getchar()) != EOF)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}

32

upper Build Process: Preprocessor

upper.c

#include <stdio.h>
#include <ctype.h>
/* Turn letters in stdin to uppercase
and print result to stdout. Return 0. */
int main(void)
{ int c;
 while ((c = getchar()) != EOF)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}

Preprocessor replaces
#include <stdio.h>

with contents of
/usr/include/stdio.h

Similarly for ctype.h

Preprocessor replaces
EOF with -1

33

upper Build Process: Preprocessor

upper.c

The result

...
int getchar();
int putchar();
...
int islower(int a)
int toupper(int a)
...

int main(void)
{ int c;
 while ((c = getchar()) != -1)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}

• C language
• Without comments
• Without preprocessor directives
• Contains code from stdio.h:

declarations of getchar(),
putchar(), etc.

• Missing definitions of
getchar(), putchar(), etc.

• Contains value for EOF

34

upper Build Process: Preprocessor

upper.i

Command to compile:
•gcc217 –S upper.i

Compiler functionality
•Translate from C to assembly language
•Check syntax
•Check types. Use function declarations to check calls of getchar(), putchar(),
islower(), toupper()

35

upper Build Process: Compiler

• Compiler sees function declarations

• These give compiler enough
information to check subsequent calls
of getchar(), putchar(), islower(),
toupper()

...
int getchar();
int putchar());
...
int islower(int a);
int toupper(int a);
...
int main(void)
{ int c;
 while ((c = getchar()) != -1)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}

36

upper Build Process: Compiler

upper.i

...
int getchar();
int putchar());
int islower(int a);
int toupper(int a);
...
int main(void)
{ int c;
 while ((c = getchar()) != -1)
 { if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}

• Definition of main() function

• Compiler checks calls of
getchar(), putchar(),
islower(), toupper()

• Compiler translates C code to
assembly language directives
and instructions progressively

37

upper Build Process: Compiler

upper.i

.section .rodata
.LC0:
 .string "%d\n"

 .section .text
 .global main
main:
 stp x29, x30, [sp, -32]!
 add x29, sp, 0
 str wzr, [x29,24]
 bl getchar
 str w0, [x29,28]
 b .L2
.L3:
 ….
.L2:
 …..

• Assembly language

• Missing definitions of
getchar(), putchar(),
islower(), toupper()

38

upper Build Process: Compiler

upper.s

Command to assemble:
•gcc217 –c upper.s

Assembler functionality
•Translate from assembly language to machine language

39

upper Build Process: Assembler

The result:

Machine language
version of the
program

No longer human
readable

• Machine language

• (Still) Missing definitions of
getchar, putchar(),
islower(), toupper()

40

upper Build Process: Assembler

upper.o

Command to link:
•gcc217 upper.o –o upper

Linker functionality
•Resolve references within the code
•Fetch machine language code from the standard C library (/usr/lib/libc.a) to

make the program complete
•Produce final executable

41

upper Build Process: Linker

The result:

Machine language
version of the
program

No longer human
readable

• Machine language
• Contains definitions of
getchar(), printf(),
islower(), toupper()

Complete. Executable.

42

upper Build Process: Linker

upper

Agenda
A simple C program: Upper. Why?

•Learn to structure a simple C program. Trace its execution beginning to end
•Learn to use of a C library (ctype)
•Basis for a more complex program that implements a DFA (upper1)
•Will come back to it this simpler program when looking at the build process

A DFA character processing program: Upper1. Why?
•Assignment 1
•Going from product specification to design to program
•Design: designing the simple DFA model
•Coding: develop a C program to implement the DFA

Building an executable C program

Next time: design decisions in upper, upper143

Agenda
A simple C program: Upper

•Structure and execution
•Use of a C library (ctype)
•Basis for a more complex program that implements a DFA (upper1)
•Will come back to it this simpler program when looking at the build process

A DFA character processing program: Upper1
•Design: designing the simple DFA model
•Coding: develop a C program to implement the DFA

Building an executable C program

Next time: design decisions in upper, upper1
44

Sample Exam Question (Spring 2020, Exam 1)

45

Sample Exam Question (Spring 2020, Exam 1)

46

a

b

c

d

e

Sample Exam Question (Fall 2015, Exam 1)

State concisely what sequences (and only those sequences) this
four-state DFA accepts. Assume all sequence characters are either
‘0’ or ‘1’, that the leftmost state is the initial state, and that the
rightmost state is the only accept state. (6 points / 100)

47

Appendix:

Additional DFA Examples

48

Does the string have “nano” in it?
• “banano” ⇒ yes
• “nnnnnnnanofff” ⇒ yes
• “banananonano” ⇒ yes
• “bananananashanana” ⇒ no

Another DFA Example

nanostart na nan

‘n’

‘n’

n

‘a’ ‘n’ ‘o’

‘a’

‘n’

other

otherother

other

Double circle is
accepting state

other

Single circle is
rejecting state

49

Yet Another DFA Example

Valid literals
•“-34”
•“78.1”
•“+298.3”
•“-34.7e-1”
•“34.7E-1”
•“7.”
•“.7”
•“999.99e99”

Invalid literals
•“abc”
•“-e9”
•“1e”
•“+”
•“17.9A”
•“0.38+”
•“.”
•“38.38f9”

Old (Hard!) Exam Question
Compose a DFA to identify whether or not

a string is a floating-point literal

50

