
Git and GitHub … then C

1 @afgprogrammer

@synkevych

@pawel_czerwinski

https://unsplash.com/@afgprogrammer
https://unsplash.com/@synkevych
https://unsplash.com/@synkevych
https://unsplash.com/@pawel_czerwinski

Agenda

Our computing environment
•Precept: Linux and Bash
•Today: git and GitHub

A taste of C (compared with Java)
•History of C
•Building and running C programs
•Characteristics of C

2

Revision Control Systems
Problems often faced by programmers:

•I’ve deleted my code! How do I get it back?
•Try one way of writing these functions, and go back to the other if it doesn’t work
•What things have I changed since the last working version?
•How do I work with source code on multiple computers?

•How do I work with others (e.g., a COS 217 partner) on the same program?
•What changes did my partner just make?
•My partner and I make changes to different parts of a program; how do we

merge those changes?

All solved by revision control tools, e.g. git
3

Repository vs. Working Copy

4

WORKING COPY

• Represents one version
of the code

• Plain files (e.g, .c)
• Make a coherent set of

modifications, then
commit this version of code
to the repository

• Best practice: write a
meaningful commit message

REPOSITORY (or “repo”)

• Contains all checked-in
versions of the code

• Specialized format, located
in .git directory

• Can view commit history
• Can diff any versions
• Can check out any version,

by default the most recent
(known as HEAD)

git commit

git checkout‡

‡
We'll rarely use checkout except to

 throw away local changes (see slide 6)

Information Content of Git Comments

5
https://xkcd.com/1296/

https://xkcd.com/1296/
https://xkcd.com/1296/
https://xkcd.com/1296/

Another Level of Indirection

6

LOCAL
REPOSITORY

REMOTE
REPOSITORY

push

clone
pull

commit

checkout

WORKING
COPY

Local vs. Remote Repositories

7

LOCAL REPOSITORY

• Located in .git directory
• Only accessible from the

computer where it lives
• Commit early, commit often:

you can only go back to
versions you’ve committed

• Can push current state (i.e.,
complete committed history)
of a local repo to remote repo

REMOTE REPOSITORY

• Located in the cloud
E.g., github.com

• Can clone remote repo into
local repo + working copy on
multiple machines

• Any clone can pull the current
state from remote repo

git push

git clone
git pull

COS 217 🧡 GitHub

We distribute assignment code through a github.com repo

But we’re not very nice
• You can’t push code to our repo
• You should create your own (private) repo for each assignment
o Two methods for this in git primer handout

• Then create clones of that repo for yourself
o Create one clone on armlab, to test and submit
o If developing on your own machine, create another clone there
o Commit from working copy to local dev clone, push from it "up" to github,

then pull "down" onto armlab, before testing and submitting8

Agenda

Our computing environment
•Lecture 1 and Precepts 1 and 2:

Linux and Bash
•Lecture 2: git

A taste of C (compared with Java)
•History of C
•Building and running programs
•Characteristics of C

9

The C Programming Language

Who? Dennis Ritchie

When? ~1972

Where? Bell Labs

Why? Build the Unix OS

Read more history:
https://www.bell-labs.com/usr/dmr/www/chist.html10

https:///
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/chist.html

History of C and Java

BCPL B C K&R C ANSI C89
ISO C90

ISO/ANSI
C99

1960 1970 1972 1978 1989 1999

LISP Smalltalk

C++ Java

ISO C11

2011

Algol

Simula

This is what
we’re using

11

ISO C18

2018

C vs. Java: Design Goals

C Design Goals (1972) Java Design Goals (1995)
Build the Unix OS Language of the Internet
Low-level; close to HW
and OS

High-level; insulated from
hardware and OS

Good for system-level
programming

Good for application-level
programming

Support structured
programming

Support object-oriented
programming

Unsafe: don’t restrict the
programmer much

Safe: can’t step
 “outside the sandbox”
Look like C

12

Agenda

Our computing environment
•Lecture 1 and Precepts 1 and 2:

Linux and Bash
•Lecture 2: git

A taste of C (compared with Java)
•History of C
•Building and running C programs
•Characteristics of C

13

HW (ArmLab)

OS (Linux)

Building Java Programs

MyProg.java
(Java code) javac MyProg.class

(bytecode)

$ javac MyProg.java Java compiler

14

Myprog.class is bytecode, which is machine independent and runs on
an interpreter, which is a software layer that runs on the hardware
• The bytecode is an input to the interpreter software

Running Java Programs

$ java MyProg

MyProg.class
(bytecode)

Java interpreter /
“virtual machine”

HW (ArmLab)

OS (Linux)

Input data java Output data

15

HW (ArmLab)

OS (Linux)

Building C Programs

myprog.c
(C code) gcc217 myprog

(machine language code)

$ gcc217 myprog.c –o myprog
C “Compiler driver”

16

Myprog is machine language, which is machine dependent and runs on
the raw hardware (unlike Java’s bytecode)

Running C Programs

$./myprog myprog
(machine lang code)

HW (ArmLab)

OS (Linux)

Input data myprog Output data

17

Agenda

Our computing environment
•Lecture 1 and Precepts 1 and 2:

Linux and Bash
•Lecture 2: git

A taste of C (compared with Java)
•History of C
•Building and running C programs
•Characteristics of C

18

Java vs. C: Portability

Program Code Type Portable?
MyProg.java Java source code Yes
myprog.c C source code Mostly*

MyProg.class Bytecode Yes**
myprog Machine lang code No

Conclusion: Java programs are more portable

* COS 217 has used many architectures over the years, and every time we've switched, all our
programs have had to be recompiled)

** Java interpreter provides a consistent interface across OSes and hardware, though its
implementation is different across them19

Java vs. C: Safety & Efficiency

Java does a lot more checking
• null reference checking (crash)
•Automatic array-bounds checking (crash)
•Automatic memory management (garbage collection)
•Other safety features

C
• NULL pointer checking (crash)
•Manual bounds checking (keep going …)
•Manual memory management

Conclusion 1: Java is often safer than C

Conclusion 2: Java is often slower than C20

Java vs. C: Details

Next 7 slides show C details through comparisons with the Java you know.

We’re going to mostly skip them in lecture. You can read them later
• This is largely syntax mapping. But it prepares us for the more significant

differences later

But we will look at an example program

22

Java vs. C: Details

Java C

Overall
Program
Structure

Hello.java:

public class Hello
{ public static void main
 (String[] args)
 { System.out.println(
 "hello, world");
 }
}

hello.c:

#include <stdio.h>

int main(void)
{ printf("hello, world\n");
 return 0;
}

Building $ javac Hello.java $ gcc217 hello.c –o hello

Running
$ java Hello
hello, world
$

$./hello
hello, world
$

23

Java vs. C: Details

Java C
Character type char // 16-bit Unicode char /* 8 bits */

Integral types

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

(unsigned, signed) char
(unsigned, signed) short
(unsigned, signed) int
(unsigned, signed) long

Floating point
types

float // 32 bits
double // 64 bits

float
double
long double

Logical type boolean /* no equivalent */
/* use 0 and non-0 */

Generic pointer
type Object void*

Constants final int MAX = 1000;
#define MAX 1000
const int MAX = 1000;
enum {MAX = 1000};

24

Java vs. C: Details

Java C

Arrays
int [] a = new int [10];
float [][] b =
 new float [5][20];

int a[10];
float b[5][20];

Array bound
checking // run-time check /* no run-time check */

Pointer type
// Object reference is an
// implicit pointer int *p;

Record type

class Mine
{ int x;
 float y;
}

struct Mine
{ int x;
 float y;
};

25

Java vs. C: Details

Java C

Strings
String s1 = "Hello";
String s2 =
 new String("hello");

char *s1 = "Hello";
char s2[6];
strcpy(s2, "hello");

String
concatenation

s1 + s2
s1 += s2

#include <string.h>
strcat(s1, s2);

Logical ops * &&, ||, ! &&, ||, !

Relational ops * ==, !=, <, >, <=, >= ==, !=, <, >, <=, >=

Arithmetic ops * +, -, *, /, %, unary - +, -, *, /, %, unary -

Bitwise ops <<, >>, >>>, &, ^, |, ~ <<, >>, &, ^, |, ~

Assignment ops =, +=, -=, *=, /=, %=,
<<=, >>=, >>>=, &=, ^=, |=

=, +=, -=, *=, /=, %=,
<<=, >>=, &=, ^=, |=

* Essentially the same in the two languages
26

Java vs. C: Details

Java C

if stmt *

if (i < 0)
 statement1;
else
 statement2;

if (i < 0)
 statement1;
else
 statement2;

switch stmt *

switch (i)
{ case 1:
 ...
 break;
 case 2:
 ...
 break;
 default:
 ...
}

switch (i)
{ case 1:
 ...
 break;
 case 2:
 ...
 break;
 default:
 ...
}

goto stmt // no equivalent goto someLabel;

27
* Essentially the same in the two languages

Java vs. C: Details

Java C

for stmt
for (int i=0; i<10; i++)
 statement;

int i;
for (i=0; i<10; i++)
 statement;

while stmt *
while (i < 0)
 statement;

while (i < 0)
 statement;

do-while stmt *
do
 statement;
while (i < 0)

do
 statement;
while (i < 0);

continue stmt * continue; continue;

labeled continue
stmt continue someLabel; /* no equivalent */

break stmt * break; break;
labeled break
stmt break someLabel; /* no equivalent */

28
* Essentially the same in the two languages

Java vs. C: Details

Java C

return stmt * return 5;
return;

return 5;
return;

Compound stmt
(alias block) *

{
 statement1;
 statement2;
}

{
 statement1;
 statement2;
}

Exceptions throw, try-catch-finally /* no equivalent */

Comments
/* comment */
// another kind

/* comment */

Method / function
call

f(x, y, z);
someObject.f(x, y, z);
SomeClass.f(x, y, z);

f(x, y, z);

29
* Essentially the same in the two languages

Coming up next …

Character processing, structured exactly how we’ll want you to design
your Assignment 1 solution

Read the A1 specs soon: you'll be ready to start after Lecture 3

48

