Git and GitHub ... then C

(Watgprogrammer s i

https://unsplash.com/@afgprogrammer
https://unsplash.com/@synkevych
https://unsplash.com/@synkevych
https://unsplash.com/@pawel_czerwinski

-

Agenda

Our computing environment

* Precept: Linux and Bash
e Today: git and GitHub

A taste of C (compared with Java)
e History of C
e Building and running C programs
» Characteristics of C

-

Revision Control Systems

w

Problems often faced by programmers:
* |'ve deleted my code! How do | get it back?
* Try one way of writing these functions, and go back to the other if it doesn’t work
*» What things have | changed since the last working version?
* How do | work with source code on multiple computers?

e How do | work with others (e.g., a COS 217 partner) on the same program?
* What changes did my partner just make?

* My partner and | make changes to different parts of a program; how do we
merge those changes?

All solved by revision control tools, e.g. g1t

-

Repository vs. Working Copy

WORKING COPY r\

 Represents one version git commit

of the code

* Plain files (e.g, .c)

« Make a coherent set of
modifications, then
commit this version of code
to the repository

* Best practice: write a git checkout!

meaningful commit message U

REPOSITORY (or “repo”)

e Contains all checked-in
versions of the code

* Specialized format, located
in .git directory

e Can view commit history

e Can diff any versions

e Can check out any version,
by default the most recent
(known as HEAD)

We'll rarely use checkout except to
throw away local changes (see slide 6)/

-

Information Content of Git Comments

COMMENT
CREATED MAIN LOOP & TIMING CONTROL.
ENABLED CONFIG FILE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE. CODE
HERE HAVE CODE.
APAAAAAA
ADKFJISLKDFISDKLFTY
MY HANDS ARE TYPING WORDS
HARAAAAAAANDS

DATE

AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

https://xkcd.com/1296/)

https://xkcd.com/1296/
https://xkcd.com/1296/
https://xkcd.com/1296/

(

Another Level of Indirection

WORKING
COPY

[\

commit

checkout

U

LOCAL
REPOSITORY

A

push

clone
pull

REMOTE
REPOSITORY

-

Local vs. Remote Repositories

LOCAL REPOSITORY r\v

git push |REMOTE REPOSITORY

* Located in .git directory

* Only accessible from the
computer where it lives

e« Commit early, commit often:
you can only go back to
versions you’'ve committed

 Can push current state (i.e., git clone
complete committed history) git pull
of a local repo to remote repo

* Located in the cloud
E.g., github.com

* Can clone remote repo into
local repo + working copy on
multiple machines

* Any clone can pull the current
state from remote repo

COS 217 V GitHub

We distribute assignment code through a github.com repo

But we’re not very nice
* You can’t push code to our repo

* You should create your own (private) repo for each assignment
o Two methods for this in git primer handout

 Then create clones of that repo for yourself
o Create one clone on armlab, to test and submit
o If developing on your own machine, create another clone there

o Commit from working copy to local dev clone, push from it "up" to github,
then pull "down" onto armlab, before testing and submitting

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git

A taste of C (compared with Java)
e History of C
* Building and running programs
» Characteristics of C

-

The C Programming Language

Who? Dennis Ritchie
When? ~1972

Where? Bell Labs

Why? Build the Unix OS

Read more history:
https://www.bell-labs.com/usr/dmr/www/chist.nhtml

https:///
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/chist.html

-

History of C and Java

This is what
we’re using
1960 1970 1972 1978 1989 / 1999 2011 2018
N N N | ANSI C89 ISO/ANSI N N
BCPL Br>C > K&R C 1 1S0 C90 > C99 ISO C11 > 1SO C18

Algol <
Simula \ / C++ > Java

LISP > Smalltalk

-
C vs. Java: Design Goals

C Design Goals (1972) Java Design Goals (1995)

Low-level; close to HW High-level; insulated from
and OS hardware and OS

Support structured Support object-oriented
programming programming

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git

A taste of C (compared with Java)
e History of C
e Building and running C programs
» Characteristics of C

Building Java Programs

$ javac MyProg.java

HW (ArmLab)
OS (Linux)

MyProg.java 7 g MyProg.class
javac
(Java code) J (bytecode)

Myprog.class is bytecode, which 1s machine independent and runs on
an interpreter, which 1s a software layer that runs on the hardware
14 * The bytecode 1s an input to the interpreter software

-
Running Java Programs

$ java MyProg Java interpreter /
“virtual machine”

HW (ArmLab)
OS (Linux) |~

[Input data } » java { Output data]

MyProg.class
(bytecode)

-

Building C Programs

$ gcc217 myprog.c —o myprog

C “Compiler driver”

HW (ArmLab)

OS (Linux)

myprog.c W
(C code)

- gcc217

4

myprog
(machine language code)

|

Myprog 1s machine language, which 1s machine dependent and runs on
the raw hardware (unlike Java’s bytecode)

-

Running C Programs

$./myprog

myprog
(machine lang code)

HW (ArmLab)

OS (Linux)

[Input data }

> myprog

{ Output data]

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git

A taste of C (compared with Java)

e History of C
e Building and running C programs
e Characteristics of C

-

Java vs. C: Portability

Program Code Type Portable?
MyProg.java ‘ Java source code ‘Yes
myprog.c C source code Mostly*
MyProg.class Bytecode Yes**
myprog Machine lang code No

Conclusion: Java programs are more portable

* COS 217 has used many architectures over the years, and every time we've switched, all our
programs have had to be recompiled)

** Java interpreter provides a consistent interface across OSes and hardware, though its
implementation is different across them

-

Java vs. C: Safety & Efficiency

Java does a lot more checking
* null reference checking (crash)
* Automatic array-bounds checking (crash)
e Automatic memory management (garbage collection)
e Other safety features

* NULL pointer checking (crash)
 Manual bounds checking (keep going ...)
* Manual memory management

Conclusion 1: Java is often safer than C

Conclusion 2: Java is often slower than C

-

Java vs. C: Details

Next 7 slides show C details through comparisons with the Java you know.

We're going to mostly skip them in lecture. You can read them later

 This is largely syntax mapping. But it prepares us for the more significant
differences later

But we will look at an example program

-

Java vs. C: Details

Overall
Program
Structure

Hello. java:

public class Hello
{ public static void main
(Stringl[] args)
{ System.out.println(
"hello, world");
¥
¥

hello.c:
#include <stdio.h>

int main(void)
{ printf("hello, world\n");
return 0;

}

Building

$ javac Hello.java

$ gcc217 hello.c —o hello

Running

$ java Hello
hello, world

$

$./hello
hello, world

$

-
Java vs. C: Details

IIIIIIIIIIIIIIIIIIIIIIIIiiiiiIIIIIIIIIIIIIIIIIIIIIIIIIiiIIIIIIIIIIII

byte // 8 bits (unsigned, signed) char
Integral types short // 16 bits (unsigned, signed) short

int // 32 bits (unsigned, signed) int

long // 64 bits (unsigned, signed) long

: /* no equivalent x/

-

Java vs. C: Details

C
Array bound e e
checking // run-time check /* no run-time check x/

-

Java vs. C: Details

String sl + s2
concatenation sl += s2

Relational ops * | ==, !=,

#include <string.h>
strcat(sl, s2);

* Essentially the same in the two languages

-

Java vs. C: Details

case 1:

switch (i)
{

switch (i)

{

case 1:

* Essentially the same in the two languages

-

Java vs. C: Details

hile stmt * while (i < 0) while (i < 0)
while stm statement; statement;

continue stmt* | continue; continue;

* Essentially the same in the two languages

-

Java vs. C: Details

{ {

Compound stmt statementl; statementl;
(alias block) * statement2; statement2;

by ¥

* Essentially the same in the two languages

-

Coming up next ...

Character processing, structured exactly how we’ll want you to design
your Assignment 1 solution

Read the Al specs soon: you'll be ready to start after Lecture 3

