
Welcome to COS 217

Introduction to Programming Systems

Spring 2025



Why Are We Here?



1. To Learn to Manage This
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Programming in the Large

Large(r) computer programs are
made up of many modules

Topics
•Modularity, abstraction, well-defined interfaces, separation of interface from 

implementation, information hiding), resource management, error handling
•Testing, debugging, performance improvement
•Tools: version control (git), managing compilation (make), profiling, …
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2. To Learn What Actually Happens

main:
.LFB0:
.cfi_startproc
stp x29, x30, [sp, -16]!
.cfi_def_cfa_offset 16
.cfi_offset 29, -16
.cfi_offset 30, -8
add x29, sp, 0
.cfi_def_cfa_register 29
b .L2

RELOCATION RECORDS FOR [.eh_frame]:
OFFSET      TYPE        VALUE
000000000000001c R_AARCH64_PREL32  .text

Contents of section .text:
0000 fd7bbfa9 fd030091 39000014 

00000090  .{......9.......

int main(void) {
 while ((iChar = getchar()) != EOF) {

   lCharCount++;
   if (isspace(iChar)) {
    if (iInWord) {

      lWordCount++;
      iInWord = FALSE;
    }

   }
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“Under the Hood” Interactions

With the operating system and the hardware

• By using lower-level languages (C and Assembly, not Java/Python)

• By building on an open-source but industry-standard OS (Linux)
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3. To Prepare for Higher-level COS Courses

COS 333: Advanced Programming Techniques

COS 316: Principles of Computer System Design

COS 318: Operating Systems

COS 418: Distributed Systems
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Today’s Agenda

Administrative things
•Introductions
•Activities and Resources
•Grading
•Policies

Computing environment
•Key software / terminology
•Navigating the filesystem
•Demo (time permitting)
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Introductions
Course Faculty
• Jaswinder Pal Singh  jps@cs.princeton.edu

• Christopher Moretti  cmoretti@cs.princeton.edu

• Kevin Alarcón Negy  kn3496@princeton.edu

Graduate Preceptors
• Amelia Dobis  amelia.dobis@princeton.edu

• Lana Glisic ‘24  lglisic@princeton.edu

• Andrew Johnson  aj3189@princeton.edu

• Nicholas Yap  zy4586@princeton.edu
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Today’s Agenda

Administrative things
•Introductions
•Activities and Resources
•Grading
•Policies
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Our computing environment
•Key software / terminology
•Navigating the filesystem
•Demo (time permitting)



Lectures

Conceptual overview, plus some digging into details

Slides on course website

Videos from some previous offerings available on YouTube
… but be careful, you are responsible for any differences

Etiquette
• Ask questions as they come up
• Use electronic devices for taking notes or annotating slides
• Limit browsing / social media use in class, please -- for yourself and neighbors
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iClicker

Occasional questions in class: graded on participation, not correctness.

• You can use an app on your phone or the web client

• Setup is "iClicker Cloud", integrated with our course's Canvas.

• Register, select Princeton University, and find course "COS 217 – Spring 2025"
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iClicker Question

Q: Can you answer this iClicker question today?

A. Yes

B. I would prefer not to

C. I’m not here, but someone is iClicking for me
(don’t do this – it’s an academic violation!)



Precepts

Describe material at the “practical” (low) level
• Support your work on assignments
• Hard-copy handouts distributed in precept
• Handouts also available via course website

Etiquette
• Attend your precept: attendance will be taken, AND you should learn something
• Use TigerHub to move to another precept if timing is a problem
• Must miss your precept once or twice? ⇒ inform preceptors & attend another 

precept in place of the one you miss

Precepts begin *today* 
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Websites

1. https://www.cs.princeton.edu/~cos217
(Course website)
•Home page, schedule page, assignment page, policies page

2. https://princeton.instructure.com/courses/17063
(Canvas)
•Links to Ed, Library reserves and other readings, NameCoach
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3. Ed
https://edstem.org/us/courses/74019/discussion

•Also available as a Canvas link from the course website
•Q&A – post here instead of emailing staff when possible

Etiquette
•Study provided material before posting question

•Lecture slides, precept handouts, required readings
•Read / search all (recent) Ed threads before posting question
•Don’t reveal your code or design decisions in a public post

•See course policies
•Click “private” if in doubt – we can make it public after-the-fact
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4. codePost
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We will use codePost.io to 
annotate your assignment 
submissions with feedback and 
grades. 

More information on this when we 
get ready to return Assignment 1.

http://codepost.io/


Books

C Programming: A Modern Approach (Second Edition) (required)
•King
•C programming language and standard libraries

ARM 64-bit Assembly Language (required / online)
•Pyeatt with Ughetta ‘21

The Practice of Programming (online)
•Kernighan and Pike
•“Programming in the large”
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Help!

Office Hours, Concept Hours, and Study Hall
• Off Hours: 3+ hours per day 6 days per week; schedule is on the course website
• Office hours: offer help on assignments, as well as lecture and precept material
• “Concept” office hours after lecture: focus on course material, not debugging
• McGraw Study Hall: like Concept hours, but with peers

Intro COS Lab Hours
• Intro Lab TAs are your peers who have already completed this course.
• Available 4+ hours per day, every single day in Lewis Library:
https://introlab.cs.princeton.edu/

• These sessions are specific to debugging your assignments.
Go to (regular or concept) office hours or study hall 
for conceptual help with course materials.
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Today’s Agenda

Administrative things
•Introductions
•Resources
•Grading
•Policies
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Our computing environment
•Key software / terminology
•Navigating the filesystem
•Demo (time permitting)



Grading

* Late assignments 10% off per day; first 4 late days waived.

** During midterms week and final exam period, respectively – dates are on website.

*** Did your involvement benefit the course?
• Lecture/precept attendance and precept/Ed participation

Course Component Percentage of Grade
Assignment Submissions * 25
Assignment Quizzes 20
Midterm Exam ** 20
Final Exam ** 30
Participation *** 5
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Programming Assignments

Regular (every 1.5-2.5 weeks) assignments

0.   Introductory survey
1. “De-comment” program
2. String module
3. Symbol table module 
4. Debugging directory and file trees *
5. Assembly language programming *
6. Buffer overrun attack *
*(partnered assignment)

Assignments 0 and 1 are available now: start early!!
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Agenda

Administrative things
•Introductions
•Resources
•Grading
•Policies
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Our computing environment
•Key software / terminology
•Navigating the filesystem
•Demo (time permitting)



Policies
Learning is a collaborative activity!

• Discussions with others that help you understand
concepts from class are encouraged

But programming assignments are graded!
• Everything that gets submitted for a grade

must be exclusively your own work
• Don’t look at code from someone else, the web,

GitHub, etc. – see the course “Policies” web page
• Don’t reveal your code or design decisions to anyone except

course staff – see the course “Policies” web page
• Treat AI chatbots or assistants at least as carefully as you

would treat interaction with classmates. Even better: avoid entirely.

Violations of course policies
• Typical course-level penalty is 0
• Typical University-level penalty is probation or suspension
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Questions?



Today’s Agenda
Administrative things

•Introductions
•Resources
•Grading
•Policies

28

Our computing environment
•Key terminology and software
•Navigating the filesystem

Sai Kiran Anagani
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Terminology: Operating System
Narrow definition:

A piece of software that controls 
the interaction between programs 
and hardware (CPU, memory, 
storage, peripherals).

 Also sometimes called a “kernel”.

Modern Kernel Examples
• Unix lineage: Linux, XNU
• VMS lineage: Windows NT

Looser definition:

The kernel plus a variety of 
libraries and tools built upon it, 
that provide a specific experience 
to users (e.g., GUI).

Modern OS Examples
• Linux kernel: Linux/GNU, Android
• XNU kernel: macOS, iOS
• Windows NT kernel: Windows

30



Terminology: User Interface
Graphical User Interface (GUI):

 Graphical “point and click” or
“swipe and tap” paradigm for
interacting with programs.

 Programs usually designed to
respond to “events”, and
display output via “widgets”.

 Often more user-friendly.

 Mac Finder, Windows Start Menu

Command Line Interface (CLI):

 Text-based paradigm for
interacting with programs.d

 Programs usually designed to
accept typed (text-based) input
and produce text-based output.

 Easier to code, more flexible, 
easier to execute remotely, and 
easier to automate/script!

 Terminal emulator31



Terminology: Terminal and Shell
Terminal Terminal Emulator:

 GUI program that relays typed 
input to a CLI program and 
displays its output on the screen.

Shell:

 CLI or GUI program for managing
files and running other programs.

 CLI example: bash
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Terminology: ssh
ssh:

Stands for “secure shell”
(but it’s not a shell!)

CLI program that connects to 
sshd on another computer and 
relays text back/forth securely.

sshd:

Program that runs continuously 
on a server, accepts network 
connections from ssh clients,
and relays text back/forth to
a local shell (e.g., bash).
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Terminology: Text Editor
Text Editor:

Allows editing plain text:
just a sequence of characters.
Examples: TextEdit, Notepad,
Sublime Text, emacs, vi

Word Processor:
Allows editing text with formatting 
(various fonts, paragraphs, etc.)
Does not output plain-text.
Examples: Word, Pages

Integrated Development 
Environment (IDE):

 Text editor optimized for code – 
usually integrates syntax coloring, 
compiling, searching for errors, 
sometimes suggesting variable 
names or code snippets.
Examples: IntelliJ, VS Code, 
{emacs, vi} with the appropriate 
configuration
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So What’s Our Programming Environment?

Your Computer

SSH

ArmLab Cluster

Linux OS

GNU
tools

Your
Program

armlab01

Server Client

armlab02
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Programming Environment – Under the Hood
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armlab

MacOS

bash sshd

Your Mac computer
(Windows would be similar)

Linux OS

ssh

Terminal
Emulator

bash

GUI



Today’s Agenda
Administrative things

•Introductions
•Resources
•Grading
•Policies
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Our computing environment
•Key terminology and software
•Navigating the filesystem

Sai Kiran Anagani

https://unsplash.com/@_imkiran


…
bin

Filesystems
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u

netid

hi.c

usr

ls
#include <stdio.h>

int main(void)
{
...
} Machine code …

Files

Directories
(“folder” metaphor in GUIs)



…
bin

Filesystems
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u

you

hi.c

usr

ls
#include <stdio.h>

int main(void)
{
...
} Machine code …

Name: ls
(Absolute) Path: 
/usr/bin/ls

Home directory

Root directory



…
bin

Filesystem Shortcuts

• Current / working directory

• Relative paths: Any name not 
starting with / is interpreted as 
starting at current directory

• Change current
directory with
cd command
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u

you

hi.c

usr

ls
#include <stdio.h>

int main(void)
{
...
} Machine code …

e.g., if /u  is current:

Relative: you/hi.c
Absolute: /u/you/hi.c



…
bin

Filesystem Shortcuts

Special names

• . (single dot) is “here”

• .. (double dot) is parent

• ~ (tilde) is home 
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u

you

hi.c

usr

ls
#include <stdio.h>

int main(void)
{
...
} Machine code …



Filesystem: What Did We Learn?

• Directory hierarchy 

• Absolute pathnames

• Some shortcuts: relative pathnames and special names
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Next steps …

• Check out website and policies soon
https://www.cs.princeton.edu/~cos217

• Please attend all precepts diligently

• For more on Linux/Shell: optional
(but strongly encouraged) lecture
videos from Fall 2020:

• "Getting Started with bash" walkthrough
• Advanced bash walkthrough

Upcoming lectures: Git, C programming
• In preparation for assignments 0 and 1
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