
Welcome to COS 217

Introduction to Programming Systems

Spring 2025

Why Are We Here?

1. To Learn to Manage This

3

Programming in the Large

Large(r) computer programs are
made up of many modules

Topics
•Modularity, abstraction, well-defined interfaces, separation of interface from

implementation, information hiding), resource management, error handling
•Testing, debugging, performance improvement
•Tools: version control (git), managing compilation (make), profiling, …

4

2. To Learn What Actually Happens

main:
.LFB0:
.cfi_startproc
stp x29, x30, [sp, -16]!
.cfi_def_cfa_offset 16
.cfi_offset 29, -16
.cfi_offset 30, -8
add x29, sp, 0
.cfi_def_cfa_register 29
b .L2

RELOCATION RECORDS FOR [.eh_frame]:
OFFSET TYPE VALUE
000000000000001c R_AARCH64_PREL32 .text

Contents of section .text:
0000 fd7bbfa9 fd030091 39000014

00000090 .{......9.......

int main(void) {
 while ((iChar = getchar()) != EOF) {

 lCharCount++;
 if (isspace(iChar)) {
 if (iInWord) {

 lWordCount++;
 iInWord = FALSE;
 }

 }

5

“Under the Hood” Interactions

With the operating system and the hardware

• By using lower-level languages (C and Assembly, not Java/Python)

• By building on an open-source but industry-standard OS (Linux)

6

3. To Prepare for Higher-level COS Courses

COS 333: Advanced Programming Techniques

COS 316: Principles of Computer System Design

COS 318: Operating Systems

COS 418: Distributed Systems
7

Today’s Agenda

Administrative things
•Introductions
•Activities and Resources
•Grading
•Policies

Computing environment
•Key software / terminology
•Navigating the filesystem
•Demo (time permitting)

8

Introductions
Course Faculty
• Jaswinder Pal Singh jps@cs.princeton.edu

• Christopher Moretti cmoretti@cs.princeton.edu

• Kevin Alarcón Negy kn3496@princeton.edu

Graduate Preceptors
• Amelia Dobis amelia.dobis@princeton.edu

• Lana Glisic ‘24 lglisic@princeton.edu

• Andrew Johnson aj3189@princeton.edu

• Nicholas Yap zy4586@princeton.edu

9

mailto:jps@cs.princeton.edu
mailto:cmoretti@cs.princeton.edu
mailto:kn3496@princeton.edu
mailto:amelia.dobis@princeton.edu
mailto:lglisic@princeton.edu
mailto:aj3189@
mailto:aj3189@princeton.edu
mailto:zy4586@princeton.edu

Today’s Agenda

Administrative things
•Introductions
•Activities and Resources
•Grading
•Policies

10

Our computing environment
•Key software / terminology
•Navigating the filesystem
•Demo (time permitting)

Lectures

Conceptual overview, plus some digging into details

Slides on course website

Videos from some previous offerings available on YouTube
… but be careful, you are responsible for any differences

Etiquette
• Ask questions as they come up
• Use electronic devices for taking notes or annotating slides
• Limit browsing / social media use in class, please -- for yourself and neighbors

11

iClicker

Occasional questions in class: graded on participation, not correctness.

• You can use an app on your phone or the web client

• Setup is "iClicker Cloud", integrated with our course's Canvas.

• Register, select Princeton University, and find course "COS 217 – Spring 2025"

12

iClicker Question

Q: Can you answer this iClicker question today?

A. Yes

B. I would prefer not to

C. I’m not here, but someone is iClicking for me
(don’t do this – it’s an academic violation!)

Precepts

Describe material at the “practical” (low) level
• Support your work on assignments
• Hard-copy handouts distributed in precept
• Handouts also available via course website

Etiquette
• Attend your precept: attendance will be taken, AND you should learn something
• Use TigerHub to move to another precept if timing is a problem
• Must miss your precept once or twice? ⇒ inform preceptors & attend another

precept in place of the one you miss

Precepts begin *today*
14

Websites

1. https://www.cs.princeton.edu/~cos217
(Course website)
•Home page, schedule page, assignment page, policies page

2. https://princeton.instructure.com/courses/17063
(Canvas)
•Links to Ed, Library reserves and other readings, NameCoach

15

https://www.cs.princeton.edu/~cos217
https://princeton.instructure.com/courses/17063
https://princeton.instructure.com/courses/17063

3. Ed
https://edstem.org/us/courses/74019/discussion

•Also available as a Canvas link from the course website
•Q&A – post here instead of emailing staff when possible

Etiquette
•Study provided material before posting question

•Lecture slides, precept handouts, required readings
•Read / search all (recent) Ed threads before posting question
•Don’t reveal your code or design decisions in a public post

•See course policies
•Click “private” if in doubt – we can make it public after-the-fact

16

https://edstem.org/us/courses/74019/discussion

4. codePost

17

We will use codePost.io to
annotate your assignment
submissions with feedback and
grades.

More information on this when we
get ready to return Assignment 1.

http://codepost.io/

Books

C Programming: A Modern Approach (Second Edition) (required)
•King
•C programming language and standard libraries

ARM 64-bit Assembly Language (required / online)
•Pyeatt with Ughetta ‘21

The Practice of Programming (online)
•Kernighan and Pike
•“Programming in the large”

18

Help!

Office Hours, Concept Hours, and Study Hall
• Off Hours: 3+ hours per day 6 days per week; schedule is on the course website
• Office hours: offer help on assignments, as well as lecture and precept material
• “Concept” office hours after lecture: focus on course material, not debugging
• McGraw Study Hall: like Concept hours, but with peers

Intro COS Lab Hours
• Intro Lab TAs are your peers who have already completed this course.
• Available 4+ hours per day, every single day in Lewis Library:
https://introlab.cs.princeton.edu/

• These sessions are specific to debugging your assignments.
Go to (regular or concept) office hours or study hall
for conceptual help with course materials.

20

https://introlab.cs.princeton.edu/

Today’s Agenda

Administrative things
•Introductions
•Resources
•Grading
•Policies

21

Our computing environment
•Key software / terminology
•Navigating the filesystem
•Demo (time permitting)

Grading

* Late assignments 10% off per day; first 4 late days waived.

** During midterms week and final exam period, respectively – dates are on website.

*** Did your involvement benefit the course?
• Lecture/precept attendance and precept/Ed participation

Course Component Percentage of Grade
Assignment Submissions * 25
Assignment Quizzes 20
Midterm Exam ** 20
Final Exam ** 30
Participation *** 5

22

Programming Assignments

Regular (every 1.5-2.5 weeks) assignments

0. Introductory survey
1. “De-comment” program
2. String module
3. Symbol table module
4. Debugging directory and file trees *
5. Assembly language programming *
6. Buffer overrun attack *
*(partnered assignment)

Assignments 0 and 1 are available now: start early!!
23

Pedro da Silva

https://unsplash.com/@pedroplus

Agenda

Administrative things
•Introductions
•Resources
•Grading
•Policies

24

Our computing environment
•Key software / terminology
•Navigating the filesystem
•Demo (time permitting)

Policies
Learning is a collaborative activity!

• Discussions with others that help you understand
concepts from class are encouraged

But programming assignments are graded!
• Everything that gets submitted for a grade

must be exclusively your own work
• Don’t look at code from someone else, the web,

GitHub, etc. – see the course “Policies” web page
• Don’t reveal your code or design decisions to anyone except

course staff – see the course “Policies” web page
• Treat AI chatbots or assistants at least as carefully as you

would treat interaction with classmates. Even better: avoid entirely.

Violations of course policies
• Typical course-level penalty is 0
• Typical University-level penalty is probation or suspension

25

@jdent

https://unsplash.com/@jdent

Questions?

Today’s Agenda
Administrative things

•Introductions
•Resources
•Grading
•Policies

28

Our computing environment
•Key terminology and software
•Navigating the filesystem

Sai Kiran Anagani

https://unsplash.com/@_imkiran

Terminology: Operating System
Narrow definition:

A piece of software that controls
the interaction between programs
and hardware (CPU, memory,
storage, peripherals).

 Also sometimes called a “kernel”.

Modern Kernel Examples
• Unix lineage: Linux, XNU
• VMS lineage: Windows NT

Looser definition:

The kernel plus a variety of
libraries and tools built upon it,
that provide a specific experience
to users (e.g., GUI).

Modern OS Examples
• Linux kernel: Linux/GNU, Android
• XNU kernel: macOS, iOS
• Windows NT kernel: Windows

30

Terminology: User Interface
Graphical User Interface (GUI):

 Graphical “point and click” or
“swipe and tap” paradigm for
interacting with programs.

 Programs usually designed to
respond to “events”, and
display output via “widgets”.

 Often more user-friendly.

 Mac Finder, Windows Start Menu

Command Line Interface (CLI):

 Text-based paradigm for
interacting with programs.d

 Programs usually designed to
accept typed (text-based) input
and produce text-based output.

 Easier to code, more flexible,
easier to execute remotely, and
easier to automate/script!

 Terminal emulator31

Terminology: Terminal and Shell
Terminal Terminal Emulator:

 GUI program that relays typed
input to a CLI program and
displays its output on the screen.

Shell:

 CLI or GUI program for managing
files and running other programs.

 CLI example: bash
32

Terminology: ssh
ssh:

Stands for “secure shell”
(but it’s not a shell!)

CLI program that connects to
sshd on another computer and
relays text back/forth securely.

sshd:

Program that runs continuously
on a server, accepts network
connections from ssh clients,
and relays text back/forth to
a local shell (e.g., bash).

33

Terminology: Text Editor
Text Editor:

Allows editing plain text:
just a sequence of characters.
Examples: TextEdit, Notepad,
Sublime Text, emacs, vi

Word Processor:
Allows editing text with formatting
(various fonts, paragraphs, etc.)
Does not output plain-text.
Examples: Word, Pages

Integrated Development
Environment (IDE):

 Text editor optimized for code –
usually integrates syntax coloring,
compiling, searching for errors,
sometimes suggesting variable
names or code snippets.
Examples: IntelliJ, VS Code,
{emacs, vi} with the appropriate
configuration

34

So What’s Our Programming Environment?

Your Computer

SSH

ArmLab Cluster

Linux OS

GNU
tools

Your
Program

armlab01

Server Client

armlab02

35

DALL·E 2

Programming Environment – Under the Hood

36

armlab

MacOS

bash sshd

Your Mac computer
(Windows would be similar)

Linux OS

ssh

Terminal
Emulator

bash

GUI

Today’s Agenda
Administrative things

•Introductions
•Resources
•Grading
•Policies

37

Our computing environment
•Key terminology and software
•Navigating the filesystem

Sai Kiran Anagani

https://unsplash.com/@_imkiran

…
bin

Filesystems

38

u

netid

hi.c

usr

ls
#include <stdio.h>

int main(void)
{
...
} Machine code …

Files

Directories
(“folder” metaphor in GUIs)

…
bin

Filesystems

39

u

you

hi.c

usr

ls
#include <stdio.h>

int main(void)
{
...
} Machine code …

Name: ls
(Absolute) Path:
/usr/bin/ls

Home directory

Root directory

…
bin

Filesystem Shortcuts

• Current / working directory

• Relative paths: Any name not
starting with / is interpreted as
starting at current directory

• Change current
directory with
cd command

40

u

you

hi.c

usr

ls
#include <stdio.h>

int main(void)
{
...
} Machine code …

e.g., if /u is current:

Relative: you/hi.c
Absolute: /u/you/hi.c

…
bin

Filesystem Shortcuts

Special names

• . (single dot) is “here”

• .. (double dot) is parent

• ~ (tilde) is home

41

u

you

hi.c

usr

ls
#include <stdio.h>

int main(void)
{
...
} Machine code …

Filesystem: What Did We Learn?

• Directory hierarchy

• Absolute pathnames

• Some shortcuts: relative pathnames and special names

42

Next steps …

• Check out website and policies soon
https://www.cs.princeton.edu/~cos217

• Please attend all precepts diligently

• For more on Linux/Shell: optional
(but strongly encouraged) lecture
videos from Fall 2020:

• "Getting Started with bash" walkthrough
• Advanced bash walkthrough

Upcoming lectures: Git, C programming
• In preparation for assignments 0 and 1

43

@tateisimikito

https://www.cs.princeton.edu/~cos217
https://youtu.be/c_5b2oSye-s
https://youtu.be/c_5b2oSye-s
https://youtu.be/z0My6q-cGR4?t=1171
https://youtu.be/z0My6q-cGR4?t=1171
https://unsplash.com/@tateisimikito

