

 Midterm Exam ​ ​ ​ Fall 2025

​ ​
​
This exam consists of four questions. You have 50 minutes – budget your time wisely. Assume
the ArmLab/gcc217 environment unless otherwise stated in a problem.

Do all of your work on these pages. You may use the provided blank pages at the end for
scratch space, however this exam is preprocessed by computer, so for your final answers to be
scored you must write them inside the designated spaces and fill in selected circles and boxes
completely (⚫ and ⬛, not ✔ or ✘). Please make text answers dark and neat.

Name:​ ​NetID:

Precept:

◯ P01 - MW 1:20​
Christopher Moretti

◯ P04 - TTh 12:15
Andrew Johnson

◯ P08 TTh 3:30
Kevin Alarcón Negy

◯ P02 - MW 3:30​
Amelia Dobis

◯ P05 - TTh 12:15
Nicholas Yap

◯ P03 - TTh 12:15​
Kevin Alarcón Negy

◯ P07 - TTh 1:20
Lana Glisic

This is a closed-book, closed-note exam, except you are allowed one one-sided study sheet.
Please place items that you will not need out of view in your bag or under your working space at
this time. Electronic devices such as cell phones, laptops, smartwatches except to check the
time, etc. may not be used during this exam.

This examination is administered under the Princeton University Honor Code. Students should
sit one seat apart from each other and refrain from talking to other students during the exam. All
suspected violations of the Honor Code must be reported to honor@princeton.edu.

In the box below, copy and sign the Honor Code pledge before turning in your exam:
“I pledge my honor that I have not violated the Honor Code during this examination.”

Exam Stats:​
Total points: 65
Maximum: 60
Mean: 43.22
Median: 44
Standard Deviation: 8.8​
Percentiles: 10th - 32 / 25th - 37 / 75th - 50 / 90th - 54

​
​

X_________________________________

Question 1: Building and Running Programs​ ​ ​ 15 points

a. For each of the following errors or warnings seen while building or running a program, identify
when the error/warning appears: list the stage of the build process or “runtime” if it is a runtime
error. Write your answers in the boxes provided for each part.

(i)

Segmentation fault (core dumped)

Runtime​

(ii)

/usr/bin/ld: client.c:(.text+0x20): undefined reference to `printf'

collect2: error: ld returned 1 exit status

Linker​

(iii)

test.c:6:1: error: unterminated comment

Preprocessor​

(iv)

test.c:12:14: warning: format '%d' expects argument of type 'int', but
argument 2 has type 'int *' [-Wformat=]

 12 | ​ printf("%d\n", ptr);

 ​ | ​ ~^ ​ ~~~

 ​ | ​| ​ |

 ​ | ​int int *

 ​ | ​ %ls

Compiler​

​
​
​

Page 2 of 10

b. The process of building a program utilizes the principle of modularity to increase
efficiency. State in two sentences or less how it does this and how the increase in efficiency
is achieved. ​

​
A strong answer should have mentioned at least one of the following, ​
and had to have been in the context of aiding in the efficiency of building a program:
 a) Allowing for partial builds (reducing unnecessarily repeated computation)
 b) Allowing for parallelization of compilation (reducing overall build time)
 c) Reducing debugging space to specific stages (reducing human intervention effort)

c. Complete the table below with the four stages of the process of building an executable
starting from C source code. Write the stages in order (i.e., the first stage to be executed will be
in row 1., the last stage will be in row 4.). For each build stage, indicate:

●​ the name of the stage
●​ the format of the file(s) produced by that stage ​

(Answer with a letter from the options given – you will not use every option.)
●​ whether or not that format is considered human-readable (Answer YES or NO.)

File Format Options:
A: Assembly language​ B: Bytecode​ ​ ​ C: C source code​ D: DFA
E: Executable file​ ​ F: Machine language​​ G: Makefile​

 Stage ​
Name

File ​
Format

Human
Readable

1.​ Preprocessor C YES

2.​ Compiler A YES

3.​ Assembler F NO

4.​ Linker E NO

Page 3 of 10

Question 2: Modularity​ ​ ​ ​ ​ ​ ​ 14 points

A COS217 student wrote a program with two functions that each double every element of an
integer array – one version using a for loop and arithmetic operations, the other using a while
loop with pointers and bitshifting. The main function uses a helper function that prints an array to
show the results of each version.

Filename: double.c

01 #include <stddef.h>
02 #include <stdio.h>
03 #include <assert.h>
04 enum {ARRAY_LENGTH = 5};
05
06 void double_array_elements_for_loop(int aiNums[], size_t n);
07 void double_array_elements_while_loop(int aiNums[], size_t n);
08 void print_array(int arr[], size_t n);
09
10 int main(void) {
11 int aiNums1[ARRAY_LENGTH] = {4, 1233, 8, -32, 0};
12 int aiNums2[ARRAY_LENGTH] = {4, 1233, 8, -32, 0};
13
14 double_array_elements_for_loop(aiNums1, ARRAY_LENGTH);
15 print_array(aiNums1, ARRAY_LENGTH);
16
17 double_array_elements_while_loop(aiNums2, ARRAY_LENGTH);
18 print_array(aiNums2, ARRAY_LENGTH);
19 return 0;
20 }
21
22 void double_array_elements_for_loop(int aiNums[], size_t n) {
23 /* implementation correct but not shown */
24 }
25
26 void double_array_elements_while_loop(int aiNums[], size_t n) {
27 /* implementation correct but not shown */
28 }
29
30 void print_array(int arr[], size_t n) {
31 /* implementation correct but not shown */
32 }

​

​
​
​
​

Page 4 of 10

Modularize this program. The result should be that you can build and run two versions – one
that uses the for loop implementation and one that uses the while loop implementation –
using the same main function and print function for each. The revised client should call an
array doubling function only once, instead of running both implementations sequentially like the
original main function. Your module should use the best practices from the last version of
IntMath from precept and Str from Assignment 2.

As much as possible, reuse the given code from double.c in your new files by writing down
specific line numbers in each box below (e.g., “9” or “10-12”). If you want to refer to a line but
make a change to it, write, e.g., “17, but add/remove/change …”. If you want to write a new line
of code, do so in the appropriate box in its proper place among the reused and modified lines.

You might not have to use every line of code from the file double.c.

Label the filenames and write the line numbers you want to include in each file (in order) in the
boxes below, one file per box.

New filename: __double.h________________ New filename: __doublefor.c______________

#ifndef DOUBLE_INCLUDED
#define DOUBLE_INCLUDED
01
/* function comment for 06 */
06 renamed just double_array_elements
#endif

 #include "double.h"​
03​
22 renamed just double_array_elements​
23-24​

New filename: ___doublewhile.c___________ New filename: __testdouble.c_____________

#include "double.h"​
03​
26 renamed just double_array_elements​
27-28

 #include "double.h"​
02​
03 (optional to assert in static fun)​
04​
08 (optional if 30-32 above 10)
10-11​
14 renamed just double_array_elements​
15​
19-20​
/* function comment for 30 */​
30 with added static keyword​
31-32

Page 5 of 10

​
Question 3: Indirection and Portability​ ​ ​ ​ 8 points

Consider the following C program. Assume the program is built and run on armlab.

#include <stdio.h>​
enum {ARRAY_LENGTH = /* redacted */ };​
​
void print_array(char ac[]) {​
 char c;
 int *pi = (int*) &ac[0];
 ​
 while((c = *(char*)pi) != '\0') {
 putchar(c);​
 pi++;​
 }
}

void fill_array(char ac[]) {​
 size_t i;​
 for(i = 0; i < ARRAY_LENGTH - 1; i++)​
 ac[i] = 'A' + i;​
 ac[ARRAY_LENGTH - 1] = '\0';
}

int main(void) {
 char ac[ARRAY_LENGTH];
 fill_array(ac);
 print_array(ac);
 return 0;
}

​

Page 6 of 10

a. Assume ARRAY_LENGTH is defined as 5. What are the contents of ac in main after returning
from fill_array?

A​

B C D \0

b. Assume ARRAY_LENGTH is defined as 13. What is the output printed in print_array?

AEI because pi++ increments by 4 bytes​

c. Setting ARRAY_LENGTH to 20 leads to undefined behavior on armlab. Explain in 1 sentence
why this is the case.

​
When ARRAY_LENGTH is 20, the trailing nullbyte from fill_array will be at index 19, so
as pi++ increments by 4 from 16 to 20, it will skip over the element that was supposed to
trigger the loop’s end condition and result in reading off out of bounds off the end of the
array, triggering indeterminate behavior.

d. Explain in 1 sentence why the answers to parts b. and c. above might not be correct on all
systems. Specifically, why does whether ARRAY_LENGTH is defined as 13 or 20 result in defined
or undefined behavior depending on a system-dependent characteristic of C?

​
sizeof(int) (which is how many bytes pi++ advances) is not precisely specified by the C
standard, and thus may be of different sizes on different machines (so those machines
would have a different set of viable ARRAY_LENGTH values to avoid reading off the end
of the array)

Page 7 of 10

Question 4: Bugs and the Stack​ ​ ​ ​ ​ 28 points

Consider the following implementation of array_equals that checks if the content in two arrays
is equal. Assume that all needed header files have been included.

01 int array_equals(const int* arr0_p, const int* arr1_p, size_t size) {

02 int* arr_elem = &arr1_p[0];

03 size_t i;

04 for(i = 0; i < size; i++) {

05 if(arr0_p[i] != *(arr_elem++))

06 return 0;

07 }

08 return 1;

09 }

a. One of the lines in array_equals does not compile cleanly. Write which line number it is, and
provide a corrected version of the line.

Line 2 assigns a const int* pointer to a (non-const) int *. This will be a compiler warning.​
Fix: casting away const or changing variable type, e.g., const int* arr_elem = &arr1_p[0];

Also consider this function that calls array_equals.

int main() {

 int arr0[4] = { 2, 3, 4, 2 };

 int arr1[3] = { 2, 3, 4 };

 int eq = array_equals(arr0, arr1, 4); ​

 printf("%d", eq);

 return EXIT_SUCCESS;

}

​

Page 8 of 10

b. Complete the contents of the table showing the contents of the stack section of memory just
before we return from the array_equals function.

For simplicity, we assume that the last entry for the main stack frame is at line 2000. Addresses
in our listing grow towards the bottom of the table, i.e., the rows above 2000 should all contain
smaller addresses than 2000. The addresses should be consistent with the size of each
variable’s type on armlab.

Assume that parameters and variables are pushed onto their function’s stack frame in the order
in which they are declared, and there are no gaps or padding used.

The table contains exactly the number of rows you need to fill in or complete. Some entries are
already provided to help you get started.

Write the array index into the two partially filled in cells in the bottom two rows and fill in the rest
of the table, except for the greyed out cell.

Address Variable Name Contents Function Name

1932 i 4 array_equals

1940 arr_elem 1992 array_equals

1948 size 4 array_equals

1956 arr1_p 1976 array_equals

1964 arr0_p 1988 array_equals

1972 eq main

1976 arr1[0] 2 main

1980 arr1[1] 3 main

1984 arr1[2] 4 main

1988 arr0[0] 2 main

1992 arr0[1] 3 main

1996 arr0[2] (fill in index) 4 main

2000 arr0[3] (fill in index) 2 main

c. This program outputs 1, which is incorrect: the arrays do not have the same elements! In one
sentence, what is the design flaw in the program that causes the incorrect output?

​
array_equals assumes both arrays are the same size, and should have instead taken
separate size parameters for the two arrays

Page 9 of 10

(Question 4 was the last question on this midterm exam. This page can be used as scratch
space. Please note that anything written on this page will not be graded.)

Page 10 of 10

	
	Question 1: Building and Running Programs​​​ 15 points
	
	Question 2: Modularity​​​​​​​ 14 points
	​Question 3: Indirection and Portability​​​ ​ 8 points

